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Preface

Excess heat generation in thermal components is unavoidable in a wide range of engineer-

ing applications. This excessive heat might have a negative impact on the operation and

functionality of such components. As a result, the reliable operation of such components

necessitates the use of appropriate cooling technology. Although different cooling pro-

cesses have long been used to remove heat, a fin or an extended surface plays a vital role

in increasing the heat transfer rate. A fin is a component attached to a primary surface

with the aim of increasing the latter’s surface area thereby increasing the heat exchange

rate. It has a variety of applications in the field of manufacture and engineering where it

is essential for the surface of components to work in a threshold temperature range. Some

invaluable applications are in aviation engineering, automobile industries, nuclear power

plants, microelectronics, home electronic systems, etc.

A fin is an extension on exterior surfaces of objects that increase the rate of heat

transfer to or from the object by increasing convection. This is achieved by increasing

the surface area of the body, which in turn increases the heat transfer rate by a suffi-

cient degree. Increasing the heat transfer between the object and the surrounding mainly

depends on three parameters namely, surface area available, temperature difference be-

tween surface and surrounding fluid and the convective heat transfer coefficient. The

base surface area is limited by design of the system. The temperature difference depends
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Preface

on the process and cannot be altered. The heat transfer coefficient also cannot be in-

creased beyond a certain value. Thus, the possible option is to increase the base area

by the so called ‘Extended surface’ or ‘Fin’. The fin structures extended from the base

surfaces provide additional convection area for the heat conducted into the fin at base.

Fin structures are thus used whenever the available surface area are found insufficient

to transfer the required quantity of heat with the available temperature deep and heat

transfer coefficient.

On request from the Engineering Division of the U.S. Army and the U.S. Bureau of

Standards in connection with the heat dissipating features of air-cooled aircraft engines, a

paper by Harper and Brown (1922) appeared as an NACA report. It was an elegant piece

of work and appears to be the first really significant attempt to provide a mathematical

analysis of the interesting interplay between convection and conduction in and upon a

single extended surface called fin. Murray (1938) proposed that the analysis of extended

surface is based on a set of assumptions that have been known since 1945 as the Murray-

Gardner assumptions. Gardner (1945) derived general equations for the temperature

excess profile and fin efficiency for any form of extended surface for which the Murray-

Gardner assumptions are applicable.

Research in the field of heat transfer enhancement via fin is going on since decades.

Because of their widespread use in industry, researchers have always sought new techniques

to improve their performance and make them more flexible to the needs of the field. Kraus

et al (2002) have put in an encyclopaedic effort in compiling the advancements in the field

of extended surface technology. In recent years fin problems were proposed and studied

under different circumstances by Gorla and Bakier (2011), Aziz and Torabi (2012), Khani

et al (2016), Sowmya et al (2019), Das and Kundu (2021), Kundu and Yook (2021) and
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many others.

The fin geometry can be broadly classified into longitudinal (straight), radial, and pin

fin structures. Each fin geometry can assume distinct profiles like rectangular, trapezoidal,

exponential, convex, concave etc depending on the variation in the fin thickness along its

length. The longitudinal fin structures of distinct profiles were mainly concentrated by

Torabi et al (2013), Moradi et al (2014), Hatami and Ganji (2014), Kundu and Lee

(2015), Ma et al (2017) and Sowmya and Gireesha (2022). On the other hand the radial

or circular fin structures were examined by Arslanturk (2009), Aziz et al (2013), Gireesha

et al (2019) and Ndlovu (2020). The pin fin structures or spines have applications in gas

turbine blades, computer chips, and heat sinks and were mainly discussed by Hajabdollahi

et al (2012), Hatami and Ganji (2013), Vahabzadeh et al (2015), Fallo et al (2018), and

Turkyilmazoglu (2020, 2021). On the other hand, the semi-spherical shaped fin structures

have gained enormous applications due to the ease of manufacturing as well as the low

resistance which they offer to the flow as compared to other shapes. They are mainly

employed by embedding them on the surface of heat sinks, plate fin heat exchangers,

microchannels etc. Sabbaghi et al (2011), Hatami et al (2014), Atouei et al (2015) and

Manohar et al (2021) have carried out research on the semi-spherical fin structures.

With flexibility in the context of weight, size, and shape fin has gained employment

in numerous areas. The manufacturing cost is also a necessary aspect to be taken into

consideration while designing the fin structures. In airborne and space applications fin

structures of tapered profiles are preferred over rectangular fin structures, because of

their lighter structures. On the other hand, the inverted fin profiles have applications

in the area of double pipe heat exchangers. In this regard, the tapered and inverted

profiles of trapezoidal fin structures have been investigated by Lane and Heggs (2005),
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Khani and Aziz (2010), Das (2016) and Turkyilmazoglu (2017) whilst that of exponential

fin structures has been examined by Turkyilmazoglu (2014), Kundu et al (2015) and

Turkyilmazoglu (2018).

Kiwan and Al-Nimr (2001) were the foremost to consider the light-weighted porous

fin structures as a substitution for the solid ones. The porous fin structures have higher

surface area to volume ratio as compared to solid ones and thus enhance the heat transfer

rate. The researchers namely Kiwan (2007a, 2007b), Bhanja et al (2013), Hatami et al

(2013), Nabati (2021), etc., mainly focused on porous fin structures. The fully wet envi-

ronment is an emerging technology in the field of heat transfer enhancement. Sharqawy

and Zubair (2008) explored the thermal performance of fin structures operating under wet

conditions. Further, Hatami and Ganji (2014), Darvishi et al (2016), Kundu et al (2018),

Das and Kundu (2019), etc have discussed distinct fin structures exposed to wet envi-

ronment. The angle of inclination has a significant impact on the thermal performance

of fin structures as analysed by Kiwan (2019), Gireesha and Sowmya (2020) and other

researchers.

Coolants utilised in industries and other disciplines, such as water, ethylene glycol, etc.,

are often weak at temperature conduction. The injection of nanoparticles into coolants

can overcome this nature, and Choi and Eastman (1995) were the first to suggest this

approach. Inspired by the use of nanofluids in several heat transfer enhancement fields,

Baslem et al (2020) investigated heat transfer through fin structures wetted in nanofluids.

However, while such a nanofluid may have superior thermal conductivity, it may not have

improved rheological characteristics, and its stability is also an issue. To address this,

hybrid nanofluids were developed, which are nanofluid composites made up of a perfect

blend of two distinct nanoparticles that are acceptable for the field’s application needs.
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Taking notice of hybrid nanofluids’ increased efficacy, the heat transmission through a

porous fin structure under motion in the presence of a hybrid nanofluid was explored

by Gireesha et al (2020). With the ground-breaking works of Sowmya et al (2019),

Hosseinzadeh et al (2022) and Talbi et al (2022) the nanotechnology-assisted extended

surface technology is reaching new heights.

The functionally graded materials (FGM) are composite materials that are graded

for a smooth transition of properties. But the composite materials show a sharp tran-

sition in properties which may result in failure of the components. Hence, FGMs have

replaced composite materials in the fields of mining, nuclear, chemical, biomedical, etc.

An overview of FGMs has been recorded in the article by Zhang [20]. The works by

Hassanzadeh and Pekel (2013), Oguntala et al (2019), Sowmya et al (2020) and Yildrim

et al (2020) are some of the important ones on the application of FGMs in the field of

extended surfaces.

Extrusion, casting, glass fibre drawing, hot rolling, etc. are some of the most essential

production processes and, in the automobile industry, there is also continuous movement

of fin surfaces. Since fin is under continuous motion in a variety of applications, there is a

necessity to analyse the effect of movement on its thermal profile. Aziz and Khani (2011),

Bhanja et al (2014), Singla and Das (2014), Sun and Xu (2015), Roy et al (2018), Na-

jafabadi et al (2021) and many other researchers have incorporated fin motion in distinct

fin problems. A moving fin surface can be mounted with a stretching/shrinking mecha-

nism similar to a conveyer belt. Turkyilmazoglu (2015) were the first to study the impact

of stretching/shrinking on the thermal performance of fin structures and were followed by

Mosavat et al (2018).

The surface roughness artificially created by MEMS (Microelectromechanical systems)
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technologies during the production have a significant impact on the thermal performance

of structures of smaller dimension. Diez et al (2010) modelled the rough pin fin problem

which were further analysed by Oguntala et al (2018a, 2018b), Ayoobi (2021) and others.

On the other hand internal heat generation in the fin structures when exposed to various

circumstances has been concentrated by Aziz and Bouaziz (2011), Ghasemi et al (2014),

Sowmya et al (2020) and other researchers.

Understanding the operation of fin structures in transient temperature circumstances

is crucial for many cooling applications, such as energy storage devices, automatic control

systems, electronic equipment, and others. In this regard, distinct fin structures were

investigated under unsteady conditions by Moitsheki and Harley (2011), Khan and Aziz

(2012), Mosayebidorcheh et al (2014), Sowmya et al (2021) and others. All these studies

dealt with performance of fin structures are subject to constant base temperature. But in

realistic applications the fin base encounters a non-constant or periodic variation in the

temperature. Fin structures in applications like electronic equipment, solar collectors,

cutting tools, internal combustion engines, etc., experience a periodic variation in the

thermal conditions. Thus, results obtained by analysing a fin with constant base temper-

ature cannot be satisfactorily applied to the real-life applications. In this regard, Aziz

and Na (1981), Aziz and Luardini (1994), Yang (2008), Singh et al (2018) and others have

analysed the fin structures when exposed to periodic variations in the base temperature.

The classic concept of heat conduction, i.e., Fourier’s law, has produced a reasonable

pact at most time and spatial dimensions. The parabolic nature of Fourier’s laws indicates

that heat flux arises concurrently with the establishment of the thermal gradient and

heat dispersion speed will be infinite. The Fourier’s law fails when heat is transferred

in exceedingly short durations, especially elevated temperature differences or extremely
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minimal temperature levels closer to absolute zero. Thus, the effect of non-Fourier heat

conduction which leads to the formulation of the hyperbolic heat conduction equation is

considered for discussing the transmission of thermal waves with finite speed. Numerous

researchers like Kundu and Lee (2012, 2013), Bhowmik et al (2014), Varun Kumar et al

(2022) and others have considered hyperbolic heat conduction for a wide range of initial

and boundary value problems.

Analysing the fin thermal performance when it is exposed to various circumstances

can be done by calculating the thermal efficiency and entropy generation. Fin efficiency

is defined as the ratio of heat transfer from the fin to the maximum heat that can be

transferred from the fin. This quantity is more often used to determine the heat flow

when variable area fin atructures are used. Joneidi et al (2009), Ganji et al (2011), Torabi

and Aziz (2012) are among the ones who have analysed the performance of fin structures

by calculating their efficiency. Further, entropy generation denotes the energy degradation

during a process and helps estimate the wasted energy. With this, fin optimization has

been driven towards a new direction with the assessment of entropy generation in distinct

fin structures. Thus the entropy generation in distinct fin structures was concentrated by

Poulikakos and Bejan (1982), Aziz and Makinde (2010), Khatami and Rahbar (2019) and

Din et al (2022a, 2022b).

With regard to the above noted research contributions the current work focuses on the

impact of various circumstances on the heat transfer through a fin structure. Different

fin geometries namely rectangular, trapezoidal and exponential profiled longitudinal fin;

semi-spherical fin; rectangular profiled radial fin and cylindrical, conical and convex pro-

filed pin fin are subject to circumstances like inclination, stretching/shrinking, periodic

boundary, non-Fourier heat flux, hybrid nanofluid flow, surface roughness, etc. The gov-
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erning equations have been modelled for fin thermal profile, heat transfer rate, efficiency,

entropy generation and average entropy generation. The derived ordinary and partial dif-

ferential equations have been respectively solved by employing the Runge Kutta Fehlberg

fourth fifth order and finite difference methods. Based on these aspects, the thesis is

divided into EIGHT chapters.

The FIRST chapter emphasises on the trapezoidal and dovetail profiled longitudinal

fin structures exposed to a convective-radiative environment and mounted on an inclined

surface have been considered for the analysis. The fin structures have been assumed to

be porous and fully wet in nature. The Darcy model has been implemented to simulate

the fluid-solid interactions. Further, the convective and radiative heat transfer coeffi-

cients have been taken to be temperature-dependent. The resulting equation which is a

nonlinear ordinary differential equation (ODE) has been reduced by introducing the non-

dimensional quantities and then solved by employing the Runge-Kutta Fehlberg 4th − 5th

order (RKF45) method. The effect pertinent parameters on the fin thermal profile and

fin heat transfer rate has been presented graphically and discussed. It has been inferred

that the dovetail fin profile achieves the highest heat transfer rate followed by rectangular

and trapezoidal fin profiles provided the internal heat generation is minimal.

In the SECOND chapter trapezoidal and exponential profiled convective-radiative

porous longitudinal fin structures wetted in a single-phase fluid have been considered.

The periodic variation in the fin base temperature has been taken into account along with

the temperature sensitive thermal conductivity, internal heat generation and convective

heat transfer coefficients. The modelled problem which is resolved into a nonlinear partial

differential equation (PDE) is made dimensionless and solved by employing the centered

implicit finite difference method (FDM). The results have been visually displayed through
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graphs and discussed with their physical interpretations. The impact relevant quantities

on the distribution of temperature along the fin length and also with dimensionless time

has been investigated. It has been deciphered that the periodic heat transfer gives rise to

wavy nature of fin thermal profile against time.

In the THIRD chapter, trapezoidal and exponential profiled convective-radiative wet

porous longitudinal fin structures subject to motion have been considered. Here, the fin

structures are allowed to stretch or shrink by mounting a conveyer belt like mechanism

on the fin surface. An analysis of the transient thermal behaviour of both fin structures

exposed to Fourier and non-Fourier heat conduction has been performed. By using the

centered implicit FDM, the modelled problem which is a nonlinear PDE has been nu-

merically solved. The results have been graphically displayed using graphs and further

reviewed with regard to their physical interpretations. On the variations in the fin tem-

perature with its length and also with dimensionless time, the effects of Vernotte number,

wet porous nature, stretching/shrinking parameter, Peclet number and other pertinent

factors have been studied.

In the FOURTH chapter transient heat transfer characteristics of a convective-

radiative longitudinal fin of exponential profile fully wetted in a hybrid nanofluid have

been analysed. The fin medium is porous and Darcy law has been implemented to for-

mulate the fluid-solid interactions. The hybrid nanofluid is obtained by immersing Silver

and Graphene nanoparticles in the base fluid water and the study is based on a mass-

based model. The scrutiny presented in dimensionless form is a nonlinear PDE which

is solved by employing the FDM. The effect of relevant parameters on the thermal field

and thermal efficiency of the fin structures has been graphically analysed and discussed.

The examination has resulted in a novel outcome that the presence of hybrid nanofluid
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enhances the fin efficiency.

The FIFTH chapter focuses on a fully wet porous fin of radial profile exposed to

convective-radiative heat exchange with the hybrid nanofluid flowing past it with a con-

stant velocity of Ū . In the analysis, spherical-spherical, spherical-cylindrical, and spherical-

platelet shape combinations of two nanoparticles are considered. The mixture model is

employed to assess all the thermophysical attributes of the hybrid nanofluid except ther-

mal conductivity and dynamic viscosity, which are estimated by applying the nanoparticle

volume fraction-based interpolation method. The fin model with the applied conditions

results in an ODE which is made dimensionless and then numerically resolved by applying

the RKF45 technique. The effect of significant parameters on the energy field and ther-

mal gradient profiles of the radial fin subjected to shape-dependent hybrid nanofluid flow

has been graphically analysed. Furthermore, the thermal fin efficiency has been modelled

and its variation with the significant parameters has been examined. One of the major

outcomes was that efficiency increases with nanoparticle volume fraction. Further, it is

significantly affected by the shape factor of the nanoparticles and achieves the highest

value for spherical-platelet combination.

The SIXTH chapter intends to examine the unsteady thermal behaviour of fully wet,

porous, and rough micro-pin fin structures under convective-radiative conditions. Here,

pin fin structures of cylindrical, conical and convex parabolic profiles have been chosen.

The problem is modelled by incorporating the roughness parameters in the perimeter and

cross-sectional area of the pin fin. The resulting PDEs are nonlinear and of second order

which have been solved by employing the FDM. The impact of roughness parameter, wet

porous parameter, dimensionless time and other relevant parameters on the thermal per-

formance and efficiency of rough micro-pin fin structures has been established graphically.
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According to the findings, rise in roughness causes an increase in efficiency.

The SEVENTH chapter numerically investigates the transient thermal behaviour of

a fully wet semi-spherical fin composed of functionally graded material (FGM). The study

incorporates the Darcy model as the fin is made up of porous material. Further, the fin

is exposed to convective-radiative heat exchange and is subject to uniform motion. The

heat balance equation has been reduced to get a nonlinear PDE which is computed by

employing the FDM. The dimensionless terms are grouped together and their influence

on the temperature distribution in a semi-spherical fin is studied. The transient fin effi-

ciency has been modelled and its variation with relevant parameters has been graphically

depicted. And these are found to be greatly affected by Peclet number, wet porous nature

and dimensionless time.

The EIGHTH chapter emphasizes on a wet porous moving longitudinal fin composed

of linear FGM has been chosen for the analysis. The fin is allowed to stretch/shrink by

mounting a mechanism similar to a conveyer belt. The thermal behaviour of the fin

and its entropy generation in the presence of convective-radiative heat transmission are

the focus of the study. Further, three distinct cases of FGM namely homogeneous, type

I (higher thermal grading towards the fin base) and type II (higher thermal grading

towards the fin tip) have been comparatively investigated. The derived energy equation

is a 2nd order nonlinear ODE and is solved with the aid of the RKF45 method. The

fin thermal profile, entropy generation profile, and average entropy generation have been

graphically analysed for the significant parameters. The entropy generation along fin

length as well as the average entropy generated in a fin are discovered to be lowest in the

case of homogeneous fin structures followed by type I and type II FGM fin structures.

The present investigation benefits the manufacture and design of FGM fin structures.

xi



Chapter 1

Heat Transfer Analysis of

Longitudinal Fins of Trapezoidal and

Dovetail Profile on an Inclined

Surface

1.1 Prelims

The trapezoidal and dovetail profiled longitudinal fin structures exposed to a convective-

radiative environment and mounted on an inclined surface have been considered for the

analysis. The fin structures have been assumed to be porous and fully wet in nature.

The Darcy model has been implemented to simulate the fluid-solid interactions. Further,

the convective and radiative heat transfer coefficients have been taken to be temperature-

dependent. The resulting equation which is a nonlinear ordinary differential equation

(ODE) has been reduced by introducing the non-dimensional quantities and then solved

by employing the Runge-Kutta Fehlberg 4th − 5th order (RKF45) method. The effect

of tip tapering, angle of inclination, fully wet nature, porosity, internal heat generation,

and other pertinent parameters on the fin thermal profile and fin heat transfer rate has

1



Chapter-1: Heat Transfer Analysis of Longitudinal Fins of . . .

been presented graphically and discussed. It has been inferred that the dovetail fin profile

achieves the highest heat transfer rate followed by rectangular and trapezoidal fin profiles

provided the internal heat generation is minimal. The present work is significant for fin

design purposes and also acts as a verification tool for future research.

1.2 Modeling and Interpretation

Consider a longitudinal fin of length L, width W and base thickness tb mounted on a

surface inclined at an angle Ω as shown in figure 1.1 a. Varying the fin tip thickness we

obtain longitudinal fin of trapezoidal, rectangular and dovetail profiles as shown in figure

1.1 b. The heat enters the fin through the base kept at temperature Tb. The convection

and radiation heat sinks are maintained at temperatures Ta and Ts respectively. The

internal heat generation in fin is taken as a linear function of temperature.

Figure 1.1: a) Inclined trapezoidal fin. b) Comparison of fin profiles for different values

of fin taper ratio C.

The problem formulation is abridged by employing certain assumptions as followed.

� The fin medium is porous, homogeneous, isotropic, and completely infused with

single-phase fluid.

� Darcy’s law governs the porous medium and clear fluid interaction.

2
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� The fin is fully wetted in a fluid and the solid matrix and the fluid are in local

thermodynamic equilibrium.

� The temperature inside the fin varies only along the axial direction as its variation

along the non-axial direction is negligible.

� The surface radiant exchange is neglected.

� The convective and radiative heat transfer coefficients are temperature-dependent.

� The fin tip is adiabatic in nature as the transfer of heat through it is negligible

compared to the heat transferred through the lateral surface.

� The fin operates under the steady state condition.

In view of the stated assumptions, the general energy transmission equation of a steady

state fin problem may be written as,

qx − qx+dx + q∗(T )Wt(x)− 2m̄Cp(T − Ta)− 2ε(T )σWdx(T 4 − T 4
s )

− 2h(T )Wdx(1− ϕ̂)(T − Ta)− 2hDWdxlfg(1− ϕ̂)(ω̄ − ω̄s) = 0. (1.2.1)

Here the coefficient “2” is for considering the upper and lower surfaces.

From Fourier’s law of conduction,

q = −keffAc(x)
dT

dx
, (1.2.2)

where Ac(x) is the cross-sectional area of the fin at distance x.

keff is the effective thermal conductivity and it is calculated from the following equation,

keff = (1− ϕ̂)kS + ϕ̂kf . (1.2.3)
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Here ϕ̂ is porosity and 1− ϕ̂ is taken for effective solid surface.

The area of cross-section of the fin is given by,

Ac(x) = Wt∗(x), (1.2.4)

where t∗(x) is the fin thickness at distance x.

m̄ is the fluid’s mass flow rate through a porous fin and is defined as,

m̄ = ρf v̄(x)Wdx. (1.2.5)

The fluid velocity through the porous fin, according to Darcy’s model, is defined as,

v̄(x) =
gKβf (T − Ta)sin(Ω)

νf
. (1.2.6)

The fin surface emissivity ε as a function of temperature is given by,

ε(T ) = εs(1 + β∗(T − Ts)). (1.2.7)

Assume that the internal heat generation is non-uniform and varies linearly with fin

surface temperature as,

q∗(T ) = q∗a(1 + ϵg(T − Ta)). (1.2.8)

The temperature sensitive convective heat transfer coefficient h(T ) and its relation with

the mass transfer coefficient hD as per Chiltone-Colburn analogy is given by,

h(T ) = ha

(
T − Ta
Tb − Ta

)m

= hDCpLe
2
3 . (1.2.9)
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The nonlinear ODE regulating the temperature distribution in the fin is obtained by

substituting equations (1.2.2) – (1.2.9) into equation (1.2.1),

keff
d

dx

[
t∗(x)

dT

dx

]
+ q∗a(1 + ϵg(T − Ta))t

∗(x)− 2ρfgKβfCpsin(Ω)

νf
(T − Ta)

2

− 2(1− ϕ̂)ha(T − Ta)
m+1

(Tb − Ta)m
− 2halfg(1− ϕ̂)(ω̄ − ω̄s)(T − Ta)

m

CpLe
2
3 (Tb − Ta)m

− 2σεs(1 + β∗(T − Ts))(T
4 − T 4

s ) = 0. (1.2.10)

For longitudinal fin structures of trapezoidal, rectangular, and dovetail shape, the local

semi-fin thickness is given by,

t∗(x) = tb − δ
(x
L

)
. (1.2.11)

The above formula for semi-fin thickness is obtained by modifying the one mentioned in

[?]. Here value of δ determines the profile. Substituting equation (1.2.11) in equation

(1.2.10), the resulting equation is,

keff
d

dx

[(
tb − δ

(x
L

)) dT
dx

]
− 2ρfgKβfCpsin(Ω)

νf
(T − Ta)

2 − 2(1− ϕ̂)ha(T − Ta)
m+1

(Tb − Ta)m

−2halfg(1− ϕ̂)(ω̄ − ω̄s)(T − Ta)
m

CpLe
2
3 (Tb − Ta)m

− 2σεs(1 + β∗(T − Ts))(T
4 − T 4

s )

+q∗a(1 + ϵg(T − Ta))
(
tb − δ

(x
L

))
= 0

(1.2.12)

The associated boundary conditions are given by,

T = Tb at x = 0,

dT

dx
= 0 at x = L. (1.2.13)
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The dimensionless quantities listed below are introduced.

