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Abstract 
 

 

World is now facing towards digitization, which has made it inevitable for 

transformation from paper to paperless office using document image processing. This 

will reduce time and space in processing and storage of documents. Whereas the 

document of the image will contain required supportive data in an image such as 

pictures, texts, tabular columns, etc. Document image processing has become major 

research area, where in document images are processed and stored in the digital form. 

Documents may contain text, non-text or both as a whole. There might be skew 

present in the document which must be corrected in order to distinguish text from 

non-text. 

 

Text is an ordered sequence containing piece of writing distinct from other material 

such as diagrams, graphs etc., Text can be in printed or handwritten form which 

results in classification as printed document images, handwritten document images or 

both, where the document can be completely in printed form or completely in 

handwritten form or it might contain both. Further, documents can be classified into 

monolingual, bilingual, trilingual or document with different languages. Each 

language needs individual OCR system for its identification. So, multilingual 

document need multilingual OCR system for its identification and processing. Non-

text is anything other than text in document, it includes maps, charts, graphs, 

illustrations, diagrams, photographs, expressions, formulae etc., 

 

The problem of text information extraction needs to be defined more precisely before 

processing further. Text Information Extraction (TIE) system receives on input still 

image and sequence of images. The images can be in gray scale or color, compressed 

or un-compressed and the text in images may or may not move. Text from image can 

be considered as human clear arrangement of char words they frame that can be 

encrypted computer comprehensible from American standard code information 

interchange (ASCII). Text is commonly well-known as of non-character encrypted 

documents, such as detailed images into the form of bitmaps and database, which is 

now and then referred to as presence in binary. In other form of text removal is 
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method by which we transform printed text/scanned page or image in which text are 

available to ASCII character that a computer can identify. 

 

Text and Non-text segmentation and classification is very important in document 

layout analysis system before it is presented to an OCR system. The text detection and 

extraction can be divided into the following steps. They are:1) detection 2) 

localization 3) tracking 4) extraction and enhancement 5) recognition(OCR). In this 

direction, a small amount of work is carried out in the Indian context. Hence, this has 

motivated to consider the study of handwritten Kannada vowels and English 

uppercase alphabets recognition system as the initial, work to meet the objective of 

processing bi-lingual (Kannada \& English) documents. 



Chapter 1

Prologue

1.1 Preamble

World is now facing towards digitization, which has made it inevitable for transfor-

mation from paper to paperless o�ce using document image processing. This will reduce

time and space in processing and storage of documents. Whereas the document of the

image will contain required supportive data in an image such as pictures, texts, tabular

columns, etc. Document image processing has become major research area, where in doc-

ument images are processed and stored in the digital form. Documents may contain text,

non-text or both as a whole. There might be skew present in the document which must

be corrected in order to distinguish text and non-text separation from document images.

Text is an ordered sequence containing piece of writing distinct from other material

such as diagrams, graphs etc., Text can be in printed or handwritten form which results in

classi�cation as printed document images, handwritten document images or both, where

the document can be completely in printed form or completely in handwritten form or

it might contain both. Further, documents can be classi�ed into monolingual, bilingual,

trilingual or document with di�erent languages. Each language needs individual OCR

Some parts of the materials in this chapter have appeared in the following research paper.

1. Ravikumar M., and Shivakumar G 2020. �A Survey on Text Detection from Document Images�,

In International Conference on Intelligent Computing and Smart Communication. Springer, Sin-

gapore, pp. 961-972. (springer).
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system for its identi�cation. So, multilingual document need multilingual OCR system

for its identi�cation and processing. Non-text is anything other than text in document, it

includes maps, charts, graphs, illustrations, diagrams, photographs, expressions, formulae

etc.,

The problem of text information extraction needs to be de�ned more precisely before

processing further. Text Information Extraction (TIE) system receives on input still

image and sequence of images. The images can be in gray scale or color, compressed or

un-compressed and the text in images may or may not move. Text from image can be

considered as human clear arrangement of char words they frame that can be encrypted

computer comprehensible from American standard code information interchange (ASCII).

Text is commonly well-known as of non-character encrypted documents, such as detailed

images into the form of bitmaps and database, which is now and then referred to as

presence in binary. In other form of text removal is method by which we transform

printed text/scanned page or image in which text are available to ASCII character that

a computer can identify.

Text and Non-text segmentation and classi�cation is very important in document

layout analysis system before it is presented to an OCR system. The text detection and

extraction can be divided into the following steps. They are:1) detection 2) localization 3)

tracking 4) extraction and enhancement 5) recognition(OCR). In this direction, a small

amount of work is carried out in the Indian context. Hence, this has motivated to consider

the study of handwritten Kannada vowels and English uppercase alphabets recognition

system as the initial, work to meet the objective of processing bi-lingual (Kannada &

English) documents.
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In a wide range of application text/non-text separation plays a vital role in docu-

ment analysis contents, machine-printed and handwritten texts always intermixed appear

in several kinds of documents especially in o�ce/note/. . . documents. A document is

usually composed of two parts, one is the preprinted-machine texts and another is the

handwritten texts. The recognition methodologies and mechanisms for machine-printed

and handwritten texts are totally di�erent. To achieve the optimal performance, we have

to distinguish these two di�erent types of texts. Once the text is identi�ed as printed

machine, it is sent to the printed optical character recognition kernel. Otherwise it is sent

to the handwritten character recognition kernel. The identi�cation of machine-printed

and handwritten texts is thus must for later optical character recognition process. It is

also a research issue in the area of document analysis (DA) and optical character recog-

nition (OCR) non-text is anything other than text is document, it includes maps, charts,

graphs, illustration, diagrams, photographs, expressions, formulae etc.