θ =
T

Tb
, θa =

Ta
Tb
, θs =

Ts
Tb
, X =

x

L
,C =

δ

tb
, B∗ =

β∗

tb
, Nc =

2ρfgβfKCpTbL
2

νfkeff tb
,

Nr =
2εsσL

2T 3
b

keff tb
,m0 =

2haL
2(1− ϕ̂)

keff tb
, G =

q∗aL
2

keffTb
,m1 =

2halfg(1− ϕ̂)b2L
2

keff tbCpL2
,

ϵG = ϵgTb, ω̄ − ω̄s = b2(T − Ta),m2 = m0 +m1. (1.2.14)

Here Nc is the natural convective parameter, Nr is the radiative parameter, B∗ is the

emissivity parameter, m2 is the wet porous parameter, C is the fin taper ratio, θa is the

ambient temperature, θs is the sink temperature, G is the generation parameter, ϵG is the

non-dimensional internal heat generation parameter.

The equation (1.2.12) on non-dimensionalizing reduces to,

d2θ

dX2
− C

dθ

dX
− CX

d2θ

dX2
+G(1 + ϵG(θ − θa))(1− CX)−m2

(θ − θa)
m+1

(1− θa)m

−Nc(θ − θa)
2sin(Ω)−Nr(1 +B∗(θ − θs))(θ

4 − θ4s) = 0. (1.2.15)

Here,

0 < C < 1 corresponds to longitudinal fin of trapezoidal profile,

C = 0 corresponds to longitudinal fin of rectangular profile, and

C < 0 corresponds to longitudinal fin of dovetail profile.

The associated reduced boundary conditions are,

θ = 1 at X = 0,

dθ

dX
= 0 at X = 1. (1.2.16)

The fin rate of heat transfer is calculated by using the Fourier’s equation at its base and

6
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is given by,

q = −keffAb
dT (0)

dx
(1.2.17)

where, Ab is the area of the fin base.

The fin rate of heat transfer in dimensionless form is,

Q =
qL

keffAbTb
= −θ′(0) (1.2.18)

1.3 Numerical Elucidation

The nonlinear second order ODE with insulated boundary conditions is solved by applying

the RKF45 method. The first step is to convert the boundary value problem into an

initial value problem by employing the shooting technique. Then the obtained initial

value problem is solved via RKF method as followed.

q1 = h∗z(ul, vl), (1.3.1)

q2 = h∗z

(
ul +

1

4
h∗, vl +

1

4
q1

)
, (1.3.2)

q3 = h∗z

(
ul +

3

8
h∗, vl +

3

32
q1 +

9

32
q2

)
, (1.3.3)

q4 = h∗z

(
ul +

12

13
h∗, vl +

1932

2197
q1 −

7200

2197
q2 +

7296

2197
q3

)
, (1.3.4)

q5 = h∗z

(
ul + h∗, vl +

439

216
q1 − 8q2 +

3680

513
q3 −

845

4104
q4

)
, (1.3.5)

q6 = h∗z

(
ul +

h∗

2
, vl −

8

27
q1 + 2q2 −

3544

2565
q3 +

1859

4104
q4 −

11

40
q5

)
. (1.3.6)

An approximate solution to the resolved initial value problem is determined by using the

Runge Kutta 4th order method.

vl+1 = vl +
25

216
q1 +

1408

2565
q3 +

2197

4101
q4 −

1

5
q5. (1.3.7)
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And, the approximated value of the solution is improved by applying the Runge Kutta

5th order method.

w∗
l+1 = vl +

16

135
q1 +

6656

12825
q3 +

28561

56430
q4 −

9

50
q5 +

2

55
q6. (1.3.8)

The difference between the two obtained solutions is taken as the error term. If we get

a large error value, then the process is repeated by choosing a smaller step size. In the

present analysis, solutions are obtained for the step size 0.001 with the convergence criteria

set to 10−6.

1.4 Deliberation of Results

The performance of an inclined porous fin under fully wet condition in the presence

of natural convection as well as radiation for trapezoidal and dovetail profiles has been

studied parametrically. Each parameter is varied keeping others constant and the constant

values considered are Nc = 1, Nr = 1,m = 2,m2 = 1, θa = 0.5, θs = 0.5, B∗ = 0.2,Ω =

450, G = 0.1 and ϵG = 0.2.

In the special cases of the current problem, the results obtained via RKF45 method

have been validated with the analytical solutions (Homotopy Perturbation Method) of

Hoshyar et al. [?] as depicted in table (1.1).

The influence of power index m on the thermal profile of fully wet porous fin has been

depicted in figure 1.2. It can be inferred that an increase in values of m from 0 to 2

negatively affects the thermal drop rate in fin. Here, m = 0 corresponds to fin with con-

stant heat transfer coefficient and m > 0 corresponds to fin with temperature-dependent

heat transfer coefficient. As h becomes temperature-dependent it can be observed from

equation (1.2.9) that its value decreases resulting in a decrease in convective heat loss

8
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from the fin surface. Hence the fin temperature increases with the increase in the value

of m. On the other hand, it can be inferred that the thermal drop rate is high in the case

of trapezoidal profiled fin followed by rectangular and dovetail profiles.

Figure 1.3 corresponds to the variations in the thermal profile of fin with surface

emissivity parameter B∗. It is deciphered that; higher values of B∗ correspond to lower

thermal profiles. This is because, the positive values of B∗ correspond to fin materials

whose surface emissivity is directly proportional to temperature, and as the surface emis-

sivity largely increases with temperature more heat is lost by radiation, resulting in a

rapid decrease in the temperature of the fin. Thus, a higher heat transfer rate is achieved

for higher values of B∗. Further, the thermal profile of the trapezoidal profiled fin stays

below that of a rectangular profiled fin followed by a dovetail profiled one.

The variation in the thermal characteristic of trapezoidal, rectangular, and dovetail

profiled inclined fin structures with dimensionless ambient and sink temperatures is il-

lustrated through figures 1.4 and 1.5 respectively. The higher value of ambient and sink

temperatures negatively influence the fin cooling process. This is because a rise in the

ambient temperature values decreases the temperature difference between the fin surface

and the surrounding thereby depressing the natural convection process. Thus, there is a

decrease in the fin thermal drop rate. Similarly, there is a negative impact on radiative

heat loss due to higher values of sink temperature. Hence in both cases, lower values of θa

and θs are favoured. Further, the three different profiles are affected in a similar manner.

The figure 1.6 depicts the degrading temperature profile of inclined fin of various

profiles with the progressive natural convective parameterNc. It is noted that, the portion

of heat transferred through convection to that by conduction is measured in terms of Nc.

Thus, a progressive rise in the Nc values result in a quicker loss of heat by fin and hence

9
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there is a steep decline in temperature towards the fin tip. Besides, the trapezoidal,

rectangular and dovetail profiles are in the ascending order of temperature distribution.

The relation between the dimensionless radiative parameter Nr and the distribution of

temperature along the length of the fin is as represented in figure 1.7. It is derived that,

there is a depression in temperature along the length of the fin with ascending values

of Nr. Since, the strength of surface radiation against conduction is indicated by the

radiative parameter Nr, the rise in its value intensifies radiative heat loss, thus hiking the

heat transfer rate. Thus, higher values of Nr are preferred for quicker heat loss. Further,

all the three longitudinal fin profiles are affected in a similar trend.

The temperature distribution along the fin is reliant on its angle of inclination Ω and

it varies as captured in figure 1.8. From the plot it is derived that an increase in the

tilt angle positively affects the cooling process of fin. The ascending value of tilt angle

acts as a propelling force for convective heat loss resulting in a gradual decrease in the

temperature from fin base to fin tip. Hence for an optimum fin, angle of inclination must

be at the apex. On the other hand, the thermal profile of trapezoidal fin is steeper than

the other two profiles.

The influence of the wet porous parameter m2 on the thermal profile of a fully wet,

porous fin is as framed in figure 1.9. Here it is noticed that the enhancing values of m2

result in an accelerating decrease in the temperature of the fin. This can be explained as

follows. The wet nature of the fin aids in excess heat loss by absorbing more heat from

the fin surface, and the porous nature of the fin increases the surface area of fin resulting

in more heat loss via convection. Thus, the higher values of m2 are favoured for quicker

loss of heat. Further, the three profiles namely trapezoidal, rectangular and dovetail are

in the decreasing order of the thermal drop rate.

10
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Figure 1.10 draws attention on the influence of generation parameter G on the tem-

perature profile of the fin. Here temperature is observed to be an escalating function

of generation parameter. This is because with the rise in generation parameter, more

heat generation occurs inside the fin negatively impacting the process of heat loss. Thus,

lower values of generation parameter G help in the fin cooling process. The effect of G on

thermal drop rate is more pronounced in the fin of dovetail profile followed by rectangular

and trapezoidal profiles.

The importance of angle of inclination Ω and fin taper ratio C on the rate of heat

transfer in a fin is illustrated in figure 1.11. It is observed that as the fin structure

diminishes from dovetail profiles to trapezoidal profiles through the rectangular profile,

the rate of heat transfer through the fin decreases steeply. This is due to decrease in the

available surface area for heat loss. Further, it is noticed that as the angle of inclination

ascends from 150 to 900 there is a notable increase in the rate of heat transfer through the

fin. Thus, the dovetail profiled fin with angle of inclination equal to 900 has the highest

heat transfer rate.

Figure 1.12 captures the impact of variation in the wet porous parameter m2 and the

power index m on the rate of heat transfer through the fin. As depicted in the figure, the

rate of heat transfer through the fin increases prominently with an increase in wet porous

parameter. Whereas the power index m negatively affects the rate of heat transfer. As

it can be seen, the effect is more pronounced for the higher values of the wet porous

parameter. Thus, higher heat transfer rate is achieved by considering higher values of wet

porous parameter m2 and lower values of power index m. Besides, the dovetail profiled

fin has the highest heat transfer rate followed by rectangular and trapezoidal fin profiles.

The impact of convective and radiative parameters on the dimensionless rate of heat
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transfer through the fin can be understood by figure 1.13. It is noticed that both the

convective parameter Nc and the radiative parameter Nr amplify the cooling process

of the fin by fastening the rate of heat transfer. Hence, for intensifying the fin cooling

process, values of Nc and Nr must be kept high. Further, the rate of heat transfer is high

for the dovetail profiled fin compared to the other two fin structures.

As represented in figure 1.14, the generation parameter G and the non-dimensional

internal heat generation parameter ϵG have a negative influence on the rate of heat transfer

through the fin. In addition, at minimal values of G, the rate of heat transfer is more for

the fin of the dovetail profile followed by rectangular and trapezoidal profiles. Whereas at

peak values of G, the fin of the trapezoidal profile has higher heat transfer rate followed

by rectangular and dovetail profiles. Thus, dovetail fin profile is preferable at lower values

of G and the trapezoidal profile is favourable at higher values of G.

1.5 Denouement

The thermal performance of an inclined porous longitudinal fin of trapezoidal, rectangu-

lar, and dovetail profiles is considered for numerical investigation. From the study, the

following can be derived. The dimensionless parameters of convection, radiation, and

surface emissivity enhance the thermal drop rate in fin. The dimensionless parameters

of ambient temperature, sink temperature, power index and heat generation negatively

dominate the fin tip temperature. The wet porous parameter and the inclination an-

gle strengthen the cooling process of the fin. The thermal profile of the trapezoidal fin

structure is lower preceded by rectangular and dovetail structures. The fin heat transfer

rate is better in the case of dovetail fin structure followed by rectangular and trapezoidal

structures provided the internal heat generation is minimal. The present investigation
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can be developed by analysing the efficiency and transient response of the trapezoidal

and dovetail fin structures on application of magnetic field thereby increasing the scope

of the study. Further the inverse solutions can be attempted for the present problem.

Table 1.1: Comparison of θ(X) values of the present work with the published literature

when Nc = 0.1, Nr = 0,m2 = 0.09,m = 0, θa = θs = 0, B∗ = 0, C = 0, G = 0.036, ϵG =

0.2,Ω = 900

.

X Hoshyar et al (HPM) [?] Present Results

0.0 1.000000000 1.000000000

0.2 0.975973539 0.975973537

0.4 0.957555090 0.957555088

0.6 0.944540815 0.944540812

0.8 0.936788323 0.936788321

1.0 0.934213444 0.934213441
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Figure 1.2: Fin thermal profile as a function of power index m.

Figure 1.3: Fin thermal profile as a function of emissivity parameter B∗.
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Figure 1.4: Fin thermal profile as a function of ambient temperature θa.

Figure 1.5: Fin thermal profile as a function of sink temperature θs.
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Figure 1.6: Fin thermal profile as a function of convective parameter Nc.

Figure 1.7: Fin thermal profile as a function of radiative parameter Nr.
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Figure 1.8: Fin thermal profile as a function of angle of inclination Ω

Figure 1.9: Fin thermal profile as a function of wet porous parameter m2.
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Figure 1.10: Fin thermal profile as a function of generation parameter G.

Figure 1.11: Base heat transfer rate of the fin as a function of angle of inclination Ω and

fin taper ratio C.
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Figure 1.12: Base heat transfer rate of the fin as a function of wet porous parameter m2

and power index m.

Figure 1.13: Base heat transfer rate of the fin as a function of convective parameter Nc

and radiative parameter Nr.
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Figure 1.14: Base heat transfer rate of the fin as a function of ϵG and generation parameter

G.
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Chapter 2

Effect of Periodic Heat Transfer on
the Transient Thermal Behaviour of
Trapezoidal and Exponential Fin
Structures

2.1 Prelims

In the current chapter, trapezoidal and exponential profiled convective-radiative porous

longitudinal fin structures wetted in a single-phase fluid have been considered. The pe-

riodic variation in the fin base temperature has been taken into account along with the

temperature sensitive thermal conductivity, internal heat generation and convective heat

transfer coefficients. The modelled problem which is resolved into a nonlinear partial

differential equation (PDE) is made dimensionless and solved by employing the centered

implicit finite difference method (FDM). The results have been visually displayed through

graphs and discussed with their physical interpretations. The impact of amplitude, fre-

quency of oscillation, fully wet nature, porosity and other relevant quantities on the dis-

tribution of temperature along the fin length and alos with dimensionless time has been

investigated. It has been deciphered that the periodic heat transfer gives rise to wavy

nature of fin thermal profile against time. The outcomes of the analysis benefit in the
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design of fin structures for the applications such as solar collectors, space and airborne

applications, refrigeration industries etc.

2.2 Modeling and Interpretation

Figure 2.1: Schematic representation of trapezoidal fin (a), exponential fin (b) and peri-

odic variation in the base temperature (c).

As depicted in figure 2.1, trapezoidal and exponential profiled longitudinal fin struc-

tures with length L and thickness tb have been considered for the analysis. The fin

material is porous, homogeneous, isotropic and has thermal conductivity k sensitive to
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local temperature. The fin is wetted in a single phase fluid at temperature Ta which pene-

trates through its pores and their interaction is governed by the Darcy’s law. Further, the

convective heat transfer coefficient and the heat generation are assumed to be sensitive

to temperature variations. The fin structure is mounted on a prime surface having oscil-

lating temperature Tb. Here, the amplitude of input temperature is given by B and the

frequency of oscillation is given by ψ̄. Because there is a minute temperature variation in

the fin’s non-axial direction, the fin temperature varies only along the axial axis.

Keeping in mind the above circumstances, the energy balance equation of fin per unit

width is given by,

ρCptb
∂T

∂t
=

∂

∂x

[
t∗(x)k(T )

∂T

∂x

]
− 2σε(T 4 − T 4

a )−
2ρgKβfCp

νf
(T − Ta)

2

+ q∗(T )t∗(x)− 2h(T )(1− ϕ̂)(T − Ta)− 2hDlfg(1− ϕ̂)(ω̄ − ω̄s). (2.2.1)

In the above equation the term on the LHS accounts for the unsteady state of the fin, the

terms on the RHS respectively account for heat transmission due to conduction, radiation,

buoyancy effect, heat generation, convection due to porosity and wet environment.

The semi-fin thickness t∗(x) for different profiles of longitudinal fin is given by

Case 1: Trapezoidal profile

t∗(x) = tb − δ
(x
L

)
. (2.2.2)

Here, δ can be positive, negative or equated to zero depending on the direction in which

the fin tip thickness varies and thus determines the resultant profile.

Case 2: Exponential profile

t∗(x) = tbe
−ν x

L . (2.2.3)
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Here, ν can be positive, negative or equated to zero depending on the direction in which

the fin tip thickness varies and thus determines the resultant profile.

The temperature sensitive thermal conductivity k(T ) is given by,

k(T ) = keff (1 + α∗(T − Ta)). (2.2.4)

Here, keff is the effective thermal conductivity of the porous fin medium.

The temperature sensitive heat generation q∗(T ) and convective heat transfer coefficient

h(T ) are respectively given by equations (1.2.8) and (1.2.9).

By utilizing the equations (1.2.8)-(1.2.9) along with the equations (2.2.2)-(2.2.4), the

equation (2.2.1) reduces to,

Case 1: Trapezoidal profile

ρCptb
∂T

∂t
=

∂

∂x

[
tb

(
1− δ

tb

(x
L

))
keff (1 + α∗(T − Ta))

∂T

∂x

]
− 2σε(T 4 − T 4

a )

− 2ha(1− ϕ̂)(T − Ta)
m+1

(Tb − Ta)m
− 2halfg(ω̄ − ω̄s)(1− ϕ̂)(T − Ta)

m

CpLe
2
3 (Tb − Ta)m

− 2ρgKβfCp

νf
(T − Ta)

2 + q∗a(1 + ϵg(T − Ta))tb

(
1− δ

tb

(x
L

))
. (2.2.5)

Case 2: Exponential profile

ρCptb
∂T

∂t
=

∂

∂x

[
tbe

−ν x
Lkeff (1 + α∗(T − Ta))

∂T

∂x

]
− 2σε(T 4 − T 4

a )

− 2ha(1− ϕ̂)(T − Ta)
m+1

(Tb − Ta)m
− 2halfg(1− ϕ̂)(ω̄ − ω̄s)(T − Ta)

m

CpLe
2
3 (Tb − Ta)m

− 2ρgKβfCp

νf
(T − Ta)

2 + q∗a(1 + ϵg(T − Ta))tbe
−ν x

L . (2.2.6)
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The following are the required physical quantities of interest for the current analysis,

θ =
T − Ta
Tbm − Ta

, CT =
Ta

Tbm − Ta
, X =

x

L
,A = α∗(Tbm − Ta), C =

δ

tb
, τ =

keff
ρCpL2

t,

G =
q∗aL

2

keff tb
, ω̄ − ω̄s = b2(T − Ta),m0 =

2ha(1− ϕ̂)L2

keff tb
,m1 =

2ha(1− ϕ̂)L2lfgb2

keff tbLe
2
3Cp

,

m2 = m0 +m1, Nr =
2σε(Tbm − Ta)

3L2

keff tb
, Nc =

2gKρCpβf (Tbm − Ta)L
2

νfkeff tb
,

ψ =
ψ̄ρCpL

2

keff
, ϵG = ϵg(Tbm − Ta). (2.2.7)

The temperature at the fin base is set to oscillate with amplitude B and frequency of

oscillation ψ̄. Thus, the required initial and boundary conditions are given by [?],

T (x, 0) = Ta,

T (0, t) = Tb = Tbm + (Tbm − Ta)Bcos(ψ̄t),

∂

∂x
T (L, t) = 0. (2.2.8)

On non-dimensionalizing equations (2.2.5) and (2.2.6) by employing the parameters in

equation (2.2.7), we get,

Case 1: Trapezoidal profile

∂θ

∂τ
= (1− CX)(1 + Aθ)

∂2θ

∂X2
+ A(1− CX)

(
∂θ

∂X

)2

− C(1 + Aθ)
∂θ

∂X
−m2θ

m+1

−Nr
(
(θ + CT )

4 − C4
T

)
−Ncθ2 +G(1 + ϵGθ)(1− CX) (2.2.9)

Here, 0 < C < 1 and C = 0 correspond to trapezoidal and rectangular profiles.

Case 2: Exponential profile

∂θ

∂τ
= e−νX(1 + Aθ)

∂2θ

∂X2
+ Ae−νX

(
∂θ

∂X

)2

− νe−νX(1 + Aθ)
∂θ

∂X
−m2θ

m+1

−Nr
(
(θ + CT )

4 − C4
T

)
−Ncθ2 +G(1 + ϵGθ)e

−νX (2.2.10)
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Here, 0 < ν < 1 and ν = 0 correspond to exponential and rectangular profiles.

The above initial and boundary conditions get reduced to,

θ(X, 0) = 0,

θ(0, τ) = 1 +Bcos(ψτ),

∂

∂X
θ(1, τ) = 0. (2.2.11)

2.3 Numerical Elucidation

The second order nonlinear PDEs of parabolic nature named equation (2.2.9) and (2.2.10)

and their corresponding initial and boundary conditions labelled as equation (2.2.11) are

the concerned equations. Using the FDM with centered-implicit scheme the solution of

the PDEs has been found via the Maple software. The time interval and the spatial

domain are initially split into a finite number of steps with step sizes of ∆τ and ∆X,

respectively by partitioning the (X, τ) plane into smaller rectangles. By employing the

forward difference for time and a 2nd order central difference for the space derivative, the

derivatives in the differential equations are substituted by their approximate finite differ-

ence solutions. Through this, the nonlinear PDE is restructured into a system of linear

equations. Now, the solution at the required discrete point can be computed by imple-

menting the reliable techniques of matrix algebra. The software’s algorithm handles the

calculations rather easily and presents the result as a component from which quantitative

data can be retrieved. The results of the present investigation for both the PDEs have

been extracted by setting ∆X = 0.008 and ∆τ = 0.008.
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2.4 Deliberation of Results

The solutions obtained numerically have been displayed through graphs and discussed

parametrically. Each physical quantity is varied keeping others constant and the constant

values considered for the analysis unless otherwise mentioned are: Nc = 1, Nr = 1,m2 =

1, G = 0.1, ϵG = 0.1, A = 0.2, C = 0.4, ν = 1, CT = 0.2,m = 2, B = 0.5, ψ = 1, τ = 0.8

and X = 0.5.

In the special cases of the current problem, the results obtained via FDM have been

validated with the analytical solutions (Differential Transformation Method) of Ganji et

al. [?] as depicted in table (2.1).

The effect of fin taper ratio C and fin shape parameter ν on the temperature character-

istic of trapezoidal and exponential fin structures for variation in the dimensionless length

X and dimensionless time τ has been pictured in figure 2.2 (a-c). The fin temperature at a

particular axial location is found to decrease with increase in the values of C and ν. Here

C < 0, ν < 0 depict inverted fin profiles, C = 0, ν = 0 depict fin of rectangular profile,

C > 0, ν > 0 depict tapered fin profiles. Thus, as fin geometry transits from inverted

profile to tapered one, the fin temperature distribution decreases. It can be observed that

with increase in time parameter, the fin temperature increases steeply in the beginning

and then achieves a steady value for the non-periodic case. But in the case of periodic

thermal conditions one can observe a steep rise followed by variation in temperature with

a constant amplitude. This can be explained as follows. At time τ = 0, the temperature

of the entire fin is same as that of ambient temperature and no heat transfer occurs. But

at time τ > 0, there will be a step rise in base temperature resulting in heat flow through

the fin structure. Further, the heat flow proportion varies with the amount of heat that
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enters through the fin base, thus causing a wavy natured thermal profile in the case of

periodic heat transfer.

The distribution of temperature in trapezoidal and exponential fin structures for simul-

taneous variation in the dimensionless length coordinate X and time τ for both periodic

and non-periodic thermal conditions has been depicted in figure 2.3 (a-b). It is known that

temperature of the fin is highest at the base and gradually decreases towards the fin tip.

This statement is validated by this figure as temperature decreases from X = 0 (fin base)

to X = 1 (fin tip). Further, wavy nature can be observed in the thermal characteristics

of both the fin structures in the case of periodic thermal conditions.

Figure 2.4 (a-c) represents the trapezoidal and exponential fin thermal profiles for

distinct values of the frequency of oscillation ψ for variation in the dimensionless length

coordinate X (at τ = 0.8) and time τ (at X = 0.5). Here ψ = 0 represents the case of

non-periodic heat transfer and ψ ̸= 0 represents periodic heat transfer. It can be observed

that the rise in ψ values lower the fin thermal profile and induce more wave characteristics

to the temperature curve. This is because the rise in ψ values reduce the amplitude of

input temperature and thus lower the average value of base temperature resulting in lower

thermal profiles. Further the behaviour of thermal characteristic along the fin length and

with time is similar as explained before.

The impact of amplitude of input temperature B on the thermal field of trapezoidal

and exponential fin structures along the fin length X (at τ = 0.8) and with dimensionless

time τ (at X = 0.5) has been illustrated in figure 2.5 (a-c). Here, B = 0 represents non-

periodic thermal condition and B ̸= 0 represents periodic boundary condition. When

B = 0 the thermal profile of fin validates with the ones available in the literature. From

the figures it can be observed that for B ̸= 0 the fin temperature curve is wavy in nature,
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and it attains higher values of amplitude for elevating values of parameter B. This is

because the fin base temperature oscillates with the time parameter and achieves highest

or lowest values for higher values of parameter B.

Figure 2.6 (a-c) respectively depict the variation in temperature of trapezoidal and

exponential fin structures for distinct values of radiative parameter Nr with dimensionless

length coordinate X and time coordinate τ . It can be inferred from the figures that as Nr

value rises, there is a steep decrease in the fin temperature. This is because, the elevation

in the value of Nr means rise in heat transmission via radiation leading to dip in the

local fin temperature. On the other hand, from figures 2.6 (b-c) we can observe that the

fin temperature at a particular point oscillates with the time parameter due to oscillating

nature of the base temperature.

The impact of convective parameter Nc on the fluctuations in the local temperature of

trapezoidal and exponential fin structures with length coordinate (dimensionless) X has

been depicted in figure 2.7 (a) and for dimensionless time τ has been pictured in figure 2.7

(b-c). For higher values of parameter Nc, lower thermal profiles have been produced. This

can be explained as follows. The elevation in Nc value represents increased permeability

of the porous medium which results in better movement of the ambient fluid through the

fin pores. This leads to increased heat transmission via convection thus resulting in lower

values of fin temperature. Further the figure 2.7 (b-c) represents the oscillating behaviour

of the temperature.

Figure 2.8 (a-c) depicts the fluctuations in the temperature values of the trapezoidal

and exponential fin structures for varying values of thermal conductivity parameter A.

Here figure 2.8 (a) and figure 2.8 (b-c) correspondingly represent the variations with

respect to length (dimensionless) X and time (dimensionless) τ . It can be noted from the
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figure that as values of A rise, there is elevation in the temperature values. This is due

to increase in average thermal conductivity of the fin material resulting in increased heat

transmission via conduction. Further as a result of oscillating base temperature, the fin

temperature at a particular location is found to oscillate with time.

The influence of heat generation G on the thermal performance of trapezoidal and

exponential fin structures under periodic as well as non-periodic conditions has been il-

lustrated in figure 2.9 (a-c). Here figure 2.9 (a) and figure 2.9 (b-c) respectively correspond

to variations in length (dimensionless) X and time (dimensionless) τ . An increase in the

temperature values at a particular axial location can be observed from the figures. This

is because of the increase in generation of internal heat which adds up to the fin temper-

ature resulting in hike in the local temperature values. Further the influence of periodic

thermal conditions on the temperature curve can be observed from the wavy nature of

the fin thermal profile with the time parameter.

The repercussion of wet porous parameter m2 on the thermal behaviour of trapezoidal

and exponential fin structures has been recorded in figure 2.10 (a-c). Here, figure 2.10 (a) is

for varying non-dimensional length X and figure 2.10 (b-c) is for varying non-dimensional

time τ . It can be seen that, m2 has a negative effect on the distribution of temperature.

The effect of porosity and wet nature on the fin thermal performance can be estimated via

the parameter m2. Thus, as m2 increases, porosity and/or wet nature increase resulting

in better heat removal via convection. This results in decrease in the temperature towards

the fin tip. On the other hand, in the case of periodic heat transfer wavy nature of fin

thermal profile with time can be observed due to oscillating base temperature.
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2.5 Denouement

The convective-radiative fully wet porous trapezoidal and exponential fin structures sub-

ject to periodic thermal conditions have been numerically investigated by employing the

FDM. The following conclusions have been derived from the graphical analysis of both

trapezoidal and exponential fin structures.

� As the fin geometry transits from inverted profile to tapered one, fin surface tem-

perature is found to decrease.

� The fin temperature values at a particular axial location are found to steeply increase

in the beginning and gradually attain a steady state in the case of non-periodic heat

transfer.

� In the case of periodic heat transfer the fin temperature values at a particular axial

location are found to oscillate with time.

� The rise in the values of frequency of oscillation induces more wave characteristics

to the thermal profile simultaneously lowering the curve.

� The amplitude of input temperature has a significant impact on the height of the

thermal wave.

� The convective, radiative and wet porous parameters are found to decrease the fin

surface temperature.

� The thermal conductivity parameter and generation number are found to raise the

fin tip temperature.
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Table 2.1: Comparison of θ(X, τ) values of the present work with the published literature

when Nr = 0.2,m2 = 1, A = 0.2, τ = 5, Nc = 0, G = 0, ϵG = 0, C = 0, ν = 0, CT = 0,m =

0, B = 0, ψ = 0.

X Ganji et al (DTM) [?] Present Results

0.0 0.99999999 1.00000000

0.2 0.87497225 0.87497225

0.4 0.78185489 0.78185489

0.6 0.71739957 0.71739958

0.8 0.67951379 0.67951380

1.0 0.66701337 0.66701339

32



Chapter-2: Effect of Periodic Heat Transfer on the Transient . . .

(a)

(b) (c)

Figure 2.2: Plot of fin temperature values for distinct values of fin taper ratio C and

shape parameter ν.

.
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(a)

(b)

Figure 2.3: Plot of fin temperature values against dimensionless time τ for distinct values

of dimensionless length X.

.
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(a)

(b) (c)

Figure 2.4: Plot of fin temperature values for distinct values of frequency of oscillation ψ.

.
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(a)

(b) (c)

Figure 2.5: Plot of fin temperature values for distinct values of amplitude of different

temperature B.

.
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(a)

(b) (c)

Figure 2.6: Plot of fin temperature values for distinct values of radiative parameter Nr.

.
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(a)

(b) (c)

Figure 2.7: Plot of fin temperature values for distinct values of convective parameter Nc.

.
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(a)

(b) (c)

Figure 2.8: Plot of fin temperature values for distinct values of thermal conductivity

parameter A.

.
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(a)

(b) (c)

Figure 2.9: Plot of fin temperature values for distinct values of generation parameter G.

.
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(a)

(b) (c)

Figure 2.10: Plot of fin temperature values for distinct values of wet porous parameter

m2.

.

41



Chapter 3

Transient Thermal Analysis of
Trapezoidal and Exponential Fin
Structures subject to Non-Fourier
Heat Conduction

3.1 Prelims

In the current chapter, trapezoidal and exponential profiled convective-radiative wet

porous longitudinal fin structures subject to motion have been considered. Here, the

fin structures are allowed to stretch or shrink by mounting a conveyer belt like mech-

anism on the fin surface. An analysis of the transient thermal behaviour of both fin

structures exposed to Fourier and non-Fourier heat conduction has been performed. By

using the centered implicit FDM, the modelled problem which is a nonlinear PDE has

been numerically solved. The results have been graphically displayed using graphs and

further reviewed with regard to their physical interpretations. On the variations in the

fin temperature with its length and also with dimensionless time, the effects of Vernotte

number, wet porous nature, stretching/shrinking parameter, Peclet number and other

pertinent factors have been studied. The analysis’ findings are useful for designing fin

structures for solar collectors, airborne and space applications, refrigeration industries,

etc.
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3.2 Modelling and Interpretation

Figure 3.1: Schematic representation of stretching/shrinking (a) trapezoidal and (b) ex-

ponential profiled longitudinal fin structures.

The considered fin problem has a geometry as depicted in figure 3.1. Here, trapezoidal

and exponential profiled longitudinal fin structures with length L and thickness tb have

been considered for the analysis. The fin material is porous, homogeneous and isotropic.

The fin is wetted in a single phase fluid at temperature Ta which penetrates through its

pores and their interaction is governed by the Darcy’s law. Further, the convective heat

transfer coefficient is assumed to be sensitive to local temperature variation. The fin is

subject to motion with a uniform velocity Ū and its surface is mounted with a conveyer

belt like mechanism which allows it to stretch/ shrink at a rate of Ū(1 + s∗(L − x)) in

the direction of motion. At time t = 0 the fin temperature is equivalent to the ambient

temperature. But for t > 0 there is a sudden rise in the base temperature to Tb.

The thermal study of the current issue has been carried out by using the Cattaneo-

Vernotte non-Fourier heat conduction model. Non-Fourier conduction, which results from

the finite propagation speed of the heat front, is more difficult to evaluate than Fourier
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conduction. In the Fourier case, the governing equation is parabolic, whereas in the non-

Fourier case, it is hyperbolic. Thus, the energy balance equation per unit width for the

current fin problem according to hyperbolic heat conduction is given by.

ρCptb

(
∂T

∂t
+ τ0

∂2T

∂t2

)
=

∂

∂x

[
keff t

∗(x)
∂T

∂x

]
− ρCpŪ t

∗(x) (1 + s∗(L− x))
∂T

∂x

− 2h(T )(1− ϕ̂)(T − Ta)− 2hDlfg(1− ϕ̂)(ω̄ − ω̄s)− 2σε(T 4 − T 4
a )

− 2gKρCpβf
νf

(T − Ta)
2. (3.2.1)

The required initial and boundary conditions for fin with adiabatic tip are [?],

T (x, 0) = Ta,
∂

∂t
T (x, 0) = 0,

T (0, t) = Tb,
∂

∂x
T (L, t) = 0. (3.2.2)

The semi-fin thickness t∗(x) for longitudinal fin of trapezoidal and exponential profiles

is respectively given by equations (2.2.2) and (2.2.3). Further, the temperature sensitive

convective heat transfer coefficient is given by equation (1.2.9).

Making use of equations (1.2.9), (2.2.2) and (2.2.3) the equation (3.2.1) takes the form,

Case 1: Trapezoidal profile

ρCptb

(
∂T

∂t
+ τ0

∂2T

∂t2

)
=

∂

∂x

[
keff tb

(
1− δ

tb

(x
L

)) ∂T

∂x

]
− 2gKρCpβf

νf
(T − Ta)

2

− 2ha(1− ϕ̂)(T − Ta)
m+1

(Tb − Ta)m
− 2halfg(1− ϕ̂)(ω̄ − ω̄s)(T − Ta)

m

CpLe
2
3 (Tb − Ta)m

− 2σε(T 4 − T 4
a )− ρCpŪ tb

(
1− δ

tb

(x
L

))
(1 + s∗(L− x))

∂T

∂x
. (3.2.3)
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Case 2: Exponential profile

ρCptb

(
∂T

∂t
+ τ0

∂2T

∂t2

)
=

∂

∂x

[
keff tbe

−ν x
L
∂T

∂x

]
− 2gKρCpβf

νf
(T − Ta)

2

− 2ha(1− ϕ̂)(T − Ta)
m+1

(Tb − Ta)m
− 2halfg(1− ϕ̂)(ω̄ − ω̄s)(T − Ta)

m

CpLe
2
3 (Tb − Ta)m

− 2σε(T 4 − T 4
a )− ρCpŪ tbe

−ν x
L (1 + s∗(L− x))

∂T

∂x
. (3.2.4)

The dimensionless forms of equation (3.2.3) and equation (3.2.4) are nonlinear PDEs of

second order given by,

Case 1: Trapezoidal profile

V e2
∂2θ

∂τ 2
+
∂θ

∂τ
= (1− CX)

∂2θ

∂X2
− C

∂θ

∂X
−m2θ

m+1 −Nr
(
(θ + CT )

4 − C4
T

)
−Ncθ2 − Pe(1− CX) (1 + S(1−X))

∂θ

∂X
. (3.2.5)

Case 2: Exponential profile

V e2
∂2θ

∂τ 2
+
∂θ

∂τ
= e−νX ∂2θ

∂X2
− νe−νX ∂θ

∂X
−m2θ

m+1 −Nr
(
(θ + CT )

4 − C4
T

)
−Ncθ2 − Pee−νX (1 + S(1−X))

∂θ

∂X
. (3.2.6)

The respective dimensionless initial and boundary conditions are,

θ(X, 0) = 0,
∂

∂τ
θ(X, 0) = 0,

θ(0, τ) = 1,
∂

∂X
θ(1, τ) = 0. (3.2.7)
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This is achieved by utilizing the following parameters,

θ =
T − Ta
Tb − Ta

, CT =
Ta

Tb − Ta
, X =

x

L
, τ =

keff
ρCpL2

t, V e =

√
τ0keff
ρCpL2

, P e =
ρCpŪL

keff
,

Nc =
2gρβfKCp(Tb − Ta)L

2

νfkeff tb
, Nr =

2εσL2(Tb − Ta)
3

keff tb
,m0 =

2ha(1− ϕ̂)L2

keff tb
, C =

δ

tb
,

m1 =
2ha(1− ϕ̂)L2lfgb2

keff tbCpLe
2
3

,m2 = m0 +m1, S = s∗L, ω̄ − ω̄s = b2(T − Ta). (3.2.8)

3.3 Numerical Elucidation

The second order nonlinear PDEs of hyperbolic nature named equation (3.2.5) and (3.2.6)

and their corresponding initial and boundary conditions labelled as equation (3.2.7) are

the concerned equations. Using the FDM with centered-implicit scheme the PDE’s so-

lutions have been found via the Maple software. The detailed procedure is explained

in section (2.3). The results of the present investigation for both the PDEs have been

extracted by setting ∆X = 0.008 and ∆τ = 0.008.

3.4 Deliberation of Results

The solutions obtained numerically have been displayed through graphs and discussed

parametrically. Each physical quantity is varied keeping others constant and the constant

values considered for the analysis unless otherwise mentioned are: Nc = 1, Nr = 1,m2 =

1, C = 0.4, ν = 1, CT = 0.2,m = 2, V e = 1, P e = 1, S = 0, τ = 0.8 and X = 0.5.

The variation in the thermal characteristics of trapezoidal and exponential profiled

longitudinal fin structures subject to Fourier and non-Fourier heat conduction for distinct

values of dimensionless time τ (X=0.5) has been pictured in figure 3.2 (a-c). It can be

observed from the figures that from the fin base to the fin tip, the temperature distribu-
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tion steadily decreases in the case of Fourier heat conduction. However, non-Fourier heat

conduction has a noticeable impact on the transient temperature response at the fin base

i.e., the temperature distribution in the fin as a function of time exhibits an unusual vari-

ance even though constant base temperature is maintained. This is due to the hyperbolic

governing equation which induces a thermal shock in the temperature. Each time, the

temperature drops for a short period of time before rising quickly and at last a spot on

the fin experiences an instantaneous temperature drop (thermal shock) in comparison to

the surrounding value, and this low temperature is maintained throughout the remainder

of the fin. Due to its finite velocity, the thermal wave is near the base of the fin and moves

farther with time. Gradually the fluctuations in the temperature variation stabilise and

the resultant thermal profile exactly fits with the one from the Fourier case.

The distribution of temperature in trapezoidal and exponential fin structures for si-

multaneous variation in the dimensionless length coordinate X and time τ for non-Fourier

heat conduction has been depicted in figure 3.3 (a-b). It can be observed that at each

axial position there is a peak achieved followed by fluctuations which finally lead to a

steady value. The time taken by the thermal wave to reach the respective axial position

can also be noted from the figures. On the other hand, as expected there is a decrease in

the temperature value from fin base to its tip.

Figure 3.4 (a-b) represents the trapezoidal and exponential fin thermal profiles for

distinct values of the Vernotte number V e. For V e = 0.001 we receive a thermal curve

similar to that from a Fourier case. It can be observed from the figures that with a rise in

the value of V e the thermal wave is more close to the base of the fin. This can be explained

as follows. With elevation in the values of V e there is an increase in the relaxation time

τ0 resulting in slow propagation of wave towards the fin tip. Thus, higher values of V e
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signify enhanced non-Fourier influence.

The effect of fin taper ratio C and fin shape parameter ν on the temperature char-

acteristic of trapezoidal and exponential fin structures for both the cases of Fourier and

non-Fourier heat conduction has been pictured in figure 3.5 (a-c). In the Fourier case,

the fin temperature at a particular axial location is found to decrease with increase in

the values of C and ν. Thus, as fin geometry transits from inverted profile to tapered

one, the fin temperature distribution decreases. Further, in the case of non-Fourier heat

conduction the thermal wave is observed to travel slowly as the fin profile changes from

inverted to tapered one.

The impact of convective parameter Nc on the fluctuations in the local temperature

of trapezoidal and exponential fin structures for both Fourier and non-Fourier cases has

been depicted in figure 3.6 (a-c). For higher values of parameter Nc, lower thermal

profiles have been produced in both the cases of heat conduction. This can be explained

as follows. The elevation in Nc value represents increased permeability of the porous

medium which results in better movement of the ambient fluid through the fin pores.

This leads to increased heat transmission via convection thus resulting in lower values of

fin temperature. Further it can be observed that Nc values don’t have any influence on

the speed of the thermal wave.

Figure 3.7 (a-c) respectively depict the variation in temperature of trapezoidal and

exponential fin structures for distinct values of radiative parameter Nr for both cases of

Fourier and non-Fourier heat conduction. It can be inferred from the figures that as Nr

value rises, there is a steep decrease in the fin temperature. This is because, the elevation

in the value of Nr means rise in heat transmission via radiation leading to decrease in

the local fin temperature. On the other hand, from figures we can observe that Nr values
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don’t influence the relaxation time of the thermal wave.

The repercussion of wet porous parameter m2 on the thermal behaviour of trapezoidal

and exponential fin structures for both cases of Fourier and non-Fourier heat conduction

has been recorded in figure 3.8 (a-c). It can be seen that, m2 has a negative effect on

the distribution of temperature. The effect of porosity and wet nature on the fin thermal

performance can be estimated via the parameter m2. Thus, as m2 increases, porosity

and/or wet nature increase resulting in better heat removal via convection. This results

in decrease in the temperature towards the fin tip. On the other hand, similar to the

convective and radiative parameters, wet porous parameter does not have any impact on

the speed of the thermal wave.

Figure 3.9 (a-c) depicts the fluctuations in the temperature values of the trapezoidal

and exponential fin structures for varying values of Peclet number Pe. Here figure 3.9

(a) and figure 3.9 (b-c) correspondingly represent the thermal variations for Fourier and

non-Fourier cases. It can be noted from the figure that as values of Pe rise, there is

elevation in the temperature values. This is because of decrease in the time available

for interaction between ambient fluid and the fin surface leading to negative influence on

heat transmission via convection. Further, it can be observed that rise in Pe hikes the

amplitude of the thermal wave.

The influence of stretching/shrinking parameter S on the thermal performance of

trapezoidal and exponential fin structures under Fourier as well as non-Fourier cases of

heat conduction has been illustrated in figure 3.10 (a-c). It can be observed that stretching

(S = 1) increases the local fin temperature whereas shrinking (S = −1) decreases the

same. This can be explained as follows. The elevation in stretching parameter adds to

fin motion thus increasing the fin temperature whereas the hike in shrinking parameter
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negates the fin motion resulting in lesser fin temperature. On the otherhand, similar to

Peclet number, the stretching/shrinking parameter is observed to vary the amplitude of

the thermal wave.

3.5 Denouement

The convective-radiative fully wet porous trapezoidal and exponential fin structures sub-

ject to motion have been numerically investigated by employing the FDM. The fin struc-

tures have been examined under two cases namely: Fourier and non-Fourier heat conduc-

tion. The following are the conclusions derived from their graphical analysis.

� In the case of non-Fourier heat conduction a thermal shock is induced to the temper-

ature resulting in a thermal wave travelling towards the fin tip with a finite velocity.

Gradually the induced fluctuations in the temperature variation stabilise and the

resultant thermal profile fits with the one from the Fourier case.

� The Vernotte number is found to increase the relaxation time resulting in slower

movement of thermal wave. Further, the case of non-Fourier heat conduction reduces

to Fourier one at lower values of Vernotte number.

� As the fin geometry transits from inverted profile to tapered one, fin surface tem-

perature is found to decrease.

� The convective, radiative, shrinking and wet porous parameters are found to de-

crease the fin surface temperature.

� The stretching parameter and the Peclet number are found to enhance the distri-

bution of temperature towards the fin tip.
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(a)

(b) (c)

Figure 3.2: Plot of fin temperature values for distinct values of dimensionless time τ .

.
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(a)

(b)

Figure 3.3: Plot of fin temperature values against dimensionless time τ for distinct values

of dimensionless length X.

.
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(a)

(b)

Figure 3.4: Plot of fin temperature values for distinct values of Vernotte number V e.

.
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(a)

(b) (c)

Figure 3.5: Plot of fin temperature values for distinct values of fin taper ratio C and

shape parameter ν.

.
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(a)

(b) (c)

Figure 3.6: Plot of fin temperature values for distinct values of convective parameter Nc.

.
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(a)

(b) (c)

Figure 3.7: Plot of fin temperature values for distinct values of radiative parameter Nr.

.
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(a)

(b) (c)

Figure 3.8: Plot of fin temperature values for distinct values of wet porous parameter m2.

.
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(a)

(b) (c)

Figure 3.9: Plot of fin temperature values for distinct values of Peclet number Pe.

.
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(a)

(b) (c)

Figure 3.10: Plot of fin temperature values for distinct values of stretching/shrinking

parameter S.

.
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Chapter 4

Impact of Mass-Based Hybrid
Nanofluid Flow on Transient
Efficiency of Exponential Fin

4.1 Prelims

In the chapter, transient heat transfer characteristics of a convective-radiative longitu-

dinal fin of exponential profile fully wetted in a hybrid nanofluid have been analysed.

The fin medium is porous and Darcy law has been implemented to formulate the fluid-

solid interactions. The hybrid nanofluid is obtained by immersing Silver and Graphene

nanoparticles in the base fluid water and the study is based on a mass-based model. The

scrutiny presented in dimensionless form is a nonlinear PDE which is solved by employing

the FDM. The effect of nanoparticle shape factor, dimensionless time, wet porous param-

eter, and other relevant parameters on the thermal field and thermal efficiency of the fin

structures has been graphically analysed and discussed. The examination has resulted in

a novel outcome that the presence of hybrid nanofluid enhances the fin efficiency. The

findings of the investigation play a prominent role in the heat transfer enhancement of

industrial processes.
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4.2 Modeling and Interpretation

4.2.1 Heat Transfer

Figure 4.1: Physical depiction of exponential profiled longitudinal fin structure wetted in

hybrid nanofluid.

Consider an exponential profiled longitudinal fin with dimensions as depicted in figure

4.1. The fin material is considered to be porous, isotropic and homogeneous in nature. The

fin is fully wetted in a hybrid nanofluid and further allows the penetration of the ambient

fluid through its pores. The Darcy model has been employed to govern the fluid-solid

interactions in the fin model. The ambient hybrid nanofluid with temperature Ta is in

contact with the entire fin surface. At time t = 0, the fin surface is maintained at the same

temperature as the ambient fluid. But at t > 0, there is a step rise in temperature of the

surface to which the fin base is attached. As heat enters the fin through its base, it flows

through the entire fin length. As the difference in temperature between the ambient fluid
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and the fin surface rises, the heat in the fin structure is exchanged with the ambient fluid

through convective-radiative transmissions. Since the fin thickness is negligible compared

to its length the temperature is assumed to vary only along the axial direction of the fin.

The energy balance equation for a one-dimensional fin structure under unsteady conditions

subject to the above assumptions is given by [?],

(ρCp)hnf tb
khnf

∂T

∂t
=

∂

∂x

[
t∗(x)

∂T

∂x

]
− 2gK(ρβ)hnf (ρCp)hnf

khnfµhnf

(T − Ta)
2 − 2σε(T 4 − T 4

a )

khnf

− 2(1− ϕ̂)h(T )(T − Ta)

khnf
− 2hDlfg(ω̄ − ω̄s)(1− ϕ̂)

khnf
. (4.2.1)

The respective adiabatic initial and boundary conditions are given by [?],

T (x, 0) = 0, T (L, t) = Tb,
∂

∂x
T (0, t) = 0. (4.2.2)

For an exponential fin structure the fin thickness is a function of x and is given by,

t∗(x) = tbe
ν( x

L
−1). (4.2.3)

Here, ν is the shape factor and determines the exponential fin shape as,

ν = 1 corresponds to a tapered exponential fin,

ν = 0 corresponds to a rectangular fin and

ν = −1 corresponds to an inverted exponential fin.

Consider,

θ =
T

Tb
, θa =

Ta
Tb
, X =

x

L
, τ =

kf
(ρCp)fL2

t, Nc =
2gK(ρβ)f (ρCp)fTbL

2

kfµf tb
,

Nr =
2σεT 3

b L
2

kf tb
, ω̄ − ω̄s = b2(T − Ta),M

2 =
2haL

2(1− ϕ̂)

kf tb
, n1 =

lfgb2

Le
2
3 (Cp)f

. (4.2.4)

Equation (4.2.1) after the substitution of equations (1.2.9) and (4.2.3) is non-dimensionalized
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by utilizing the above dimensionless quantities to generate the following equation (4.2.5).

∂θ

∂τ
=

(
(ρCp)f
(ρCp)hnf

)(
khnf
kf

)
∂

∂X

[
eν(X−1) ∂θ

∂X

]
−Nc

(
(ρβ)hnf
(ρβ)f

)(
µf

µhnf

)
(θ − θa)

2

−M2

(
(ρCp)f
(ρCp)hnf

)(
1 + n1

(
(ρCp)f
(ρCp)hnf

)(
ρhnf
ρf

))
(θ − θa)

m+1

(1− θa)m

−Nr

(
(ρCp)f
(ρCp)hnf

)
(θ4 − θ4a). (4.2.5)

The respective dimensionless initial and boundary conditions are given by,

θ(X, 0) = 0, θ(1, τ) = 1,
∂

∂X
θ(0, τ) = 0. (4.2.6)

4.2.2 Mass-Based Hybrid Nanofluid Model

The hybrid nanofluid formulation according to the mass-based model is as given below

[?] [?]. It is worth mentioning that w1, w2 and wf are masses of the 1st nanoparticle

(AgNPs), the 2nd nanoparticle (GrNPs) and the base fluid (H2O), respectively. The

sphericity χ and the empirical shape factor s for applied nanoparticles have been depicted

in Table (4.1). Further, the thermophysical properties of the nanoparticles and the base

fluid have been recorded in Table (4.2).

Heat Capacity:

(ρCp)hnf
(ρCp)f

= (1− φ) + φ
(ρCp)s
(ρCp)f

. (4.2.7)

Viscosity:

µhnf

µf

=
1

(1− φ)2.5
. (4.2.8)

Thermal Expansion Capacity:

(ρβ)hnf
(ρβ)f

= (1− φ) + φ1
(ρβ)1
(ρβ)f

+ φ2
(ρβ)2
(ρβ)f

. (4.2.9)
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Density:

ρhnf
ρf

= (1− φ) + φ
ρs
ρf
. (4.2.10)

Thermal Conductivity:

khnf
knf

=
k2 + (s− 1)knf − (s− 1)φ2(knf − k2)

k2 + (s− 1)knf + φ2(knf − k2)
,

knf
kf

=
k1 + (s− 1)kf − (s− 1)φ1(kf − k1)

k1 + (s− 1)kf + φ1(kf − k1)
. (4.2.11)

where,

ρs =
(ρ1 × w1) + (ρ2 × w2)

w1 + w2

, (4.2.12)

(Cp)s =
(Cp)1 × w1 + (Cp)2 × w2

w1 + w2

, (4.2.13)

φ1 =

w1

ρ1
w1

ρ1
+ w2

ρ2
+

wf

ρf

, (4.2.14)

φ2 =

w2

ρ2
w1

ρ1
+ w2

ρ2
+

wf

ρf

, (4.2.15)

φ = φ1 + φ2. (4.2.16)

4.2.3 Fin Efficiency

The instantaneous heat transfer rate of the fin wetted in a hybrid nanofluid is given by,

Qf =

∫ L

0


2gKW (ρβ)hnf (ρCp)hnf

µhnf
(T − Ta)

2 + 2σWε(T 4 − T 4
a )

+

(
2(1− ϕ̂)haW +

2hDlfgWb2(1−ϕ̂)

(Cp)hnfLe
2
3

)
(T−Ta)m+1

(Tb−Ta)m

 dx. (4.2.17)

The ideal heat transfer through the fin when the surface temperature of the entire fin is

equal to base temperature is given by,

Qideal =


2gKW (ρβ)hnf (ρCp)hnfL

µhnf
(Tb − Ta)

2 + 2σWεL(T 4
b − T 4

a )

+

(
2(1− ϕ̂)haWL+

2hDlfgWLb2(1−ϕ̂)

(Cp)hnfLe
2
3

)
(Tb − Ta)

 . (4.2.18)
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The thermal fin efficiency is calculated as,

η =
Qf

Qideal

.

In dimensionless form the efficiency of fin immersed in a hybrid nanofluid is given by,

η =

∫ 1

0


Nc

(
(ρβ)hnf

(ρβ)f

)(
µf

µhnf

)(
(ρCp)hnf

(ρCp)f

)(
kf

khnf

)
(θ − θa)

2 +Nr
(

kf
khnf

)
(θ4 − θ4a)

+M2
(

kf
khnf

)(
1 + n1

(
(ρCp)f

(ρCp)hnf

)(
ρhnf

ρf

))
(θ−θa)m+1

(1−θa)m

 dX

Nc

(
(ρβ)hnf

(ρβ)f

)(
µf

µhnf

)(
(ρCp)hnf

(ρCp)f

)(
kf

khnf

)
(1− θa)

2 +Nr
(

kf
khnf

)
(1− θ4a)

+M2
(

kf
khnf

)(
1 + n1

(
(ρCp)f

(ρCp)hnf

)(
ρhnf

ρf

))
(1− θa)


.

(4.2.19)

4.3 Numerical Elucidation

The second order nonlinear PDE of parabolic nature named equation (4.2.5) and its cor-

responding initial and boundary conditions labelled as equation (4.2.6) are the concerned

equations. Using the FDM with centered-implicit scheme the PDE’s solutions have been

found via the Maple software. The detailed procedure is explained in section (2.3). The

results of the present investigation have been extracted by setting ∆X = 0.001 and

∆τ = 0.001.

4.4 Deliberation of Results

The thermal characteristics of tapered and inverted exponential fin structures have been

comparatively analysed along with the rectangular fin profile by employing the mass-based

hybrid nanofluid model. The numerical solutions extracted from the governing equations

have been represented graphically in figures 4.2−4.13 for better analysis and their physical

descriptions have been discussed.

65



Chapter-4: Impact of Mass-Based Hybrid Nanofluid Flow on Transient . . .

The response of thermal characteristics of exponential fin profiles and rectangular

fin profile in the presence of silver-graphene-water hybrid nanofluid with the convective

parameter Nc and radiative parameter Nr has been depicted in figures 4.2 and 4.3. Both

Nc and Nr have provided an affirmative response in accelerating the fin cooling process.

The positive influence of Nc is due to the buoyancy effect which can be explained as

follows. With increase in Nc values the permeability of the porous medium increases

resulting in improved movement of fluid through the pores of the fin. Thus, leading to

increased convective heat loss and decrease in the fin temperature. On the other hand,

parameter Nr is associated with heat loss through radiation. Hence its rise results in

more heat loss and better cooling of the fin. Further, inverted exponential fin has higher

difference in temperature along the length of the fin and hence provides higher rate of

heat loss. It is followed by rectangular and tapered exponential fin.

The wet parameter n1 and ambient temperature (dimensionless) θa have a remarkable

influence on the temperature distribution of exponential (both tapered and inverted) and

rectangular fin profiles when immersed in a hybrid nanofluid as pictured in figures 4.4

and 4.5. It can be observed that rise in m2 lowers the fin thermal profile whereas rise

in θa does the opposite. This is because m2 is associated with the wet nature of the fin

and thus enhances the convective heat loss leading to decrease in fin temperature. On

the other hand, increase in parameter θa results in decrease in temperature difference

between fin surface and the ambient fluid resulting in slower transmission of heat between

the two entities. This phenomenon is backed up by Newton’s law of cooling and hence

lower values of θa are preferrable for better fin cooling. Further, similar trend is followed

by all the three longitudinal fin profiles.

Figures 4.6 and 4.7 have captured the impact of exponential index m and thermoge-
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ometric parameter M on the thermal response of three different longitudinal fin profiles

when hybrid nanofluid silver-graphene-water is allowed to pass through the porous fin

structures. It can be observed that exponential index m gives rise to higher thermal

profiles but the thermogeometric parameter M does the opposite. This can be explained

as follows. The variation in the value of heat transfer coefficient h with temperature is

governed by parameter m and an increase in its value decreases the value of h. This re-

sults in lesser heat loss through convection and hence fin temperature rises. On the other

hand, the parameter M is employed to gauge the influence of the ratio of convective to

conductive heat transfer coefficients and also the porosity of the fin material. Hence rise

inM signifies increased convective heat transfer due to an increase in the ratio because of

increased surface area due to hike in porosity. Thus, lower values of m and higher values

of M are preferable in the fin cooling process.

Figures 4.8 and 4.9 depict the variation in the thermal profile of inverted exponential,

rectangular and tapered exponential fin structures with mass of the second nanoparticle

w2 and shape of the nanoparticle s. It can be noted that w2 improves the distribution

of temperature along the fin length. In addition, disc shaped nanoparticle gives rise to

higher thermal profiles followed by cylindrical and sphere shaped ones. This is because

rise in value of w2 as well as s increases the thermal conductivity of the hybrid nanofluid

leading to increase in the effective thermal conductivity of the fin structure. This results

in increase in the fin temperature towards the tip of the fin. Thus, both these parameters

provide better distribution of temperature. Further the behaviour of all three fin profiles

is similar in both the cases.

The transient nature of the energy profiles of the three different longitudinal fin struc-

tures in the presence of hybrid nanofluid has been depicted in figure 4.10. It can be noted
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that temperature profiles move upward with the passing of time and the fin base reaches

steady state quite faster than the tip of the fin. This can be explained as follows. Initially

the temperature at the base of the fin will be zero and then there will be a step rise in the

base temperature. This results in the entry of heat to fin structure represented by lower

thermal profiles and gradually with time there will be a better distribution of temperature

represented by higher thermal profiles. Further it can be observed that nature of thermal

profiles of all three geometries is similar.

The thermal efficiency of exponential fin structures in the presence of shape-dependent

hybrid nanofluid for simultaneous variation in the thermogeometric parameterM and wet

fin parameter n1 has been illustrated in figure 4.11. It can be observed that fin efficiency

decreases with increase in the parameters M and n1. This is because as explained earlier

the rise in these parameters results in a decrease in the distribution of temperature along

the length of the fin increasing the deviation of the actual fin case from the ideal one.

Figure 4.12 depicts the influence of weight of the second nanoparticle w2 on the tran-

sient thermal efficiency of three distinct profiles of longitudinal fin structure wetted in

a shape-dependent hybrid nanofluid. It can be noticed that efficiency increases with an

increase in the values of w2. This is because the elevation in the concentration of the hy-

brid nanofluid helps in improving the effective thermal conductivity of the porous fin and

thus enhancing the spatial distribution of temperature. Thus, the application of hybrid

nanofluid instead of simple base fluid enhances the fin efficiency.

The influence of nanoparticle shape factor s and convective parameter Nc on the

efficiency of tapered exponential, rectangular and inverted exponential fin structures has

been illustrated in figure 4.13. It can be noted that efficiency increases with rise in the

value of s whereas decrases with the hike in the values of Nc. Thus, the hybrid nanofluid
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with disc shaped nanoparticles attains highest efficiency than those from spherical and

cylindrical ones.

4.5 Denouement

The transient thermal performance of three distinct profiles of longitudinal fin fully wetted

in a hybrid nanofluid has been analysed by employing the FDM. A novel mass-based

hybrid nanofluid model has been implemented in the place of a fraction based model.

The major outcomes of the study are:

� The fin temperature field gradually rises with time and finally attains a steady state.

� The convective-radiative heat transmission environment accelerates the fin cooling

process. The wet and porous nature of the fin produces lower tip temperatures

whereas the exponential index and ambient temperature negatively affect the fin

heat loss.

� The speed of the fin has a significant impact on the its surface temperature. Slower

the movement of fin, higher is the heat loss rate.

� The fin surface temperature is greatly influenced by mass and shape of the nanopar-

ticles. Both these parameters enhance the temperature distribution through the fin.

� The tip temperature of an exponential fin with thick tip is lower than that of a

rectangular fin followed by an exponential fin with thin tip. Thus, an exponential

fin with thick tip performs better than the other two profiles in the process of fin

cooling.
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Table 4.1: Sphericity χ and empirical shape factor s for applied nanoparticles [?] [?].

Structure Sphere Cylinder Disc

χ 1 0.81 0.52

s 3 3.7 5.7

Table 4.2: Thermophysical properties of base fluid and nanoparticles [?] [?].

.

Thermophysical properties Pure water Silver Graphene

ρ(kgm−3) 997.1 10500 2250

Cp(Jkg
−1K−1) 4179 235 2100

k(Wm−1K−1) 0.613 429 2500

β ∗ 10−5(K−1) 21 1.3 21

Particle size (nm) - 2-5 10-30

Figure 4.2: Outcome of convective parameter Nc on fin energy field.
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Figure 4.3: Outcome of radiative parameter Nr on fin energy field.

Figure 4.4: Outcome of wet parameter n1 on fin energy field.
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Figure 4.5: Outcome of dimensionless ambient temperature θa on fin energy field.

Figure 4.6: Outcome of exponential index m on fin energy field.
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Figure 4.7: Outcome of thermogeometric parameter M on fin energy field.

Figure 4.8: Outcome of weight of second nanoparticle w2 on fin energy field.
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Figure 4.9: Outcome of nanoparticle shape parameter s on fin energy field.

Figure 4.10: Outcome of dimensionless time τ on fin energy field.
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Figure 4.11: Outcome of M and n1 on fin thermal efficiency.

Figure 4.12: Outcome of w2 and τ on fin thermal efficiency .
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Figure 4.13: Outcome of s and Nc on fin thermal efficiency.
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Chapter 5

Numerical Investigation of Efficiency
of Fully Wet Porous
Convective-Radiative Moving Radial
Fin in the Presence of
Shape-Dependent Hybrid Nanofluid

5.1 Prelims

The main focus of the study is a fully wet porous fin of radial profile exposed to convective-

radiative heat exchange with the hybrid nanofluid flowing past it with a constant velocity

of Ū . In the analysis, spherical-spherical, spherical-cylindrical, and spherical-platelet

shape combinations of two nanoparticles are considered. The mixture model is employed

to assess all the thermophysical attributes of the hybrid nanofluid except thermal conduc-

tivity and dynamic viscosity, which are estimated by applying the nanoparticle volume

fraction-based interpolation method. The fin model with the applied conditions results

in an ODE which is made dimensionless and then numerically resolved by applying the

RKF45 technique. The effect of Peclet number, wet fin parameter, thermogeometric

parameter, nanoparticle volume fraction, convective parameter, radiative parameter, ex-

ponential index, empirical shape factor and ambient temperature (dimensionless) on the
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energy field and thermal gradient profiles of the radial fin subjected to shape-dependent

hybrid nanofluid flow has been graphically analysed. Furthermore, the thermal fin ef-

ficiency has been modelled and its variation with the significant parameters has been

examined. One of the major outcomes was that efficiency increases with nanoparticle vol-

ume fraction. Further, it is significantly affected by the shape factor of the nanoparticles

and achieves the highest value for spherical-platelet combination. The results obtained

motivate further study of nanotechnology assisted extended surface technology.

5.2 Modeling and Interpretation

5.2.1 Heat Transfer

Figure 5.1: Pictorial representation of hybrid nanofluid flow past a porous radial fin.

In this work, a rectangular profiled radial fin is assumed to be fully wetted in the
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hybrid nanofluid. As depicted in figure 5.1, a fin with base radius rb, tip radius rt, and

thickness tb is considered. The fin is assumed to be moving with a constant velocity Ū .

This can also be assumed as a hybrid nanofluid moving with a constant velocity Ū past

a stationary fin. The fin structure is made up of porous material, enabling the hybrid

nanofluid to infiltrate through it, and the Darcy model has been utilised to study the solid-

fluid interaction. The fin gathers heat from the prime surface, which is at temperature

Tb, and exchanges it with the ambient hybrid nanofluid kept at temperature Ta through

convective and radiative modes of heat transmission. Since the fin thickness is small, the

heat transmission through the fin tip is negligible and thus the fin tip is assumed to be

adiabatic in nature. Also, one dimensional temperature distribution, i.e., only along the

radial direction, is assumed in the fin.

The flow of heat energy through a small area of cross-section dr has been modelled under

steady state conditions and is given by,

(q(r)− q(r + dr))dr − 2v̄(r)2πrdr(ρCp)hnf (T − Ta)− (ρCp)hnf2πrtbŪ
dT

dr

− 2πrhdr(1− ϕ̂)(T − Ta)− 2πrdrhDlfg(1− ϕ̂)(ω̄ − ω̄s)dr

− 2σεFf−a2πrdr(T
4 − T 4

a ) = 0. (5.2.1)

Here the first term represents the energy difference for a small distance dr, the second term

is introduced via Darcy model to address the fluid’s interaction with the porous media,

the third term accounts for fin motion, the fourth term is for radiation phenomenon, the

fifth and sixth terms are for convective and fully wet nature of the porous fin structure.

As per the Fourier’s law of heat conduction q(r), the heat energy at radial position r is
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given by,

q(r) = −khnf2πrtb
dT

dr
. (5.2.2)

As per Darcy’s model the velocity of the fluid particles flow through the porous media is

given by,

v̄(r) =
gK(ρβ)hnf (T − Ta)

µhnf

. (5.2.3)

Upon utilizing equations (5.2.2) and (5.2.3), equation (5.2.1) resolves into,

1

r

d

dr

(
r
dT

dr

)
− 2gK(ρCp)hnf (ρβ)hnf

µhnfkhnf tb
(T − Ta)

2 − 2hDlfg(1− ϕ̂)(ω̄ − ω̄s)

khnf tb

− 2h(1− ϕ̂)(T − Ta)

khnf tb
− 2σεFf−a

khnf tb
(T 4 − T 4

a )−
(ρCp)hnf Ū

khnf

dT

dr
= 0.

(5.2.4)

The respective adiabatic boundary conditions are given by,

T (rb) = Tb,

dT (rt)

dr
= 0. (5.2.5)

The following are the dimensionless quantities:

θ =
T

Tb
, θa =

Ta
Tb
, R =

r

rb
, R̄ =

rt
rb
, Nc =

2gK(ρCp)f (ρβ)fTbr
2
b

µfkf tb
, Nr =

2σεFf−aT
3
b r

2
b

kf tb
,

ω̄ − ω̄s = b2(T − Ta),M
2 =

2har
2
b (1− ϕ̂)

kf tb
, n1 =

lfgb2

Le
2
3 (Cp)f

, P e =
(ρCp)f Ūrb

kf
. (5.2.6)

Using the equations (1.2.9) and (5.2.6), the equation (5.2.4) reduces to,

1

R

d

dR

(
R
dθ

dR

)
−Nc

(
(ρCp)hnf
(ρCp)f

)(
(ρβ)hnf
(ρβ)f

)(
kf
khnf

)(
µf

µhnf

)
(θ − θa)

2

−Nr

(
kf
khnf

)
(θ4 − θ4a)− Pe

(
(ρCp)hnf
(ρCp)f

)(
kf
khnf

)
dθ

dR

−M2

(
1 + n1

(
(ρCp)f
(ρCp)hnf

)(
ρhnf
ρf

))(
kf
khnf

)
(θ − θa)

m+1

(1− θa)m
= 0.

(5.2.7)
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With the reduced boundary conditions,

θ(1) = 1,

d

dR
θ(R̄) = 0, R̄ = 3. (5.2.8)

5.2.2 Thermal Efficiency Analysis

Comparison of fin structures based on their thermal efficiency is an effective way in

analysing different fin structures under various circumstances. For the calculation of

fin efficiency, it is necessary to model the heat transfer through the entire fin structure

given by Qf and heat transfer through an ideal fin structure given by Qideal.

Qf =

∫ rt

rb


2gK(ρβ)hnf (ρCp)hnf2πr(T−Ta)2

µhnf
+ 2σεFf−a2πr(T

4 − T 4
a )

+2πrha(1−ϕ̂)(T−Ta)m+1

(Tb−Ta)m
+

2πrha(1−ϕ̂)lfgb2(T−Ta)m+1

(Cp)hnfLe
2
3 (Tb−Ta)m

 dr.

Qideal =

∫ rt

rb


2gK(ρβ)hnf (ρCp)hnf2πr(Tb−Ta)2

µhnf
+ 2σεFf−a2πr(T

4
b − T 4

a )

+2πrha(1− ϕ̂)(Tb − Ta) +
2πrha(1−ϕ̂)lfgb2

(Cp)hnfLe
2
3

(Tb − Ta)

 dr.
The thermal fin efficiency is calculated as,

η =
Qf

Qideal

.

η =

∫ R̄

1


Nc

(
(ρCp)hnf

(ρCp)f

)(
(ρβ)hnf

(ρβ)f

)(
kf

khnf

)(
µf

µhnf

)
(θ − θa)

2 +Nr
(

kf
khnf

)
(θ4 − θ4a)

+M2
(
1 + n1

(
(ρCp)f

(ρCp)hnf

)(
ρhnf

ρf

))(
kf

khnf

)
(θ−θa)m+1

(1−θa)m

RdR

Nc

(
(ρCp)hnf

(ρCp)f

)(
(ρβ)hnf

(ρβ)f

)(
kf

khnf

)(
µf

µhnf

)
(1− θa)

2 +Nr
(

kf
khnf

)
(1− θ4a)

+M2
(
1 + n1

(
(ρCp)f

(ρCp)hnf

)(
ρhnf

ρf

))(
kf

khnf

)
(1− θa)


.

(5.2.9)
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5.2.3 Thermophysical Properties of Hybrid Nanofluid

In the above equations (5.2.7) and (5.2.9), ρhnf , (Cp)hnf , βhnf respectively are the density,

specific heat capacity and thermal expansion coefficient of the hybrid nanofluid and are

assessed based on the mixture model as [?] [?],

ρhnf = ρ1φ1 + ρ2φ2 + (1− φ1 − φ2)ρf , (5.2.10)

(ρCp)hnf = φ1(ρCp)1 + φ2(ρCp)2 + (1− φ1 − φ2)(ρCp)f , (5.2.11)

(ρβ)hnf = φ1(ρβ)1 + φ2(ρβ)2 + (1− φ1 − φ2)(ρβ)f . (5.2.12)

In the current examination the hybrid nanofluid composed of two different nanoparticles of

distinct shapes is considered. Here, the interpolation method is implemented to calculate

the dynamic viscosity µhnf and thermal conductivity khnf of the hybrid nanofluid. Initially

for calculating the thermal conductivity of the nanofluid of particular shaped nanoparticle

the Maxwell Garnett model given below is utilized.

knf
kf

=
kp + (s− 1)kf + (s− 1)φ(kp − kf )

kp + (s− 1)kf − φ(kp − kf )
.

For spherical shaped 1st nanoparticle:

knf1
kf

=
k1 + 2kf + 2φ(k1 − kf )

k1 + 2kf − φ(k1 − kf )
.

For spherical shaped 2nd nanoparticle:

knf2
kf

=
k2 + 2kf + 2φ(k2 − kf )

k2 + 2kf − φ(k2 − kf )
.

For cylindrical shaped 2nd nanoparticle

knf2
kf

=
k2 + 3.9kf + 3.9φ(k2 − kf )

k2 + 3.9kf − φ(k2 − kf )
.
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For platelet shaped 2nd nanoparticle

knf2
kf

=
k2 + 4.7kf + 4.7φ(k2 − kf )

k2 + 4.7kf − φ(k2 − kf )
.

When the 1st and 2nd nanoparticles of concentration φ1 and φ2 are considered with the

total nanoparticle volume fraction φ = φ1 +φ2, the resulting thermal conductivity of the

hybrid nanofluid is estimated as below,

khnf =
φ1knf1φ2knf2

φ
. (5.2.13)

Similar to the assessment of khnf the effective dynamic viscosity of the shape-dependent

hybrid nanofluid is calculated as follows:

For spherical shaped 1st nanoparticle: µnf1 = µf (1 + 2.5φ+ 6.2φ2)

For spherical shaped 2nd nanoparticle: µnf2 = µf (1 + 2.5φ+ 6.2φ2)

For cylindrical shaped 2nd nanoparticle: µnf2 = µf (1 + 13.5φ+ 904.4φ2)

For platelet shaped 2nd nanoparticle: µnf2 = µf (1 + 37.1φ+ 612.6φ2)

Thus µhnf is given by,

µhnf =
µnf1φ1 + µnf2φ2

φ
. (5.2.14)

For the current investigation, spherical shaped Al2O3 is considered to be 1st nanoparticle

and spherical shaped Ag, cylindrical shaped CNT or platelet shaped graphene is chosen

as the 2nd nanoparticle and water is considered to be the base fluid. The essential details

of the nanoparticles and base fluid required for the calculative purpose have been recorded

in table 5.1.
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5.3 Numerical Elucidation

The nonlinear second-order ODE (5.2.7) with insulated boundary condition in equation

(5.2.8) has been solved by applying the RKF45 method. In the present analysis, solutions

are obtained for the step size 0.001 with the convergence criteria set to 10−6.

5.4 Deliberation of Results

The discrete numerical output has been reconstructed in the form of graphical structures

and in order to better analyse the results thermal profiles as well as thermal gradient pro-

files along with fin efficiency have been plotted. In figures 5.2 − 5.19, three different cases

of the second nanoparticle’s shape namely spherical, cylindrical, and platelet have been

depicted for a comparative analysis and are abbreviated as SS (spherical-spherical), SC

(spherical-cylindrical), and SP (spherical-platelet) respectively. Throughout the analysis

φ1 = 0.05%, φ2 = 0.05% thus making φ = 0.1% unless otherwise mentioned.

The variation in the thermal conductivity of the hybrid nanofluid with the nanoparticle

volume fraction φ for different combination of nanoparticle shapes has been depicted in

figure 5.2. It can be observed that the ratio khnf/kf raises with an increase in φ value and

is highest in the case of spherical-platelet combination of nanoparticle shapes followed by

spherical-cylindrical and spherical-spherical combinations.

5.4.1 Thermal Field Analysis:

Figures 5.3 and 5.4 respectively indicate the temperature outline and thermal gradient of

a radial fin immersed in a shape-dependent hybrid nanofluid for distinct values of convec-

tive parameter Nc. It can be witnessed from the depiction that the temperature outline is
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lower for higher values of Nc and the thermal gradient towards the fin base increases with

elevating values of Nc. The parameter Nc accounts for the permeability of the porous

medium and the buoyancy effect is the key factor behind this behaviour of temperature

and thermal gradient outlines. That is, with a rise in the values of Nc permeability of

the porous medium increases leading to quicker movement of heat carrying fluid particles

in and out of the fin matrix. This leads to a higher rate of heat loss and better cool-

ing phenomenon. Further, the hybrid nanofluid with spherical-platelet combination of

nanoparticles results in better temperature distribution followed by spherical-cylindrical

and spherical-spherical combinations. This can be explained as follows. The hybrid

nanofluid present in the pores of the fin structure raises the effective thermal conductivity

of the fin material and helps in better transmission of heat through conduction from the

fin base towards the fin tip. Further, the effective thermal conductivity of the fin structure

is highest in the case of spherical-platelet combination as can be observed from figure 5.2.

The temperature profile and thermal gradient plot of a radial fin structure subject

to flow of hybrid nanofluid with spherical-spherical, spherical-cylindrical and spherical-

platelet combination of nanoparticles for variation in the radiation parameter Nr have

been pictured in figures 5.5 and 5.6 likewise. It can be noted that with uplifting values

of radiative parameter, the fin surface temperature decreases towards the fin tip and the

temperature difference increases towards the fin base. The term Nr accounts for increase

in radiative heat exchange as compared to conductive heat transmission. Thus, rise in

Nr values increase the heat loss through radiation leading to lower thermal profiles. On

the other hand, it can be noted from figure 5.6 that temperature difference at the fin

base increases with increase in the values of Nr. As the heat transfer through conduction

is influenced by the temperature difference, a hike in the values of Nr results in faster
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extraction of heat from the prime surface via the fin base. Also, the variation in the fin

thermal profile for distinct combination of nanoparticle shapes follows the same trend as

explained before.

The impact of thermogeometric parameter M on the energy profile and temperature

gradient profile of a radial fin exposed to hybrid nanofluid flow has been captured in figures

5.7 and 5.8 respectively. As depicted M has a negative influence on the temperature

distribution and has a positive effect in rising the temperature difference towards the fin

base. Here the parameterM is employed to gauge the influence of convective to conductive

heat transfer coefficients ratio and also of porosity of the fin material on the fin thermal

behaviour. Hence rise in M signifies increased convective heat transfer due to increase in

the ratio or due to increase in surface area with hike in porosity. This results in sharp dip

in the fin temperature leading to quick rise in temperature difference as can be seen in the

two plots. Thus, higher values of M encourage higher heat transfer rate. Additionally, as

can be observed from figure 5.8, the temperature difference at the fin base attains highest

value for spherical-spherical combination of nanoparticle shapes. Thus, the considered

combination extracts heat quickly from the prime surface via the fin base and results in

higher rate of heat loss from the base.

The motive of plotting figures 5.9 and 5.10 is to recognize the behaviour of temperature

field and temperature gradient of rectangular profiled radial fin respectively in the presence

of hybrid nanofluid upon variation in wet fin parameter n1. It can be seen from figure

5.9 that lower thermal profiles are th result of higher values of n1. Also, from figure 5.10

it can be deciphered that n1 increases the temperature difference at the base of the fin

structure. Here, the parameter n1 encloses the variations in the fin surface temperature

due to wet nature of the fin and the wet environment improves the heat transmission via
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convection. Further, the spherical-platelet nanoparticle shape combination improves the

distribution of temperature towards the fin tip for the similar reasons as explained before.

Figures 5.11 and 5.12 illustrate the dependence of temperature profile and thermal

gradient of a radial fin wetted in a hybrid nanofluid on the exponential index m. It can

be noticed that with rise in m values there is increased distribution of temperature as

shown in figure 5.11. On the other hand, the difference in temperature towards the fin

base has decreased with uplifting values of m as depicted in figure 5.12. Here m = 0

connects to linear case and m ̸= 0 connects to nonlinear case. As m moves from 0

to 2 the dependence of heat transfer coefficient on temperature rises whereas its value

decreases resulting in lesser heat transmission through convection. Additionally, spherical-

spherical nanoparticle combination has lower thermal profiles than spherical-cylindrical

ones followed by spherical-platelet combination.

The dimensionless ambient temperature’s impact on the thermal profile and temper-

ature gradient of porous radial fin exposed to convective-radiative heat loss has been

sketched in figures 5.13 and 5.14 respectively. It is noted that higher values of θa result in

higher thermal profiles as in figure 5.13. And higher thermal gradient profiles are outcome

of lower values of θa as in figure 5.14. This is because of direct impact of this parame-

ter on the convective heat removal mechanism. Further the three different combinations

of nanoparticle shapes affect the heat transfer in the fin system in a similar trend as

explained before.

The influence of Peclet number Pe on the energy graph and thermal gradient graph of

a moving radial fin exposed to shape-dependent hybrid nanofluid flow has been depicted

in figures 5.15 and 5.16 respectively. As can be seen in figure 5.15 higher thermal profiles

correspond to higher values of Peclet number and from figure 5.16 it can be inferred
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that Peclet number has a negative influence on the temperature difference parameter.

This is because with rise in Peclet number the speed of hybrid nanofluid flow past the

fin structure increases resulting in decrease in interaction time between solid and fluid

structures leading to rise in the local fin temperature. Further, as explained earlier the

spherical-platelet combination of nanoparticles enhance the distribution of temperature

throughout the fin length followed by spherical-cylindrical and spherical-spherical ones.

5.4.2 Thermal Efficiency Analysis:

The thermal efficiency of a radial fin exposed to shape-dependent hybrid nanofluid for

simultaneous variation in the convective parameter Nc and radiative parameter Nr has

been illustrated in figure 5.17. It is observed that thermal efficiency of fin degrades with

increase in the parameters Nc and Nr. This is because the rise in these parameters

results in decrease in temperature distribution with fin length resulting in increase in the

deviation of the actual fin case from the ideal one. On the other hand, the consequence of

thermogeometric parameterM and wet parameter n1 on the thermal efficiency of a radial

fin is as depicted in figure 5.18. It can be concluded that fin efficiency has a negative

influence from parameters M and n1. The reason behind this behaviour can be explained

with the similar reasons as above.

The figure 5.19 depicts the influence of nanoparticle volume fraction φ and Peclet

number Pe on the efficiency of a moving radial fin fully wetted in shape-dependent hy-

brid nanofluid. It is noticed that efficiency rises with uplifting values of φ and Pe. This

is because the elevation in the concentration of the hybrid nanofluid helps in improving

the porous fin’s overall thermal conductivity and thus enhances the spatial distribution

of temperature. On the other hand, Peclet number as explained before helps in better
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temperature distribution leading to enhanced fin efficiency. Thus, the application of hy-

brid nanofluid instead of simple base fluid and the moving fin in the place of a stationary

fin enhance the fin efficiency. Additionally, from the figures 5.17, 5.18 and 5.19 one can

notice that spherical-platelet shaped nanoparticle combination results in higher fin effi-

ciency as compared to spherical-cylindrical and spherical-spherical combinations. This is

because as explained earlier the spherical-platelet combination enhances the temperature

distribution leading to increased fin efficiency.

5.5 Denouement

The current study examined the thermal behaviour and efficiency of a radial fin exposed

to the flow of a shape-dependent hybrid nanofluid. The results have been graphically

described utilizing the solutions obtained via the RKF45 technique. The prominent ex-

plorations of the study are as followed:

� The convective and thermogeometric parameters along with the wet and radiative

environment hike the temperature drop towards the fin base and thus enhance the

heat extraction from the prime surface.

� The temperature distribution along the fin length and the thermal fin efficiency have

a hike of 1.2% and 2% respectively as Peclet number varies from 1 to 3.

� The exposure of fin to hybrid nanofluid has a prominent effect on its thermal ef-

ficiency. There is a hike of 2% in thermal fin efficiency as the total nanoparticle

volume fraction raises from 0.01% to 0.1%.

� Nanoparticle shape also has a significant impact on the temperature distribution
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along the fin length as well as the thermal fin efficiency. Both have been recorded

highest for spherical-platelet combination of the nanoparticles with spherical-cylindrical

and spherical-spherical combinations followed by it.

� The heat transmission rate at the fin base is also affected by the distinct combination

of nanoparticle shapes. It is highest in the case of spherical-spherical combination

followed by spherical-cylindrical and spherical-platelet ones.

Table 5.1: Thermophysical properties of water and nanoparticles [?].

Property Water Al2O3 Ag CNT Graphene

ρ(kgm−3) 997.1 3970 10500 2100 2200

Cp(J/kgK) 4179 765 235 410 790

k(W/mK) 0.613 40 429 3007.4 5000

β(K−1) ∗ 10−5 21 2.4 5.4 2 -0.8

Shape − Spherical Spherical Cylindrical Platelet

Figure 5.2: Repercussion of nanoparticle volume fraction φ and distinct combination of

nanoparticle shapes on thermal conductivity of hybrid nanofluid.
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Figure 5.3: Repercussion of convective parameterNc and distinct combination of nanopar-

ticle shapes on fin thermal field.

Figure 5.4: Repercussion of convective parameter Nc and distinct combination of

nanoparticle shapes on fin thermal gradient.
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Figure 5.5: Repercussion of radiative parameter Nr and distinct combination of nanopar-

ticle shapes on fin thermal field.

Figure 5.6: Repercussion of radiative parameter Nr and distinct combination of nanopar-

ticle shapes on fin thermal gradient.

92



Chapter-5: Numerical Investigation of Efficiency of Fully Wet . . .

Figure 5.7: Repercussion of thermogeometric parameter M and distinct combination of

nanoparticle shapes on fin thermal field.

Figure 5.8: Repercussion of thermogeometric parameter M and distinct combination of

nanoparticle shapes on fin thermal gradient.
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Figure 5.9: Repercussion of wet fin parameter n1 and distinct combination of

nanoparticle shapes on fin thermal field.

Figure 5.10: Repercussion of wet fin parameter n1 and distinct combination of nanopar-

ticle shapes on fin thermal gradient.
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Figure 5.11: Repercussion of exponential index m and distinct combination of

nanoparticle shapes on fin thermal field.

Figure 5.12: Repercussion of exponential index m and distinct combination of

nanoparticle shapes on fin thermal gradient.
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Figure 5.13: Repercussion of dimensionless ambient temperature θa and distinct combi-

nation of nanoparticle shapes on fin thermal field.

Figure 5.14: Repercussion of dimensionless ambient temperature θa and distinct combi-

nation of nanoparticle shapes on fin thermal gradient.
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Figure 5.15: Repercussion of Peclet number Pe and distinct combination of nanoparticle

shapes on fin thermal field.

Figure 5.16: Repercussion of Peclet number Pe and distinct combination of nanoparticle

shapes on fin thermal gradient.
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Figure 5.17: Repercussion of Nc and Nr along with distinct combination of nanoparticle

shapes on fin thermal efficiency.

Figure 5.18: Repercussion of n1 and M along with distinct combination of nanoparticle

shapes on fin thermal efficiency.
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Figure 5.19: Repercussion of φ and Pe along with distinct combination of nanoparticle

shapes on fin thermal efficiency.
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Chapter 6

Role of Surface Roughness on the
Transient Thermal Behaviour of
Convective-Radiative Distinct Pin
Fin Structures

6.1 Prelims

The MEMS (Microelectromechanical systems) technologies frequently produce rough sur-

faces and the repercussion of roughness on the thermal performance is more prominent in

structures of smaller dimensions. In this regard, the present chapter intends to examine

the unsteady thermal behaviour of fully wet, porous, and rough micro-pin fin structures

under convective-radiative conditions. Here, pin fin structures of cylindrical, conical and

convex parabolic profiles have been chosen. The problem is modelled by incorporating

the roughness parameters in the perimeter and cross-sectional area of the pin fin. The

resulting PDEs are nonlinear and of second order which have been solved by employ-

ing the FDM. The impact of roughness parameter, wet porous parameter, dimensionless

time and other relevant parameters on the thermal performance and efficiency of rough

micro-pin fin structures has been established graphically. According to the findings, rise

in roughness causes an increase in efficiency. Further, the work is beneficial in the field of
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microelectronics, especially in the design of micro-pin fin structures.

6.2 Modeling and Interpretation

6.2.1 Heat Transfer

Figure 6.1: Schematic representation of cylindrical pin fin (a), conical pin fin (b), con-

vex parabolic pin fin (c) and variation in roughness along radial and longitudinal cross-

sections.

Consider pin fin structures of cylindrical, conical and convex parabolic profiles of

length L and base radius rb as in figure 6.1. The fin material is porous, homogeneous,

and isotropic. The solid matrix is fully wetted in a single-phase fluid and the fluid-solid

interactions are governed by Darcy’s law. At time t = 0, the fin surface is maintained at

the same temperature as the ambient fluid. But at t > 0, there is a step rise in temperature

of the surface to which the fin base is attached. Then the fin base starts receiving heat
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from the surface maintained at temperature Tb and loses heat through convection and

radiation to the ambient fluid at temperature Ta. The fin surface is assumed rough with

relative roughness of ϵ. Further, the cross-sectional area and the perimeter of rough pin

fin are assumed to be functions of surface roughness. The fin is subject to motion with a

uniform velocity Ū . Besides, the thermal conductivity and the heat transfer coefficient of

convection are assumed to be functions of fin surface temperature. Since for the fin to be

effective, the transverse Biot number has to be kept at a minimum, the heat conduction

is assumed to be one-dimensional i.e., along the axial direction of the pin fin. Also, the

tip of the fin is assumed to be adiabatic in nature.

The energy balance equation for the rough micro-pin fin under unsteady condition is given

by,

ρCpĀc(x)
∂T

∂t
=

∂

∂x

(
k(T )Āc(x)

∂T

∂x

)
− ρv̄(x)P̄ (x)Cp(T − Ta)− εσP̄ (x)(T 4 − T 4

a )

− h(T )P̄ (x)(1− ϕ̂)(T − Ta)− hDP̄ (x)lfg(1− ϕ̂)(ω̄ − ω̄s)

+ ρCpŪĀc(x)
∂T

∂x
. (6.2.1)

The fluid velocity through porous fin v̄(x), the convective heat transfer coefficient h(T )

and the thermal conductivity k(T ) are respectively given by equations (1.2.6), (1.2.9) and

(2.2.4).

The cross-sectional area and perimeter of the rough micro-pin fin are given by [?] [?],

Āc(x) = πr̄(x)2 + 2πr2b ϵ
2, (6.2.2)

P̄ (x) = 2πr̄(x)
√

1 +m2
σ̄. (6.2.3)

where, ϵ is the relative roughness and mσ̄ is the mean absolute surface slope. Consider
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[?],

r̄(x) = rb

(x
L

)n

, (6.2.4)

where,

n = 0 is the cylindrical pin fin,

n = 1 is the conical pin fin,

n = 1
2
is the convex parabolic pin fin.

Further [?] [?],

∂Āc

∂x
=
∂Ac

∂x
+ 2πr̄(x)mσ̄. (6.2.5)

The artificial surface roughness parameter ϵ in terms of base radius of the pin fin rb is

given as [?] [?],

ϵ =
σ̄

rb
. (6.2.6)

The mean absolute slope of surface roughness is given by [?] [?] [?],

mσ̄ = 0.076σ̄0.52. (6.2.7)

Now, utilizing the parameters in equations (1.2.6), (1.2.9) and (2.2.4) along with equations

(6.2.2) to (6.2.7), the equation (6.2.1) reduces to,

Case 1: Cylindrical pin fin

(1 + 2ϵ2)
ρCp

ka

∂T

∂t
= (1 + α∗(T − Ta)) (1 + 2ϵ2)

∂2T

∂x2
+ (1 + α∗(T − Ta))

2mσ̄

rb

∂T

∂x

+ α∗(1 + 2ϵ2)

(
∂T

∂x

)2

+
ρCpŪ

ka
(1 + 2ϵ2)

∂T

∂x
− 2ρgKβfCp

√
1 +m2

σ̄

νfkarb
(T − Ta)

2

− 2halfg(ω̄ − ω̄s)
√

1 +m2
σ̄(1− ϕ̂)(T − Ta)

m

karbCpLe
2
3 (Tb − Ta)m

− 2ha(1− ϕ̂)
√

1 +m2
σ̄(T − Ta)

m+1

(Tb − Ta)mkarb

− 2σε
√
1 +m2

σ̄

karb
(T 4 − T 4

a ). (6.2.8)
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Case 2: Conical pin fin(
x2

L2
+ 2ϵ2

)
ρCp

ka

∂T

∂t
= (1 + α∗(T − Ta))

(
x2

L2
+ 2ϵ2

)
∂2T

∂x2
+ α∗

(
x2

L2
+ 2ϵ2

)(
∂T

∂x

)2

+ 2 (1 + α∗(T − Ta))
x

L2

(
1 +

mσ̄L

rb

)
∂T

∂x
+
ρCpŪ

ka

(
x2

L2
+ 2ϵ2

)
∂T

∂x

− 2ρgKβfCp

√
1 +m2

σ̄

νfkarb

x

L
(T − Ta)

2 − 2ha(1− ϕ̂)
√
1 +m2

σ̄

karb

x

L

(T − Ta)
m+1

(Tb − Ta)m

− 2halfg(ω̄ − ω̄s)
√

1 +m2
σ̄(1− ϕ̂)

karbCpLe
2
3

x

L

(T − Ta)
m

(Tb − Ta)m
− 2σε

√
1 +m2

σ̄

karb

x

L
(T 4 − T 4

a ).

(6.2.9)

Case 3: Convex parabolic pin fin(
x

L
+ 2ϵ2

)
ρCp

ka

∂T

∂t
= (1 + α∗(T − Ta))

(x
L
+ 2ϵ2

) ∂2T
∂x2

+ α∗
(x
L
+ 2ϵ2

)(
∂T

∂x

)2

+
(1 + α∗(T − Ta))

L

(
1 + 2

(x
L

) 1
2 mσ̄L

rb

)
∂T

∂x
+
ρCpŪ

ka

(x
L
+ 2ϵ2

) ∂T
∂x

− 2ρgKβfCp

√
1 +m2

σ̄

νfkarb

(x
L

) 1
2
(T − Ta)

2 − 2σε
√
1 +m2

σ̄

karb

(x
L

) 1
2
(T 4 − T 4

a )

− 2halfg(ω̄ − ω̄s)
√

1 +m2
σ̄(1− ϕ̂)

karbCpLe
2
3

(x
L

) 1
2 (T − Ta)

m

(Tb − Ta)m

− 2ha(1− ϕ̂)
√

1 +m2
σ̄

karb

(x
L

) 1
2 (T − Ta)

m+1

(Tb − Ta)m
. (6.2.10)

The initial and boundary conditions for the modelled problem are given by,

T (x, 0) = 0, T (L, t) = Tb,
∂

∂x
T (0, t) = 0. (6.2.11)

Consider the following dimensionless parameters,

θ =
T

Tb
, θa =

Ta
Tb
, X =

x

L
. (6.2.12)

Employing the equation (6.2.12), the equations (6.2.8) to (6.2.10) reduce to second order

nonlinear non-dimensionalized PDEs given by,
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Case 1: Cylindrical pin fin

(1 + 2ϵ2)
∂θ

∂τ
= (1 + A(θ − θa)) (1 + 2ϵ2)

∂2θ

∂X2
+ (1 + A(θ − θa))

2mσ̄

ψ∗
∂θ

∂X

+ A(1 + 2ϵ2)

(
∂θ

∂X

)2

− Nc

ψ∗2

√
1 +m2

σ̄(θ − θa)
2 − Nr

ψ∗2

√
1 +m2

σ̄(θ
4 − θ4a)

− m2

ψ∗2

√
1 +m2

σ̄

(θ − θa)
m+1

(1− θa)m
+
Pe

ψ∗ (1 + 2ϵ2)
∂θ

∂X
(6.2.13)

Case 2: Conical pin fin

(X2 + 2ϵ2)
∂θ

∂τ
= (1 + A(θ − θa)) (X

2 + 2ϵ2)
∂2θ

∂X2
+ A(X2 + 2ϵ2)

(
∂θ

∂X

)2

+ (1 + A(θ − θa)) 2X

(
1 +

mσ̄

ψ∗

)
∂θ

∂X
− Nc

ψ∗2X
√

1 +m2
σ̄(θ − θa)

2

− Nr

ψ∗2X
√

1 +m2
σ̄(θ

4 − θ4a)−
m2

ψ∗2X
√
1 +m2

σ̄

(θ − θa)
m+1

(1− θa)m

+
Pe

ψ∗ (X
2 + 2ϵ2)

∂θ

∂X
(6.2.14)

Case 3: Convex parabolic pin fin

(X + 2ϵ2)
∂θ

∂τ
= (1 + A(θ − θa)) (X + 2ϵ2)

∂2θ

∂X2
+ A(X + 2ϵ2)

(
∂θ

∂X

)2

+ (1 + A(θ − θa))

(
1 + 2X

1
2
mσ̄

ψ∗

)
∂θ

∂X
− Nc

ψ∗2X
1
2

√
1 +m2

σ̄(θ − θa)
2

− Nr

ψ∗2X
1
2

√
1 +m2

σ̄(θ
4 − θ4a)−

m2

ψ∗2X
1
2

√
1 +m2

σ̄

(θ − θa)
m+1

(1− θa)m

+
Pe

ψ∗ (X + 2ϵ2)
∂θ

∂X
(6.2.15)

Here, τ = ka
ρCpL2 t is the dimensionless time, A = α∗Tb is the dimensionless measure of

variation of thermal conductivity with temperature, ψ∗ = rb
L
is the base radius to length

ratio, Nc =
2ρgKβfCpTbrb

νfka
is the convective parameter, Nr =

2σεrbT
3
b

ka
is the radiative pa-

rameter, m0 =
2harb(1−ϕ̂)

ka
, m1 =

2halfg(1−ϕ̂)b2rb

kaCpLe
2
3

, m2 = m0+m1 is the wet porous parameter,
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Pe = ρCpŪrb
ka

is the Peclet number.

The associated initial and boundary conditions are given by,

θ(X, 0) = 0, θ(1, τ) = 1,
∂

∂X
θ(0, τ) = 0. (6.2.16)

6.2.2 Scrutinization of Fin Efficiency

Fin efficiency is one of the important parameters in studying the performance of fin

structures. The fin efficiency is calculated as,

η =
Qf

Qideal

. (6.2.17)

Here, Qf is the heat transfer through the fin,

Qf =

∫ L

0


(

halfgb2(1−ϕ̂)P̄

CpLe
2
3

+ (1− ϕ̂)haP̄

)
(T−Ta)m+1

(Tb−Ta)m

+σεP̄ (T 4 − T 4
a ) +

ρCpgKβf P̄

νf
(T − T 2

a )

 dx. (6.2.18)

and Qideal is the heat transfer through the fin when the entire fin surface is maintained

at the base temperature,

Qideal =

∫ L

0


(

halfgb2(1−ϕ̂)P̄

CpLe
2
3

+ (1− ϕ̂)haP̄

)
(Tb − Ta)

+σεP̄ (T 4
b − T 4

a ) +
ρCpgKβf P̄

νf
(Tb − T 2

a )

 dx. (6.2.19)

Thus, the dimensionless form of the fin efficiency is given by,

Case 1: Cylindrical pin fin

η =

∫ 1

0

[
m2

(θ−θa)m+1

(1−θa)m
+Nr(θ4 − θ4a) +Nc(θ − θa)

2
]
dX

m2(1− θa) +Nr(1− θ4a) +Nc(1− θ2a)
. (6.2.20)

Case 2: Conical pin fin

η =

∫ 1

0

[
m2

(θ−θa)m+1

(1−θa)m
+Nr(θ4 − θ4a) +Nc(θ − θa)

2
]
XdX

[m2(1− θa) +Nr(1− θ4a) +Nc(1− θ2a)]
∫ 1

0
XdX

. (6.2.21)

Case 3: Convex parabolic pin fin

η =

∫ 1

0

[
m2

(θ−θa)m+1

(1−θa)m
+Nr(θ4 − θ4a) +Nc(θ − θa)

2
]
X

1
2dX

[m2(1− θa) +Nr(1− θ4a) +Nc(1− θ2a)]
∫ 1

0
X

1
2dX

. (6.2.22)
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6.3 Numerical Elucidation

The second order nonlinear parabolic PDEs (6.2.13) − (6.2.15) and their corresponding

initial and boundary conditions as in equation (6.2.16) are the concerned equations. Using

the FDM with centered-implicit scheme the solution of the PDEs have been found via the

Maple software. The detailed procedure is explained in section (2.3). The results of the

present investigation for both the PDEs have been extracted by setting ∆X = 0.005 and

∆τ = 0.005.

6.4 Deliberation of Results

In this section, the significance of relevant parameters on the energy profile θ(X, τ) and fin

efficiency η are discussed with the help of graphs. The constant values taken throughout

the study are: Nc = 0.05, Nr = 0.05,m2 = 0.01, P e = 0.1, τ = 1, ψ∗ = 0.10, A = 0.1, ϵ =

0.15,m = 2 and θa = 0.1.

Figure 6.2 (a-c) depicts the temperature field of moving cylindrical, conical and con-

vex parabolic rough micro-pin fin structures upon variation of relative surface roughness

parameter ϵ. A negative impact on the thermal drop rate can be observed from the de-

piction. The higher the roughness lower is the thermal drop rate and hence the fin cools

down slower.

To have a better grasp of the role of thermal conductivity parameter A in the cooling

process of the fin, its impact on temperature profiles of rough micro-pin fin structures is

represented in figure 6.3 (a-c). It is noted that the fin surface temperature elevates with

escalating values of parameter A. This can be explained in the following way. The higher

the thermal conductivity parameter stronger is the relation between thermal conductivity
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k and local fin temperature T . Thus, with an increase in A value, the average thermal

conductivity of the fin increases inducing a higher rate of heat conduction in the fin. This

causes better temperature distribution along the axial direction of the pin fin resulting in

increased fin surface temperature. Hence, for a higher thermal drop rate, lower values of

A are preferable. Besides, the three considered pin fin structures are affected in the same

trend.

Figure 6.4 (a-c) captures the transient thermal performance of rough cylindrical, coni-

cal and convex parabolic micro-pin fin structures for different values of dimensionless time

τ . It can be noted that the thermal profile flattens with time and the variations are signif-

icant only at the initial stage. This is because, when τ = 0 the fin base temperature is the

same as the surrounding temperature and with an increase in time, the base temperature

rises resulting in a rise in fin surface temperature. Initially, the fin temperature rises as

per elevation in base temperature and after a certain stage, the local fin temperature

remains constant with time i.e., the steady-state is achieved. On the other hand, all three

pin fins are affected in an analogous manner.

The energy fields of rough cylindrical, conical and convex parabolic micro-pin fin

structures for distinct values of the wet porous parameter m2 have been plotted in figure

6.5 (a-c). It can be observed that the wet porous parameter has a positive impact on

the fin heat transfer rate. The parameter m2 accounts for both the porosity of the fin

material and the wet condition around the fin. Further, an upsurge in porosity increases

the surface area of the fin and wet nature causes more absorption of heat from the fin

surface leading to increased heat loss through convective-radiative ejections. Thus, higher

values of m2 enhance the fin cooling process. Besides, rough micro-fin structures have a

higher thermal drop rate than smooth ones.
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Figure 6.6 (a-c) portrays the temperature field of three different rough micro-pin fin

profiles for distinct values of the base radius to length ratio ψ∗. According to the figure,

the thermal profiles are steeper for the slender fin structures. Thus, with an increase in

the length of the pin fin or with the decrease in its radius, the fin surface temperature

drops faster leading to steeper profiles. Hence, the slender fin structures enhance the heat

transfer rate.

Figure 6.7 (a-c) and figure 6.8 (a-c) respectively highlight the effect of convective

parameter Nc and radiative parameter Nr on the energy profiles of three distinct rough

micro-pin fin structures. It can be noted that the ascending values of Nc enhance the fin

thermal drop rate. This is because the upsurge in Nc values increase the permeability

thereby increasing the fluid velocity through the solid fin matrix leading to heat loss due to

the buoyancy effect. On the other hand, it can be made out that the boosting values of Nr

cause a recession in the fin surface temperature along the axial fin direction. The reason

is an increased heat loss through the mechanism of radiation. Thus, the escalating values

of Nc and Nr aid to the fin cooling process. Besides, the effect of radiative parameter

and convective parameter on all three micro-pin fin profiles is analogous.

The results in figure 6.9 (a-c) provided for the exponential index m associated with the

heat transfer coefficient h decipher that, ascending values of m enhance the temperature

distribution towards the fin tip. Here, m = 0 and m = 1 represent the linear case whereas

m = 2 represents the nonlinear case. From the equation of h(T ) it can be deciphered

that as the m values transit from 0 to 2, the value of h descends from the value of ha

causing a negative impact on the transfer of heat through convection. Thus, it gives rise

to higher fin surface temperature and lesser heat transfer rate. Hence, for quicker fin

cooling m values must be at a minimum. Further, the effect of m is similar on all three
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rough micro-pin fin profiles.

The effect of ambient temperature θa on θ(X, τ) is depicted in figure 6.10 (a-c). In all

the three cases like cylindrical, conical and convex parabolic rough micro fin structures,

an increase in the θa value increases the fin surface temperature leading to flatter thermal

profiles. This can be explained as follows. According to the Newton’s law of cooling and

the Stefan Boltzmann’s law, the heat transfer rate is a strong function of the temperature

gap between the bodies. Thus, the lower the ambient temperature, the more is the

gap between the fin surface temperature and the surrounding. This induces increased

heat loss through convective and radiative mechanisms leading to a decrease in local fin

temperature. Thus, lower values of ambient temperature are preferred in the fin cooling

process.

Figure 6.11 (a-c) depicts the impact of Peclet number Pe on the thermal profiles of

cylindrical, conical and convex parabolic micro pin-fin profiles. It can be observed that

the local fin temperature elevates with the hike in the values of Pe. This is due to the

decrease in exposure time of ambient fluid with the fin surface area resulting in lesser heat

transmission through convection and radiation. Thus, lower values of Peclet number are

preferred for the heat transmission enhancement via fin structures.

The consequences of surface roughness parameter ϵ and dimensionless time τ on the

thermal efficiency of cylindrical, conical and convex parabolic micro-pin fin structures have

been investigated in figure 6.12. It is shown that elevated values of roughness parameter

have a positive impact on the efficiency of fin structures. This can be reasoned as follows.

As per fin efficiency definition, it can be interpreted that the structures with surface

temperature equal to the base temperature are efficient than those with a lesser surface

temperature. As the increase in surface roughness causes a rise in fin surface temperature
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directing towards more efficient fin structures. Thus, smooth micro-pin fin structures are

less efficient than rough ones. On the other hand, the behaviour of fin efficiency with

dimensionless time has also been demonstrated in the figure. Initially, at τ = 0 the fin

efficiency is zero as there is no heat flow within the fin. Then with the ascending time

parameter, the base temperature rises sharply, and the heat starts flowing through the fin

resulting in a sharp upliftment in the fin efficiency. Eventually, the fin efficiency achieves

a steady state.

Figure 6.13 presents the efficiency of all three distinct rough micro-pin fin structures

upon variation of thermal conductivity parameter A and base radius to length ratio ψ∗.

It is indicated that the upsurge in the values of thermal conductivity parameter A and

the ratio ψ∗, leads to increased fin efficiency. This is expected as the rise in parameters

A and ψ∗ induce improved distribution of temperature along the fin length. Thus the

surface temperature of the pin fin increases leading to increased fin efficiency. Thus,

slender micro-pin fin structures with higher thermal conductivity are efficient than their

counterparts.

Figure 6.14 brings out the efficiency of three distinct profiled rough micro-pin fin

structures for diverse values of convective parameter Nc and radiative parameter Nr.

It can be noted that with increment in the parameters Nc and Nr the fin efficiency has

declined for all three rough fin structures. This is due to subsiding fin surface temperature

towards the tip of the fin for escalating values of the considered parameters. Thus, for

achieving higher fin efficiency the values of Nc and Nr must be curtailed.

Figure 6.15 presents the efficiency of all three distinct rough micro-pin fin structures

upon variation of wet porous parameter m2 and Peclet number Pe. It is indicated that

the upsurge in the values of wet porous parameter m2 leads to decrease in efficiency and
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elevation in the values of Peclet number Pe, leads to increase in fin efficiency. This is

expected as the rise in parameterm2 decreases the fin temperature whereas the hike in the

parameter Pe induce improved distribution of temperature along the fin length. Thus the

parameter m2 causes a decrease in the fin temperature resulting in reduced efficiency of

fin structures whereas the parameter Pe results in an increase in the surface temperature

of the pin fin leading to increased fin efficiency.

Futher in all the figures from (6.12) to (6.15), it can be observed that efficiency of

conical profile is the highest followed by convex parabolic and cylindrical micro pin-fin

profiles.

6.5 Denouement

The convective-radiative cylindrical, conical and convex parabolic micro-pin fin structures

of smooth and rough surfaces subject to motion have been numerically investigated under

unsteady conditions. The following conclusions have been derived. The moving pin fin

structures with a smooth surface have more thermal drop rate than those with a rough

surface. The heat exchange process is driven by the radiative and convective surroundings

at the expense of fin efficiency. The porous fin material and the humidity around fin sur-

face accelerate the temperature decline. The surrounding temperature and the exponent

related to the coefficient of heat transfer negatively affect the fin heat transfer rate. The

thin and long pin fin structures have higher thermal drop rate whereas the thick and short

ones are more efficient. The elevation in thermal conductivity with local fin temperature

enhances the temperature distribution in the micro-pin fin. Further, it promotes the fin

efficiency. The rough micro-pin fin structures are found more efficient than the smooth

ones. Fin efficiency increases with time to a certain extent after which it attains a steady
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state. Fin efficiency as well as its temperature field achieve higher values with ascending

values of Peclet number. The efficiency of conical pin fin is the highest followed by that

of convex parabolic and cylindrical ones.

(a)

(b) (c)

Figure 6.2: Plot of fin temperature values for distinct values of roughness parameter ϵ.

.
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(a)

(b) (c)

Figure 6.3: Plot of fin temperature values for distinct values of thermal conductivity

parameter A.

.
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(a)

(b) (c)

Figure 6.4: Plot of fin temperature values for distinct values of dimensionless time τ .

.
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(a)

(b) (c)

Figure 6.5: Plot of fin temperature values for distinct values of wet porous parameter m2.

.

116



Chapter-6: Role of Surface Roughness on the Transient Thermal . . .

(a)

(b) (c)

Figure 6.6: Plot of fin temperature values for distinct values of base radius to length ratio

ψ∗.

.
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(a)

(b) (c)

Figure 6.7: Plot of fin temperature values for distinct values of convective parameter Nc.

.

118



Chapter-6: Role of Surface Roughness on the Transient Thermal . . .

(a)

(b) (c)

Figure 6.8: Plot of fin temperature values for distinct values of radiative parameter Nr.

.
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(a)

(b) (c)

Figure 6.9: Plot of fin temperature values for distinct values of exponential index m.

.
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(a)

(b) (c)

Figure 6.10: Plot of fin temperature values for distinct values of dimensionless ambient

temperature θa.

.
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(a)

(b) (c)

Figure 6.11: Plot of fin temperature values for distinct values of Peclet number Pe.

.
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Figure 6.12: Fin efficiency as a function of roughness parameter ϵ and dimensionless time

τ .

Figure 6.13: Fin efficiency as a function of thermal conductivity parameter A and base

radius to length ratio ψ∗.

123



Chapter-6: Role of Surface Roughness on the Transient Thermal . . .

Figure 6.14: Fin efficiency as a function of convective parameter Nc and radiative param-

eter Nr.

Figure 6.15: Fin efficiency as a function of Peclet number Pe and wet porous parameter

m2.
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Chapter 7

Numerical Investigation of Transient
Thermal Behaviour of Moving
Semi-Spherical Fin of Functionally
Graded Material

7.1 Prelims

A variety of engineering applications demand efficient and adaptable fin structures for the

intensification of heat exchange. The semi-spherical fin structures are useful in the field of

refrigeration, chemical processing systems, aerospace etc. In this regard, the present chap-

ter numerically investigates the transient thermal behaviour of a fully wet semi-spherical

fin composed of functionally graded material (FGM). The study incorporates the Darcy

model as the fin is made up of porous material. Further, the fin is exposed to convective-

radiative heat exchange and is subject to uniform motion. The heat balance equation has

been reduced to get a nonlinear PDE which is computed by employing the FDM. The

dimensionless terms are grouped together and their influence on the temperature distri-

bution in a semi-spherical fin is studied. The transient fin efficiency has been modelled

and its variation with relevant parameters has been graphically depicted. And these are

found to be greatly affected by Peclet number, wet porous nature and dimensionless time.
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As a main outcome the semi-spherical fin efficiency is positively influenced by the Peclet

number.

7.2 Modeling and Interpretation

7.2.1 Heat Transfer

Figure 7.1: Geometrical representation of a functionally graded semi-spherical fin.

Consider a semi-spherical fin of radius R∗ mounted on a prime surface of temperature

Tb whose physical layout is as pictured in figure 7.1. The fin is fully wetted in a single-

phase fluid which also acts as a heat sink with temperature Ta for convective-radiative

heat exchanges. The fluid’s movement through the pores of the fin and its interaction

with the solid surface is governed by the Darcy’s law. Further, the fin is subject to motion

in the horizontal direction with uniform velocity Ū which can also be interpreted as the

flow of a fluid across the stationary fin with a uniform velocity Ū . The fin material is

an FGM with thermal conductivity as a function of spatial coordinate x. The variation

in thermal conductivity can be controlled by the grading parameter a. Initially fin is in

thermal equilibrium with the ambient fluid and at time t ≥ 0, there is a step change in
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the temperature and the fin base attains the temperature Tb from Ta. Further the fin tip

is considered to be of adiabatic type.

It can be observed from figure 7.1 that the moving fluid’s interaction with the fin surface

is relative to the shape of the fin. Hence, the heat transfer equation for a moving semi-

spherical fin under unsteady conditions is given by,

ρCpAc
∂T

∂t
=

d

dx

(
k(x)Ac

dT

dx

)
− 2πrh(1− ϕ̂)(T − Ta)− 2πrhD(1− ϕ̂)(ω̄ − ω̄s)

− 2πrρv̄(x)Cp(T − Ta)− 2σεπr(T 4 − T 4
a )− ρCpŪAc

dT

dx
. (7.2.1)

The cross-sectional area of a semi-spherical fin is given by,

Ac = π(R∗2 − x2). (7.2.2)

Depending on the variation of thermal conductivity along the x−axis i.e., k(x), three

types of FGMs can be defined namely:

Case 1: Linear FGM

k(x) = k0(1 + ax). (7.2.3)

Case 2: Quadratic FGM

k(x) = k0(1 + ax2). (7.2.4)

Case 3: Exponential FGM

k(x) = k0e
ax, (7.2.5)

where, a is the grading parameter of thermal conductivity.

For three different FGMs the energy equation for a moving semi-spherical fin in equation

(7.2.1) by utilizing equations (1.2.6) and (1.2.9) along with the equations (7.2.2) to (7.2.5)
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reduces to,

Case 1: Linear FGM

ρCpR
∗2

k0

∂T

∂t
= (1 + ax)(R∗2 − x2)

d2T

dx2
+
[
a(R∗2 − x2)− 2x(1 + ax)

] dT
dx

− ρCpŪ(R
∗2 − x2)

k0

dT

dx
− 2ha(1− ϕ̂)

√
R∗2 − x2

k0

(T − Ta)
m+1

(Tb − Ta)m

− 2ρgKβfCp

√
R∗2 − x2(T − Ta)

2

νfk0
− 2σε

√
R∗2 − x2(T 4 − T 4

a )

k0

− 2ha(1− ϕ̂)lfg
√
R∗2 − x2(ω̄ − ω̄s)

k0CpLe
2
3

(T − Ta)
m

(Tb − Ta)m
. (7.2.6)

Case 2: Quadratic FGM

ρCpR
∗2

k0

∂T

∂t
= (1 + ax2)(R∗2 − x2)

d2T

dx2
+ [2ax(R∗2 − x2)− 2x(1 + ax2)]

dT

dx

− ρCpŪ(R
∗2 − x2)

k0

dT

dx
− 2ha(1− ϕ̂)

√
R∗2 − x2

k0

(T − Ta)
m+1

(Tb − Ta)m

− 2ρgKβfCp

√
R∗2 − x2(T − Ta)

2

νfk0
− 2σε

√
R∗2 − x2(T 4 − T 4

a )

k0

− 2ha(1− ϕ̂)lfg
√
R∗2 − x2(ω̄ − ω̄s)

k0CpLe
2
3

(T − Ta)
m

(Tb − Ta)m
. (7.2.7)

Case 3: Exponential FGM

ρCpR
∗2

k0

∂T

∂t
= eax(R∗2 − x2)

d2T

dx2
+ [aeax(R∗2 − x2)− 2xeax]

dT

dx

− ρCpŪ(R
∗2 − x2)

k0

dT

dx
− 2ha(1− ϕ̂)

√
R∗2 − x2

k0

(T − Ta)
m+1

(Tb − Ta)m

− 2ρgKβfCp

√
R∗2 − x2(T − Ta)

2

νfk0
− 2σε

√
R∗2 − x2(T 4 − T 4

a )

k0

− 2ha(1− ϕ̂)lfg
√
R∗2 − x2(ω̄ − ω̄s)

k0CpLe
2
3

(T − Ta)
m

(Tb − Ta)m
. (7.2.8)
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The following are the corresponding initial and boundary conditions,

T (x, 0) = 0, T (0, t) = Tb,
∂

∂x
T (R∗, t) = 0. (7.2.9)

The following are dimensionless quantities utilized for non-dimensionalising the energy

equation.

X =
x

R∗ , θ =
T

Tb
, θa =

Ta
Tb
, τ =

k0
ρCpR∗2 t, Nc =

2ρgKβfCpTbR
∗

νfk0
, Nr =

2σεR∗T 3
b

k0
,

ω̄ − ω̄s = b2(T − Ta),m0 =
2haR

∗(1− ϕ̂)

k0
,m1 =

2halfg(1− ϕ̂)b2R
∗

k0CpLe
2
3

,m2 = m0 +m1,

β = aR∗, α = aR∗2, P e =
ρCpŪR

∗

k0
. (7.2.10)

Here, Nr is the radiative term related to radiative heat transfer, Nc is the convective

term related to buoyancy effect, m2 is the wet porous term related to wet and porous

nature of fin, β and α are in-homogeneity indices related to grading parameter of thermal

conductivity and Pe is the Peclet number related to speed of fin movement.

Substituting the above equation (7.2.10) in equations (7.2.6)-(7.2.8) one respectively gets,

Case 1: Linear FGM

∂θ

∂τ
= (1 + βX)(1−X2)

∂2θ

∂X2
+ (β − 2X − 3βX2)

∂θ

∂X
−Nr

√
(1−X2)(θ4 − θ4a)

−Nc
√

(1−X2)(θ − θa)
2 −m2

√
(1−X2)

(θ − θa)
m+1

(1− θa)m
− Pe(1−X2)

∂θ

∂X
.

(7.2.11)

Case 2: Quadratic FGM

∂θ

∂τ
= (1 + αX2)(1−X2)

d2θ

dX2
+ (2αX − 2X − 4αX3)

dθ

dX
−Nr

√
(1−X2)(θ4 − θ4a)

−Nc
√

(1−X2)(θ − θa)
2 −m2

√
(1−X2)

(θ − θa)
m+1

(1− θa)m
− Pe(1−X2)

∂θ

∂X
.

(7.2.12)
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Case 3: Exponential FGM

∂θ

∂τ
= eβX(1−X2)

d2θ

dX2
+ (β − 2X − βX2)eβX

dθ

dX
−Nr

√
(1−X2)(θ4 − θ4a)

−Nc
√

(1−X2)(θ − θa)
2 −m2

√
(1−X2)

(θ − θa)
m+1

(1− θa)m
− Pe(1−X2)

∂θ

∂X
.

(7.2.13)

The reduced initial and boundary conditions are given by,

θ(X, 0) = 0, θ(0, τ) = 1,
∂

∂X
θ(1, τ) = 0. (7.2.14)

7.2.2 Thermal Efficiency Analysis

The thermal efficiency is heat flux through the fin versus ideal heat flux rate. It is

calculated as,

η =
Qf

Qideal

. (7.2.15)

The heat flux rate through the fin is given by,

Qf =

∫ R∗

0


2πρgKβfCp

√
R∗2−x2

νf
(T − Ta)

2 + 2σεπ
√
R∗2 − x2(T 4 − T 4

a )

+ha2π(1− ϕ̂)
√
R∗2 − x2 (T−Ta)m+1

(Tb−Ta)m
+

ha2πb2lfg(1−ϕ̂)
√
R∗2−x2

CpLe
2
3

(T−Ta)m+1

(Tb−Ta)m

 dx.
(7.2.16)

The heat flux rate through an ideal fin is given by,

Qideal =


2πρgKβfCp

νf
(Tb − Ta)

2 + 2σεπ(T 4
b − T 4

a )

+ha2π(1− ϕ̂)(Tb − Ta) +
ha2πb2lfg(1−ϕ̂)

CpLe
2
3

(Tb − Ta)

∫ R

0

√
R2 − x2dx.

(7.2.17)

In dimensionless form the thermal fin efficiency is given by,

η =

∫ 1

0

[
Nc(θ − θa)

2
√
1−X2 +m2

√
1−X2 (θ−θa)m+1

(1−θa)m
+Nr

√
1−X2(θ4 − θ4a)

]
dX

[Nc(1− θa)2 +m2(1− θa) +Nr(1− θ4a)]
∫ 1

0

√
1−X2dX

.

(7.2.18)
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7.3 Numerical Elucidation

The second order nonlinear parabolic PDEs (7.2.11), (7.2.12) and (7.2.13) along with their

corresponding initial and boundary conditions as in equation (7.2.14) are the concerned

equations. Using the FDM with centered-implicit scheme the solution of the PDEs has

been found via the Maple software. The detailed procedure is explained in section (2.3).

The results of the present investigation have been extracted by setting ∆X = 0.008 and

∆τ = 0.001.

7.4 Deliberation of Results

The response of linear, quadratic, and exponential semi-spherical FGM fin structures

for variation in significant parameters has been represented via graphs by numerically

analysing the equations (7.2.11)-(7.2.13). The contant values presumed throughout the

study are: Nc = 1, Nr = 1,m2 = 1,m = 2, θa = 0.2, P e = 1, α = 0.2, τ = 1 and β = 0.2.

Figure 7.2 (a-c) depicts the thermal field of linear, quadratic, and exponential FGM fin

structures for a range of power index m related to the heat flow coefficient of convection

h. Considering the linear FGM case, it can be clearly noted that the thermal curves are

flatter with rise in m values. Here, m = 0 and m ̸= 0 correspond to linear and non-

linear variation of heat flow coefficient with fin temperature. As the nonlinearity in the

relationship increases the value of h decreases from its value at ambient temperature i.e,

ha leading to decreased heat loss through convection. Thus, a linear relationship between

m and h results in lower tip temperatures. Further, the quadratic and exponential FGM

cases can be similarly explained.

The thermal attribute of three FGM fin structures for distinct values of radiation
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parameter Nr has been represented in figure 7.3 (a-c). The figure dictates that there is a

decrease in fin temperature with rise in Nr values. This can be explained as follows. The

ratio of heat flow through radiation to that through conduction is taken as the radiative

parameter Nr. Hence, as Nr value rises the heat flow through radiation is more than

that through conduction resulting in a decrease in fin temperature. Further, the variation

in all three cases has a similar explanation.

Figure 7.4 (a-c) reveals the variation in the temperature profile of three considered

semi-spherical FGM fin structures for a range of the convective parameter Nc. It can be

observed that the temperature curve rises with a downfall in Nc values. This is because

the parameter Nc reflects the strength of convection heat flow against conduction heat

flow and as Nc values move from 1 to 3 convection mode of heat flow becomes stronger

resulting in a reduction in fin temperature. Thus, the hike in the convective parameter

results in a decrease in fin tip temperature. Further, in all three cases of FGM fin similar

trend is followed.

As pictured in figure 7.5 (a-c), the dimensionless ambient temperature θa has a signif-

icant impact on the temperature curves of the three distinct FGM fin structures. Here,

θa is the ratio of surrounding temperature to temperature at the fin base and it has a

positive impact on the fin temperature. This is because convective heat flow is governed

by Newton’s law of cooling which says heat flow rate is directly dependent on the tem-

perature difference. Thus, a rise in θa values imply a rise in ambient temperature as

compared to base temperature resulting in a decrease in temperature difference. This

leads to decrease in convective heat loss and rise in fin temperature. Thus, minimum θa

helps in the cooling process of the fin. Besides, the discussion holds true for all three

kinds of FGM fin structures.
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The temperature distribution in three distinct semi-spherical FGM fin structures for

various values of Peclet number Pe has been captured in figure 7.6 (a-c). The Peclet

number is associated with the fin motion and the sketch in linear case deciphers that

the temperature distribution in the fin is positively influenced by the Peclet number.

This phenomenon can be justified as follows. The ascending values of the Peclet number

represent a jump in the speed of fin. As fin movement gains velocity, the interaction

between the ambient fluid and the solid fin surface is given less time for convective heat

flow leading to higher values of fin temperature. Thus, for a higher heat flow rate, the

Peclet number should be minimized. For the other two cases of semi-spherical FGM fin,

a similar explanation holds good.

Figure 7.7 (a-c) reveals the influence of the in-homogeneity index α, β on the tem-

perature distribution of semi-spherical fin structures of linear, quadratic, and exponential

FGM. It can be noted that steeper curves have appeared for lower values of the index.

The reasoning for the linear case is as follows. The in-homogeneity index is associated

with the grading parameter of thermal conductivity. Hence ascending value of the index

implies elevation in the grading parameter which results in a hike in thermal conductivity

of the fin. Thus, on an average the thermal conductivity will be more in the case of high

in-homogeneity index which causes increased conduction leading to high fin temperature.

The other two cases can be satisfactorily explained using a similar explanation.

The temperature distribution in a semi-spherical fin with time (dimensionless) τ has

been captured in figure 7.8 (a-c). The fin surface temperature rises with time, but the

variances are only noticeable at first. This is due to the fact that initially there is no

difference in temperature between the fin base and the surrounding. But, as time passes,

the heat enters the fin structure via the base causing the local fin temperature to rise.
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Gradually with rise in base temperature the heat conduction through the fin picks up

resulting in a rise in the fin temperature, but after a certain point, the temperature curve

becomes parallel to the x-axis, indicating that the steady-state has been reached.

The wet porous parameter (m2)’s impact on the temperature curve of a semi-spherical

fin has been revealed in figure 7.9 (a-c). The wet porous characteristic, as can be observed,

has a favourable influence on the fin heat flow rate. The m2 takes into consideration the

porosity of the fin material along with the humidity near the fin surface. Furthermore,

an increase in porosity increases the fin’s surface area, and the wet condition of the

fin promotes greater heat absorption from the surface, resulting in higher heat loss via

convective-radiative ejections. As a result, greater m2 values improve the fin cooling pro-

cess. Besides, with time the temperature curves are flatter indicating better temperature

distribution.

The function η(Nc,Nr) for three types of semi-spherical FGM fin structures has been

plotted in figure 7.10. The graph confers that the convective term Nc and the radiative

term Nr adversely affect the thermal efficiency. The highest efficiency is achievable only

if the entire fin surface temperature equals that at the base. That is only when the

temperature distribution is maximal. But as discussed earlier the Nc and Nr negatively

influence the temperature distribution resulting in lower fin temperatures. Further, in

all three cases, the curves behave similarly and hence a similar explanation holds good.

On the other hand, the exponential FGM fin has the highest efficiency and the quadratic

FGM fin has the least efficiency with the linear one in between the two. This is because in

exponential FGM fin the thermal conductivity varies exponentially with fin length leading

to better conduction of heat. Thus temperature distribution is enhanced and hence higher

efficiency is achieved. For a similar reason, linear FGM fin performs better than quadratic
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FGM fin.

The thermal efficiency η for the three considered semi-spherical FGM fin structures

with a simultaneous variation of Peclet number Pe and in-homogeneity index α, β has been

illustrated in figure 7.11. As indicated in the plot both Peclet number and in-homogeneity

index enhance the thermal efficiency. This is due to better temperature distribution with

hike in the values of Pe, α and β. Besides, all three FGM fin structures behave similarly.

Further, the exponential FGM fin performs better than the linear FGM fin at lower values

of Peclet number and they exchange their positions at higher values of Peclet number.

On the other hand, the quadratic FGM fin has the least efficiency compared to the other

two.

Figure 7.12 represents the efficiency of semi-spherical FGM fin for simultaneous varia-

tion of wet porous parameterm2 and dimensionless time τ . As pictured the characteristics

m2 degrades the fin efficiency. This is because, in order to achieve high efficiency the tem-

perature distribution in the fin must be equivalent to an ideal fin with T = Tb throughout

the fin structure. But the considered parameter reduces the local fin temperature leading

to improper distribution of temperature and this causes lower efficiency of the fin struc-

ture. On the other hand efficiency increases with time (dimensionless) τ in the beginning

and gradually become constant. This is because, at time τ equal to zero there is no heat

flow through fin due to zero thermal gradient and as time passes the base temperature

rises and heat enters the fin structure. Thus there is an increase in temperature distribu-

tion leading to elevation in efficiency and gradually with time the efficiency values become

constant indicating the achievement of steady state.
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7.5 Denouement

A moving semi-spherical fin made of FGM is the focus of the study. The fin structures

made of linear, exponential, and quadratic FGM have been comparatively analysed for

temperature distribution and thermal efficiency. The FDM has been employed, and the

computations have been graphically depicted and discussed. Listed below are the key

outcomes of the study:

� The lower tip temperatures were attained for ascending values of convective, radia-

tive and wet porous characteristics. The exponent m and the surrounding temper-

ature θa decelerate the fin cooling process.

� The increase in fin motion and thermal grading enhances the temperature distribu-

tion. Further, faster the fin movement and higher the thermal grading, higher is the

thermal efficiency.

� The exponential FGM fin is more efficient than the linear and quadratic FGM fin

structures except at higher values of Peclet number in which case the linear FGM

outperforms the other two.

� The temperature distribution and the thermal efficiency increase with time to a

certain extent and gradually attain the steady values.
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(a)

(b) (c)

Figure 7.2: Plot of fin temperature values for distinct values of exponential index m.

.
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(a)

(b) (c)

Figure 7.3: Plot of fin temperature values for distinct values of radiative parameter Nr.

.
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(a)

(b) (c)

Figure 7.4: Plot of fin temperature values for distinct values of convective parameter Nc.

.
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(a)

(b) (c)

Figure 7.5: Plot of fin temperature values for distinct values of ambient temperature θa.

.
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(a)

(b) (c)

Figure 7.6: Plot of fin temperature values for distinct values of Peclet number Pe.

.
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(a)

(b) (c)

Figure 7.7: Plot of fin temperature values for distinct values of in-homogeneity index α, β.

.

142



Chapter-7: Numerical Investigation of Transient Thermal Behaviour . . .

(a)

(b) (c)

Figure 7.8: Plot of fin temperature values for distinct values of dimensionless time τ .

.
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(a)

(b) (c)

Figure 7.9: Plot of fin temperature values for distinct values of wet porous parameter m2.

.
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Figure 7.10: Fin efficiency as a function of Nc and Nr.

Figure 7.11: Fin efficiency as a function of Pe and α, β.
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Figure 7.12: Fin efficiency as a function of m2 and τ .
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Chapter 8

Analysis of Entropy Generation in a
Longitudinal Fin Exposed to
Convection and Radiation

8.1 Prelims

A wet porous moving longitudinal fin composed of linear FGM has been chosen for the

analysis. The fin is allowed to stretch/shrink by mounting a mechanism similar to a con-

veyer belt. The thermal behaviour of the fin and its entropy generation in the presence of

convective-radiative heat transmission are the focus of the study. Further, three distinct

cases of FGM namely homogeneous, type I (higher thermal grading towards the fin base)

and type II (higher thermal grading towards the fin tip) have been comparatively inves-

tigated. The derived energy equation is a 2nd order nonlinear ODE and is solved with

the aid of the RKF45 method. The fin thermal profile, entropy generation profile, and

average entropy generation have been graphically analysed for the thermal conductivity

grading parameter, Peclet number, stretching/shrinking parameter, wet porous parame-

ter and other relevant parameters. The entropy generation along fin length as well as the

average entropy generated in a fin are discovered to be lowest in the case of homogeneous

fin structures followed by type I and type II FGM fin structures. The present investigation
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benefits the manufacture and design of FGM fin structures.

8.2 Modeling and Interpretation

A rectangular profiled longitudinal fin structure with dimensions as depicted in figure 8.1

has been considered for the current study. The fin is composed of functionally graded

porous material and is exposed to fully wet conditions. Thus, the fluid is allowed to

penetrate through the porous fin matrix and its interaction with the solid surface is

modelled by employing the Darcy’s law. Further, the fin is in contact with and receives

heat from a prime surface with temperature Tb and undergoes convective-radiative heat

transmission with the ambient fluid at temperature Ta. The fin is subject to motion with

a uniform velocity Ū and is allowed to stretch or shrink at a rate Ū(1+ s∗x) by mounting

a stretching/shrinking mechanism on its surface. The tip of the fin is assumed adiabatic

as there is negligible heat exchange through it when compared to the fin’s lateral surfaces.

Further, the temperature is assumed to vary only along the x− direction as pictured in

the figure 8.1 and hence the study is one-dimensional.

Figure 8.1: Schematic representation of rectangular profiled longitudinal fin.

Considering a small element dx in the fin the energy equation of the fin under steady
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conditions can be modelled as,

qx − qx+dx − ρv̄w(x)WCpdx(T − Ta)− σεWdx(T 4 − T 4
a )− ρCpŪ(1 + s∗x)Wtb

dT

dx

− h(T )Wdx(1− ϕ̂)(T − Ta)− hDWdxlfg(1− ϕ̂)(ω̄ − ω̄s) = 0. (8.2.1)

According to Fourier’s conduction law, the transfer of heat at distance x from the base is

given by,

q = −k(x)Wtb
dT

dx
. (8.2.2)

Utilizing equations (1.2.6), (1.2.9) and (8.2.2), the equation (8.2.1) resolves into,

tb
d

dx

[
k(x)

dT

dx

]
− ρgKβfCp

νf
(T − Ta)

2 − σϵ(T 4 − T 4
a )−

(1− ϕ̂)ha(T − Ta)
m+1

(Tb − Ta)m

− (1− ϕ̂)halfg(ω̄ − ω̄s)(T − Ta)
m

CpLe
2
3 (Tb − Ta)m

− ρCpŪ(1 + s∗x)tb
dT

dx
= 0.

(8.2.3)

In equation (8.2.3), k(x) is the thermal conductivity of the material dependent on the

axial coordinate x. With k0 being the thermal conductivity of the homogeneous material,

three different variations of k with x are considered namely:

Case 1: Homogeneous with k(x) = k0.

In this case, the fin material is homogeneous and the substitution of the above condition

in equation (8.2.3) results into,

d2T

dx2
− ρβfgKCp

k0tbνf
(T − Ta)

2 − (1− ϕ̂)ha(T − Ta)
m+1

k0tb(Tb − Ta)m
− σε

k0tb
(T 4 − T 4

a )

− (1− ϕ̂)lfg(ω̄ − ω̄s)ha(T − Ta)
m

CpLe
2
3k0tb(Tb − Ta)m

− ρCpŪ(1 + s∗x)

k0

dT

dx
= 0. (8.2.4)

Case 2: Type I FGM with k(x) = k0(1 + ax).

In this case, the thermal conductivity is k0 at the base of the fin structure and it increases
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towards the fin tip. The above condition resolves equation (8.2.3) into,

d2T

dx2
+ ax

d2T

dx2
+ a

dT

dx
− ρβfgKCp

k0tbνf
(T − Ta)

2 − (1− ϕ̂)ha(T − Ta)
m+1

k0tb(Tb − Ta)m

− (1− ϕ̂)lfg(ω̄ − ω̄s)ha(T − Ta)
m

CpLe
2
3k0tb(Tb − Ta)m

− ρCpŪ(1 + s∗x)

k0

dT

dx

− σε

k0tb
(T 4 − T 4

a ) = 0. (8.2.5)

Case 3: Type II FGM with k(x) = k0(1 + a(L− x)).

In this case, the thermal conductivity is k0 at the fin tip and it increases towards the base

of the fin. The above condition resolves equation (8.2.3) into,

d2T

dx2
+ a(L− x)

d2T

dx2
− a

dT

dx
− ρβfgKCp

k0tbνf
(T − Ta)

2 − (1− ϕ̂)ha(T − Ta)
m+1

k0tb(Tb − Ta)m

− (1− ϕ̂)lfg(ω̄ − ω̄s)ha(T − Ta)
m

CpLe
2
3k0tb(Tb − Ta)m

− ρCpŪ(1 + s∗x)

k0

dT

dx

− σε

k0tb
(T 4 − T 4

a ) = 0. (8.2.6)

The respective boundary conditions are given below,

T = Tb at x = 0,

dT

dx
= 0 at x = L. (8.2.7)

The following are the dimensionless parameters,

θ =
T

Tb
, θa =

Ta
Tb
, X =

x

L
, α = aL,m0 =

haL
2(1− ϕ̂)

k0tb
, Nc =

ρgβfKCpTbL
2

νfk0tb
,

m1 =
halfg(1− ϕ̂)b2L

2

k0tbCpLe
2
3

, Nr =
σεL2T 3

b

k0tb
,m2 = m0 +m1, P e =

ρCpŪL

k0
,

S = s∗L, ω̄ − ω̄s = b2(T − Ta). (8.2.8)
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Equations (8.2.4) to (8.2.6) upon non-dimensionalizing resolve into the following non-

linear ODEs,

Case 1: Homogeneous

d2θ

dX2
−Nr(θ4 − θ4a)−m2

(θ − θa)
m+1

(1− θa)m
−Nc(θ − θa)

2 − Pe(1 + SX)
dθ

dX
= 0.

(8.2.9)

Case 2: Type I FGM

d2θ

dX2
+ αX

d2θ

dX2
+ α

dθ

dX
−Nr(θ4 − θ4a)−m2

(θ − θa)
m+1

(1− θa)m
−Nc(θ − θa)

2

− Pe(1 + SX)
dθ

dX
= 0. (8.2.10)

Case 3: Type II FGM

d2θ

dX2
+ α(1−X)

d2θ

dX2
− α

dθ

dX
−Nr(θ4 − θ4a)−m2

(θ − θa)
m+1

(1− θa)m
−Nc(θ − θa)

2

− Pe(1 + SX)
dθ

dX
= 0. (8.2.11)

The respective dimensionless boundary conditions are,

θ(0) = 1,

dθ(1)

dX
= 0. (8.2.12)

8.3 Entropy Generation

Estimating the entropy generation in different fin structures exposed to various circum-

stances is one of the methods of assessing a fin’s performance. The entropy generation

equilibrium as per second law of thermodynamics can be written as,

n∑
i=1

Q̇

T
+

n∑
i=1

(m̄iṠi − m̄0Ṡ0) + Ṡgen =
dṠ

dt
. (8.3.1)
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Since the study is conducted under steady conditions, dṠ
dt

= 0. The above equation can

be further simplified by noting the input and output in control volume to get,

m̄i(Ṡi − Ṡ0) + Ṡgen +
qx
Tx

− qx+dx

Tx+dx

= 0. (8.3.2)

Considering pressure to be constant both in and out of the porous medium and assuming

air to be an ideal gas, the following expression can be extracted for Ṡi − Ṡ0,

Ṡi − Ṡ0 = −Cpln
T (x)

Ta
. (8.3.3)

Further it is known that,

qx+dx = qx −
∂qx
∂x

dx. (8.3.4)

Assuming T (x + dx) − T (x) ≈ 0 and substituting the above two equations in equation

(8.3.2) it results in,

−m̄Cpln
T (x)

Ta
+ Ṡgen +

qx
Tx

−
qx − ∂qx

∂x
dx

Tx+dx

= 0. (8.3.5)

The above equation upon simplifying gives,

Ṡgen = m̄Cpln
T (x)

Ta
− 1

T (x)

∂qx
∂x

dx. (8.3.6)

After substituting for qx and simplifying the above equation reduces to,

S ′′′
gen =

Ṡgen

Wtbdx
=
ρgβfKCp(T − Ta)

νf tb
ln

(
T

Ta

)
+

1

T (x)

d

dx

(
k(x)

dT

dx

)
. (8.3.7)

Further,

S ′′′
genL

2

k0
=
ρgβfKCp(T − Ta)L

2

k0νf tb
ln

(
T

Ta

)
+

L2

k0T (x)

d

dx

(
k(x)

dT

dx

)
. (8.3.8)

On substituting for k(x) and non-dimensionalizing we get,

Case 1: Homogeneous

Ns = Nc(θ − θa)ln

(
θ

θa

)
+

1

θ

d2θ

dX2
. (8.3.9)
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Case 2: Type I FGM

Ns = Nc(θ − θa)ln

(
θ

θa

)
+

1

θ

[
(1 + αX)

d2θ

dX2
+ α

dθ

dX

]
. (8.3.10)

Case 3: Type II FGM

Ns = Nc(θ − θa)ln

(
θ

θa

)
+

1

θ

[
(1 + α(1−X))

d2θ

dX2
− α

dθ

dX

]
. (8.3.11)

On substituting equations (8.2.4) to (8.2.6) respectively in equations (8.3.9) to (8.3.11)

all three equations get reduced to equation (8.3.12) given below.

Ns = Nc(θ − θa)

[
ln

(
θ

θa

)
+ 1− θa

θ

]
+
Nr

θ
(θ4 − θ4a) +m2

(θ − θa)
m+1

θ(1− θa)m

+
Pe(1 + SX)

θ

dθ

dX
. (8.3.12)

Average entropy production in the whole fin can be estimated as,

Nsavg =

∫ 1

0

Ns(X)dX. (8.3.13)

8.4 Numerical Elucidation

The nonlinear second order ODEs namely (8.2.9) to (8.2.11) with insulated boundary

condition in equation (8.2.12) have been solved by applying the RKF45 method. In the

present analysis, solutions are obtained for the step size 0.001 with the convergence criteria

set to 10−6.

8.5 Deliberation of Results

The numerical solutions for the ODEs in equations (8.2.9) to (8.2.11) were derived by

utilizing the RKF45 technique. Further these solutions were employed to estimate the

entropy generation in a fin given by equations (8.3.9) to (8.3.11) and average entropy
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generation in a fin given by equation (8.3.13). This section has been embedded with

the suitable discussions for the results derived by the graphical analysis of the obtained

solutions.

Figure 8.2 comparatively depicts the thermal conductivity variation in the fin material

composed of different types of FGMs for distinct values of grading parameter α. It can

be observed that there is no variation in thermal conductivity for homogeneous material,

the thermal conductivity increases with grading towards fin base for type I FGM and the

thermal conductivity increases with grading towards fin tip for type II FGM. But the

average thermal conductivity for both types of FGMs is found to be equal except that

the increase in thermal conductivity with grading differs by direction.

Figures 8.3 and 8.4 are of significance as they respectively picturize the comparison

of the thermal distribution and entropy generation in a fin composed of homogeneous

material against those made from type I and type II FGMs. It can be derived that both

the temperature distribution and the entropy generation along the fin length are highest

in the case of type II FGM fin and lowest in the case of homogeneous fin. Even though the

average thermal conductivity is same in both the cases of FGMs, the increased thermal

conductivity towards the fin tip encourages better distribution of temperature towards

the tip of the fin. Further the higher production of entropy in type II FGM can be

justified by the increased heat transmission within the fin. On the other hand, entropy

production rises with a rise in the thermal gradient of the fin structure and hence justifies

the increased entropy towards the fin base.

The impact of convective parameter Nc on the thermal profile and entropy generation

profile of fin structure made up of type I and type II FGMs has been comparatively

represented in figures 8.5 and 8.6 respectively. It can be noted that the fin temperature
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decreases, and entropy generation increases with an increase in the parameter Nc. This is

because, the parameter Nc accounts for convective heat transfer due to buoyancy effect.

Thus, as permeability of the fin structure increases, the penetrability of the ambient fluid

through the fin pores increases leading to increased convective heat transmission. Further,

the increased movement of heat and an increase in the temperature gradient towards the

fin base is the reason for higher entropy production towards the base of the fin structure

with the rise in the values of parameter Nc.

Figures 8.7 and 8.8 respectively illustrate the importance of radiative parameter Nr

in the thermal and entropy generation analysis of two distinct FGM fin structures. It

can be interpreted that fin temperature steeps down towards the fin tip and entropy

production elevates towards the fin base with an increase in the parameter Nr. Here,

the parameter Nr corresponds to ratio of radiative to conductive heat transfer. Thus,

enhancing values of Nr result in increased heat transmission via radiative heat transfer

as compared to conductive heat transfer. Thus, it results in lower thermal profiles of

fin structures. Further, the hike in the temperature difference towards the fin base with

escalating values of Nr result in increased entropy production at that area.

The prominence of wet porous parameter m2 in the variation of thermal field and

entropy production of two distinct types of FGM fin structures has been correspondingly

represented in figures 8.9 and 8.10. It can be deciphered that the parameter m2 has a

negative influence on temperature distribution towards the fin tip and positive influence

on generation of entropy. This can be interpreted as follows. The parameter m2 accounts

for the porosity and wet nature around the fin structure and hence as it elevates there

is increase in the convective heat transmission process resulting in decrease in local fin

temperature. Further, this also causes elevation in the temperature gradient towards fin
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base leading to increased production of entropy.

Figures 8.11 and 8.12 correspondingly capture the effect of Peclet number Pe on the

thermal and entropy fields of type I and type II FGM fin structures. The figures depict

the increase in local fin temperature and decrease in generation of entropy for both the

kinds of fin structures. Here, Peclet number relates to fin movement and elevation in its

values result in faster movement of fin resulting in decrease in time for interaction between

ambient fluid and solid fin surface for the process of convective heat transmission. Thus,

it results in decreased heat transmission via convection leading to increased local fin

temperature. Further, as rise in the values of the Peclet number Pe decreases the thermal

gradient values, there is a decrease in the production of entropy.

Figures 8.13 and 8.14 respectively picturize the variations in the thermal and entropy

generation profiles of distinct FGM longitudinal fin structures for different values of the

thermal conductivity grading parameter α. In general, as α value increases, there is

elevation in the local temperature and entropy production in both type I and type II

FGM fin structures. This is because the accelerating α values enhance the fin materials’

average thermal conductivity resulting in better temperature distribution towards the tip

of the fin and lead to enhanced values of temperature. Further, the increase in α values

enhance the movement of heat throughout the fin structure leading to increased entropy

production.

The energy field and entropy generation profile of type I and type II FGM fin structures

for distinct values of ambient temperature θa has been illustrated in figure 8.15 and figure

8.16 respectively. Here, it can be noted that accelerating values of θa increase the fin

temperature throughout its length and also decrease the production of entropy. This

can be explained as follows. The dimensionless ambient temperature θa has a significant
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impact on the convective and radiative heat transmissions as their governing laws depend

majorly on the difference in the temperature between the two considered bodies. Thus as

θ value rises, the temperature difference between the fin structure and the ambient fluid

decreases resulting in lesser heat transmission and leads to higher fin temperature. The

higher θa values also decrease the local thermal gradient resulting in lesser production of

entropy.

Figures 8.17 and 8.18 correspondingly capture the effect of stretching/shrinking pa-

rameter S on the thermal and entropy fields of type I and type II FGM fin structures. The

figures depict an increase in local fin temperature as well as in generation of entropy for

both the kinds of fin structures. Here, S = 1 represents stretching and S = −1 represents

shrinking. The stretching mechanism adds to fin motion and increases the local fin tem-

perature whereas the shrinking mechanism negates the fin motion resulting in a decrease

in the local fin temperature. Further, a stretching fin structure is found to generate more

entropy as compared to the shrinking one.

The average entropy generation Nsavg in type I FGM, type II FGM and homogeneous

material fin structures upon variation in radiative parameterNr and convective parameter

Nc has been pictured in figure 8.19. It can be seen that Nsavg values increase with

elevation in the values ofNc andNr. The observed behaviour is due to the same reasons as

discussed before. The variation in Nsavg values for distinct values of stretching/shrinking

parameter S and wet porous parameter m2 has been pictured in figure 8.20. There is

an elevation in average entropy values with hike in parameters m2 and S. The observed

behaviour is similar to the case of entropy production and hence can be explained as

before. Additionally, the impact of thermal conductivity grading parameter α and the

Peclet number Pe on the average entropy generation Nsavg in the distinct fin structures
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has been considered in figure 8.21. There is hike in the Nsavg values with parameter α and

a dip in Nsavg values with rise in parameter Pe. The behaviour is similar to that observed

for the case of entropy generation and follows similar reasons as explained earlier.

8.6 Denouement

The thermal behaviour and entropy generation of a wet porous longitudinal fin made of

linear FGM that is subject to convective-radiative heat transmission have been studied.

When a fin is subject to continuous motion with constant velocity, three different cases

of FGM—homogeneous, type I, and type II—have been comparatively explored. The

numerically derived solutions are graphically analysed to derive the following key results.

� Type I FGM fin structures result in lower fin temperatures as compared to type II

ones. But fin temperature is lowest in the case of homogeneous ones.

� The entropy generation along fin length as well as the average entropy generated

in a fin are lowest in the case of homogeneous fin structures followed by type I and

type II FGM fin structures.

� The convective, radiative and wet porous nature of the fin structures result in a

decrease in fin temperature along the fin length. But the entropy generation is

elevated towards the fin base with a rise in these parameters. Also, average entropy

generation is greatly influenced as it increases with these parameters.

� The Peclet number and the ambient temperature result in rise in fin tip temperature

whereas decrease the entropy generation towards the fin base. Also, average entropy

generation faces a decrease with the acceleration in these parameters.
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� A stretching fin structure is found to generate more entropy as compared to the

shrinking one.

� The fin temperature, entropy generation and average entropy generation all three

are prominently affected by the grading parameter as they elevate with its rise.

Figure 8.2: Variation in thermal conductivity ratio for distinct values of grading parameter

α in different fin structures.
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Figure 8.3: Thermal profiles of type I FGM, type II FGM and homogeneous material fin

structures.

Figure 8.4: Entropy generation in type I FGM, type II FGM and homogeneous material

fin structures.
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Figure 8.5: Thermal profiles of type I and type II FGM fin structures for distinct values

of convective parameter Nc.

Figure 8.6: Entropy generation in type I and type II FGM fin structures for distinct values

of convective parameter Nc.
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Figure 8.7: Thermal profiles of type I and type II FGM fin structures for distinct values

of radiative parameter Nr.

Figure 8.8: Entropy generation in type I and type II FGM fin structures for distinct values

of radiative parameter Nr.
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Figure 8.9: Thermal profiles of type I and type II FGM fin structures for distinct values

of wet porous parameter m2.

Figure 8.10: Entropy generation in type I and type II FGM fin structures for distinct

values of wet porous parameter m2.
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Figure 8.11: Thermal profiles of type I and type II FGM fin structures for distinct values

of Peclet number Pe.

Figure 8.12: Entropy generation in type I and type II FGM fin structures for distinct

values of Peclet number Pe.
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Figure 8.13: Thermal profiles of type I and type II FGM fin structures for distinct values

of thermal conductivity grading parameter α.

Figure 8.14: Entropy generation in type I and type II FGM fin structures for distinct

values of thermal conductivity grading parameter α.
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Figure 8.15: Thermal profiles of type I and type II FGM fin structures for distinct values

of ambient temperature θa.

Figure 8.16: Entropy generation in type I and type II FGM fin structures for distinct

values of ambient temperature θa.
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Figure 8.17: Thermal profiles of type I and type II FGM fin structures for distinct values

of stretching/shrinking parameter S.

Figure 8.18: Entropy generation in type I and type II FGM fin structures for distinct

values of stretching/shrinking parameter S.
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Figure 8.19: Average entropy generation in type I and type II FGM fin structures for

distinct values of convective parameter Nc and radiative parameter Nr.

Figure 8.20: Average entropy generation in type I and type II FGM fin structures for

distinct values of wet porous parameter m2 and stretching/shrinking parameter S.
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Figure 8.21: Average entropy generation in type I and type II FGM fin structures for

distinct values of Peclet number Pe and grading parameter α.
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Nomenclature

A thermal conductivity parameter

Ab area of the fin base (m2)

Ac cross-sectional area of the fin (m2)

Āc rough pin fin cross-sectional area (m2)

B amplitude of input temperature

B∗ emissivity parameter

C fin taper ratio

Cp specific heat at constant pressure (J/kgK)

(Cp)1 specific heat at constant pressure of first nanoparticle (J/kgK)

(Cp)2 specific heat at constant pressure of second nanoparticle (J/kgK)

(Cp)f specific heat at constant pressure of base fluid (J/kgK)

(Cp)nf specific heat at constant pressure of nanofluid (J/kgK)

(Cp)hnf specific heat at constant pressure of hybrid nanofluid (J/kgK)

CT temperature ratio

Ff−a shape factor for radiation heat transfer

G generation parameter

K permeability (m2)

L length of the fin (m)

Le Lewis number

M thermogeometric parameter

Nc convection parameter

Nr radiative parameter

Ns entropy generation number

Nsavg average entropy production
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Nomenclature

P fin perimeter (m)

P̄ rough pin fin perimeter (m)

Pe Peclet number

Q dimensionless heat transfer rate

Q̇ heat transfer rate (W )

R radius (dimensionless)

R∗ radius of fin (m)

R̄ tip to base radius ratio

S stretching/shrinking parameter of the fin

Ṡ entropy (Jkg−1K−1)

S ′′′
gen entropy generation (Jm−3K−1)

T local fin temperature (K)

Ta ambient temperature (K)

Tb base temperature (K)

Tbm average base temperature (K)

Ts sink temperature (K)

Ū constant velocity of the fin (ms−1)

V e Vernotte number

W width (m)

X dimensionless length

a grading parameter of thermal conductivity

b2 variable parameter (1/K)

g acceleration due to gravity (ms−2)

h heat transfer coefficient (W/m2K)

ha heat transfer coefficient at temperature Ta (W/m2K)

hD uniform mass transfer coefficient kg/m2s

lfg latent heat of water evaporation (J/kg)

k thermal conductivity (J/kg)

k0 thermal conductivity of the homogeneous material (W/mK)

ka thermal conductivity at temperature Ta (W/mK)

keff effective thermal conductivity of the material (W/mK)
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Nomenclature

kf thermal conductivity of the base fluid (W/mK)

knf thermal conductivity of the nanofluid (W/mK)

khnf thermal conductivity of the hybrid nanofluid (W/mK)

m power index of heat transfer coefficient

m̄ mass flow rate (kg/s)

mσ̄ mean absolute surface slope

m0,m1 constants

m2 wet porous parameter

n pin fin shape factor

n1 wet fin parameter

q base heat transfer rate (W )

q∗ internal rate of heat generation (W/m3)

q∗a internal rate of heat generation at temperature Ta (W/m3)

r fin radius or radial direction (m)

rt tip radius (m)

rb base radius of the pin fin (m)

s shape factor

s∗ rate of stretching/shrinking of the fin (1/m)

t time (s)

t∗(x) fin thickness at distance x (m)

tb fin base thickness (m)

v̄w, velocity of the fluid passing through the fin (m/s)

w1 mass of first nanoparticle (g)

w2 mass of second nanoparticle (g)

wf mass of base fluid (g)

x axial coordinate of the fin (m)

Greek symbols

ρ density (kg/m3)

ρ1 density of the first nanoparticle (kg/m3)

ρ2 density of the second nanoparticle (kg/m3)

ρf density of the ambient fluid (kg/m3)
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Nomenclature

ρnf density of the nanofluid (kg/m3)

ρhnf density of the hybrid nanofluid (kg/m3)

α, β in-homogeneity index

α∗ measure of thermal conductivity variation with temperature (1/K)

β∗ measure of surface emissivity variation with temperature (1/K)

βf volumetric thermal expansion coefficient of the ambient fluid (1/K)

βnf volumetric thermal expansion coefficient of the nanofluid (1/K)

βhnf volumetric thermal expansion coefficient of the hybrid nanofluid (1/K)

Ω angle of inclination

ψ dimensionless frequency of oscillation

ψ∗ base radius to length ratio

ψ̄ frequency of oscillation (s−1)

ν fin shape parameter

νf kinematic viscosity of the ambient fluid (m2/s)

ϵ relative roughness

ϵg internal heat generation parameter (1/K)

ϵG non-dimensional internal heat generation parameter

ε surface emissivity of fin

εs surface emissivity of fin at temperature Ts

η fin efficiency

ϕ̂ porosity

φ solid volume fraction of nanoparticles

φ1 solid volume fraction of first nanoparticle

φ2 solid volume fraction of second nanoparticle

µf dynamic viscosity of the base fluid (kg/ms)

µnf dynamic viscosity of the nanofluid (kg/ms)

µhnf dynamic viscosity of the hybrid nanofluid (kg/ms)

χ sphericity

θ non-dimensional temperature

θa dimensionless ambient temperature

θs dimensionless sink temperature
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Nomenclature

τ dimensionless time

τ0 thermal relaxation time (s)

σ Stefan-Boltzmann constant (W/m2K4)

σ̄ roughness standard deviation (m)

ω̄ humidity ratio of the saturated air

ω̄s humidity ratio of the surrounding air

δ a geometrical quantity that defines the tip semi-fin thickness (m)

Subscripts

gen generation

i inlet

o outlet

p particle

S solid
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Abstract
The trapezoidal and dovetail profiled longitudinal fin structures exposed to a convective-radiative
environment andmounted on an inclined surface have been considered for the analysis. Thefin
structures have been assumed to be porous and fully wet in nature. TheDarcymodel has been
implemented to simulate thefluid-solid interactions. Further, the convective and radiative heat
transfer coefficients have been taken to be temperature-dependent. The resulting equation has been
reduced by introducing the non-dimensional quantities and then solved by employing the Runge-
Kutta Fehlberg 4th–5th ordermethod alongwith the shooting technique. The effect of tip tapering,
angle of inclination, fully wet nature, porosity, internal heat generation, and other pertinent
parameters on thefin thermal profile andfin heat transfer rate has been presented graphically and
discussed. It has been inferred that the dovetail fin profile achieves the highest heat transfer rate
followed by rectangular and trapezoidal fin profiles provided the internal heat generation isminimal.
The present work is significant forfin design purposes and also acts as a verification tool for future
research.

Nomenclature

A x( ) cross-sectional area of thefin at distance x m2( )

Ab area of thefin base m2( )
B emissivity parameter

C fin taper ratio

Cp specific heat at constant pressure -J KgK 1( )

G generation parameter

K permeability m2( )
L length of thefin m( )
Le Lewis number

Nr radiative parameter

Nc natural convection parameter

Q dimensionless heat transfer rate

T localfin temperature K( )
Ta ambient temperature K( )
Ts sink temperature K( )
Tb base temperature K( )
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Abstract 
 
The thermal behaviour of fully wet porous trapezoidal profiled longitudinal fin structures in the presence of natural 
convection and radiation has been scrutinized in the present analysis. The rectangular and trapezoidal profiles have 
been comparatively analysed. The Darcy’s law has been incorporated to study the solid-fluid interactions. Further, 
the internal heat generation has been assumed to be a linear function of temperature. The obtained non-linear    
second order ordinary differential equation has been reduced and evaluated numerically. The impact of fully wet 
condition, porous nature, internal heat generation and other relevant parameters on the thermal profile and        
efficiency of trapezoidal and rectangular fin profiles has been interpreted graphically and discussed. It has been 
derived that the rectangular fin profile is more efficient than the trapezoidal profile. 

 
Keywords: Natural convection, porous, trapezoidal profile, fully wet longitudinal fin, fin efficiency, internal heat 
generation. 
 

1. Introduction 
 

The fin, which is an extra surface attached to 
the primary surface, is significant in 
amplifying the cooling process. Fin structures 
are generally applied in the engineering field to 
improve heat transfer rates by expanding 
surface area and adding material attachment. In 
their work, Kraus et al [11] have 
comprehensively covered the basic concepts 
regarding the extended surface heat transfer.  
Porous fin is implemented to extend the 
surfaces of a system, resulting in effective heat 
transfer amplification. Hence Kiwan and Al 
Nimr [9] provided a unique technique that uses 
porous fins to improve heat transmission from 
a given surface. Kiwan [10] explored the role 
of radiation heat transfer on a convective 
porous extended surface with respect to a 
vertical isothermal surface. The Darcy model 
was used by Gorla and Bakier [4] to examine 
the thermal performance of extended porous 

surface of rectangular profile. To solve a model 
representing heat transport in a radial porous 
fin, Jooma and Harley [6] used the Crank-
Nicolson technique. Sobamowo et al [18] used 
the developed exact results to examine the 
impact of thermal-model factors on the 
permeable fin's energy performance. Martins-
Costa et al [13] used the Oberbeck–Boussinesq 
approximation with Darcy's law to scrutinize 
the thermal profile of a porous rectangular fin. 
    The wetted fin, as opposed to a dry one, 
allows for greater heat circulation. As a result, 
the totally wet situation has piqued people's 
attention, and numerous works have been 
conducted as a result. Hatami and Ganji [5] 
investigated the mass and heat transfer in a 
porous radial wet fin by 4th order Runge Kutta 
and Least Square method and the impact of 
Darcy number on the energy field has also 
been investigated. The radiation heat transfer 
in the permeable fully wet fin has been studied 
by Darvishi et al [2]. The Darcy model was 
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Abstract The present investigation focuses on the thermal performance of a fully wet
stretching/shrinking longitudinal fin of exponential profile coated with a mechanism like
a conveyer belt. The modeled equation is non-dimensionalized and solved by applying
the Runge-Kutta-Fehlberg (RKF) method. The effects of parameters such as the wet
parameter, the fin shape parameter, and the stretching/shrinking parameter on the heat
transfer and thermal characteristics of the fin are graphically analyzed and discussed. It
is inferred that the negative effects of motion and internal heat generation on the fin
heat transfer rate can be lessened by setting a shrinking mechanism on the fin surface.
The current examination is inclined towards practical applications and is beneficial to the
design of fins.

Key words fully wet longitudinal fin, convection, exponential profile, internal heat
generation, moving fin
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Nomenclature
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A(x), cross-sectional area of the fin, m2;
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Ta, ambient temperature, K;
b2, variable parameter, K−1;
cp, specific heat at constant pressure,

J/(kg·K);

hD, uniform mass transfer coefficient;
ha, coefficient of convective heat transfer at
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ka, thermal conductivity at Ta, W/(m·K);
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Numerical investigation of efficiency of fully wet porous 
convective-radiative moving radial fin in the presence of shape-dependent 
hybrid nanofluid 
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A R T I C L E  I N F O   

Keywords: 
Convection 
Porous fin 
Hybrid nanofluid 
Fully wet radial fin 
Shape effect 
Moving fin 

A B S T R A C T   

The main focus of the study is a fully wet porous fin of radial profile exposed to convective-radiative heat ex-
change with the hybrid nanofluid flowing past it with a constant velocity of U. In the analysis, spherical- 
spherical, spherical-cylindrical, and spherical-platelet shape combinations of two nanoparticles are considered. 
The mixture model is employed to assess all the thermophysical attributes of the hybrid nanofluid except thermal 
conductivity and dynamic viscosity, which are estimated by applying the nanoparticle volume fraction-based 
interpolation method. The fin model with the applied conditions results in an ordinary differential equation 
which is made dimensionless and then numerically resolved by applying the Runge Kutta Fehlberg (RKF) 4-5th 
ordered technique. The effect of Peclet number, wet fin parameter, thermogeometric parameter, nanoparticle 
volume fraction, convective parameter, radiative parameter, exponential index, empirical shape factor and 
ambient temperature (dimensionless) on the energy field and thermal gradient profiles of the radial fin subjected 
to shape-dependent hybrid nanofluid flow has been graphically analysed. Furthermore, the thermal fin efficiency 
has been modelled and its variation with the significant parameters has been examined. One of the major out-
comes was that efficiency increases with nanoparticle volume fraction. Further, it is significantly affected by the 
shape factor of the nanoparticles and achieves the highest value for spherical-platelet combination. The results 
obtained motivate further study of nanotechnology assisted extended surface technology.   

1. Introduction 

Excess heat generation in thermal components is unavoidable in a 
wide range of engineering applications. This excessive heat might have a 
negative impact on the operation and functionality of such components. 
As a result, the reliable operation of such components necessitates the 
use of appropriate cooling technology. Although different cooling pro-
cesses have long been used to remove heat, fins or extended surfaces 
play a vital role in increasing the heat transfer rate. Kraus et al. [1] have 
put in an encyclopaedic effort in compiling the advancements in the 
field of extended surface technology. Because of their widespread use in 
industry, researchers have always sought new techniques to improve 
their performance and make them more flexible to the needs of the field. 

Gorla and Bakier [2] investigated the simultaneous effect of 
convective and radiative heat losses on the porous fin’s purpose and 
found that the radiative environment enhances the fin heat transfer rate. 

In the heat exchange process, the fin material is crucial and, in this re-
gard, Khan and Aziz [3] examined three distinct sorts of functionally 
graded materials and found that they improved the rate of heat trans-
mission through the fin. Further, they employed the finite difference 
approach (FDM) to investigate the transient thermal behaviour of the 
fin. Practically, the thermophysical attributes of the fin material fluc-
tuate with temperature and in this direction, Darvishi et al. [4] explored 
the thermal nature of a radial fin, assuming that thermal conductivity is 
a function of local fin temperature. They conferred that variable thermal 
conductivity has a significant impact on the distribution of temperature 
in the fin structure. Additionally, Atouei et al. [5] have investigated the 
semi-spherical fin structures by considering temperature-sensitive 
physical features as well as heat absorption criteria and have devel-
oped the solutions using least squares and collocation approaches. 
Studies were also conducted by considering alternative geometries to 
the basic fin structure since varied application areas necessitate flexible 
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Abstract

The microelectromechanical systems technologies fre-

quently produce rough surfaces, and the repercussion

of roughness on the thermal performance is more

prominent in structures of smaller dimensions. In this

regard, the present article intends to examine the

unsteady thermal behavior of a fully wet, porous,

and rough micropin‐fin structure under convective–
radiative conditions. Here, a pin fin of a cylindrical

profile has been chosen. The problem is modeled by

incorporating the roughness parameters in the perime-

ter and cross‐sectional area of the pin fin. Further, the

study of the porous structure has been carried out by

implementing the Darcy model. The resulting partial

differential equation is nonlinear and of the second

order which has been solved by employing the finite

difference method. The impact of the roughness

parameter, wet porous parameter, dimensionless time,

convective parameter, base radius‐to‐length ratio,

radiative parameter, thermal conductivity parameter,

power index, and ambient temperature on the thermal

performance and efficiency of rough micropin‐fin
structures has been established graphically. According

to the findings, for 0.15% rise in roughness, the rough

micropin fin has 12% more thermal drop rate and 13%

less efficiency than the smooth one. Further, the work
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Abstract
Avariety of engineering applications demand efficient and adaptable fin structures for the
intensification of heat exchange. The semi-spherical fin structures are useful in the field of
refrigeration, chemical processing systems, aerospace etc. In this regard, the present article
numerically investigates the transient thermal behaviour of a fully wet semi-spherical fin. The study
incorporates theDarcymodel as thefin ismade up of porousmaterial. Further, thefin is exposed to
convective-radiative heat exchange and is subject to uniformmotion. The heat balance equation has
been reduced to get a nonlinear partial differential equation (PDE)which is computed by employing
thefinite differencemethod (FDM). The dimensionless terms are grouped together and their
influence on the temperature distribution in a semi-spherical fin is studied. Also, the instantaneous
heat transfer rate and the transient fin efficiency have beenmodelled and their variations with relevant
parameters have been graphically depicted. And these are found be strong functions of Peclet number,
wet porous nature and dimensionless time. As amain outcome the semi-spherical fin efficiency is
positively influenced by the Peclet number. Alongwith the fundamental point of interest the results
presented benefit the fin designing purposes.

Nomenclature

( )A xc = fin cross-sectional area as a function of ( )x m ;2

Ab = area of thefin base ( )m ;2

b2 = variable parameter ( )/K1 ;

Cp
= specific heat at constant pressure ( )/J kgK ;

g = acceleration due to gravity ( /m s2);
hD = uniformmass transfer coefficient ( )/kg m s ;2

ha = coefficient of convective heat transfer at temperature ( )/T W m K ;a
2

h = coefficient of convective heat transfer ( )/W m K ;2

K = permeability (m2);
keff

= effective thermal conductivity of thematerial ( /W mK );

k = thermal conductivity ( )/W mK ;

Le = Lewis number;

m m,0 1 = constants;

m2 = wet parameter;

Nc = convective parameter;

N r = radiative parameter;

P = fin perimeter (m);
Pe = Peclet number;

p = exponential index of coefficient of convective heat transfer;

Q = non-dimensional heatflow rate;

q = heatflow rate ( )W ;

R = radius of semi-spherical fin (m);
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