Existing text and non-text separation methods generally classi�ed into four categories:

edge-based, linked component-based, texture-based, and eigenvalue-based. The text com-

ponents in high quality and basic backdrop images are extracted using connected compo-

nent optimization techniques. Texture approaches identify textual information in compli-

cated background images, but classifying text and non-text components needs extensive

classi�ers. Edge-based approaches identify text by considering sudden changes, render-

ing it faster than texture and connected component methods. In low-resolution images,

eigenvalue-based approach separates the text and non-text components.

However, in the actual world, the text may be used in a horizontal or unstructured

orientation. Because India is a multilingual country, the text in images may be in various
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languages. Since the last decade, di�erent text identi�cation systems for horizontal, ar-

bitrary orientation, and bilingual languages were proposed. Each of these methodologies

contributed to the research world in its method. As a result, we have tried to divide the

advantages and disadvantages of horizontal text detection methods, randomly oriented

text detection methods, and bilingual text and non-text detection methods. Finally,

bilingual text detection is the �nal stage, which includes detecting various languages in a

single image. Only caption text, either image text, or both at once are present in these

three levels. The term caption text refers to arti�cial or superimposed text, whereas image

representation refers to writing that exists naturally. Where orientation-based approaches

are provided by horizontal and arbitrary oriented categories, and the textual aspects for

diverse geometrical forms text are presented by the bilingual stage. The combination

of orientation methods and text feature approaches yields a method for text detection

that is both rapid and reliable. As a result, this research contributes something new to

the current survey publications. This new category of text recognition methodologies as-

sists forthcoming scholars in understanding from pre-processing methods, major methods,

post-processing methods, as well as measuring terms used in a certain content.

1.2 Document Image Processing in Machine Learning

The recognition of printed scanned document images, also known as Optical Character

Recognition (OCR), was one of the �rst applications of Document Image Analysis(DIA).

Computer vision is a part of Arti�cial intelligence that includes mechanisms for acquiring,

processing, analyzing, and able to understand document images. The document images

are obtained from real-world applications for the purpose of generating both symbolic and
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numeric data. The primary goal of this research is to duplicate human vision capabilities

by electrically perceiving and able to understand images. Computer vision technology

typically requires a combination of low-level image processing to improve image qual-

ity and high-level pattern recognition and image recognizing to identify features in the

document image.

A process like this is made up of several steps, including removing scanner noise,

identifying sets of �eld labels and �eld values, and �nally recognizing the text. All of

these steps are di�cult, and considerable research e�ort has been expanded to solve these

issues.

There are many more topics that are the subject of active research.The typical docu-

ment image processing pipeline is composed of 3 generic steps.

1. Pre-processing - Noise removal, blur removal, recti�cation, deskewing, binarization.

2. Layout Analysis - Understanding document structure to, e.g., identify Regions of

Interest (RoI).

3. Recognition - Extracting application-speci�c information from each RoI correspond-

ing to bounding box.

Pre-processing and layout analysis stages are generally dependent on the types and struc-

ture of the document images in consideration. Segmenting form images, for example, is

not the same as segmenting text lines in a printed/handwritten document image. The

end application determines the detection and recognition process. The goal of most apps

is to transcribe textual and non-textual content.
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Figure 1.1: Steps involved in text and non-text separation using machine learning

The machine learning system's image acquisition can be de�ned as the system that

receives an image from a source, which is usually hardware based. In most machine learn-

ing systems, this is the �rst stage. There can be no processing without an image. Besides

from the type of modes, the digital image is obtained by one or more document images.

It also includes business letters, bank cheques, challans, circulars, doctor's prescriptions,

postal department documents, engineering drawings and maps, test halltickets, incomtax

letters, invoices, petitions, requests, purchase bills, symbolic data, technical manuals, and

more. All of these document images are subjected to digital image processing techniques

in order to extract, retrieve, modify, transmit, and reuse information. Pre-processing is

an operation that is performed at the lowest level of abstraction on input and output

images. The goal of pre-processing is to improve some image attributes that are relevant
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for later processing as well as to enhance distorted and degraded image data. The bright-

ness transformation, geometric transformation, local neighbourhood pre-processing, and

picture restoration are the most common pre-processing approaches. The image data can

be used to extract the various features needed for processing. Lines, edges, ridges, cor-

ners, points, texture, colour, and shape are examples of some of the features. The goal of

image segmentation is to separate an image into a number of segments that have a strong

relationship with real-world items or places. The methods of segmentation are divided

into three categories: threshold segmentation, region-based segmentation, and edge-based

segmentation.

Data ambiguity is one of the most common segmentation issues, which is often in-

creased by information noise. The result of segmentation can be improved by using more

and priori information from the image. This stage usually requires a small set of informa-

tion as input. This stage involves analyzing if the data terms to refer the model's and the

application's assumptions. To determine application speci�c parameters such as object

postures and size. To classify the detected object into various groups. In medical, military,

security, and pattern recognition applications, the �nal decisions required are to pass or

fail automatic inspection applications, to match or no match in recognition applications,

and to �ag for further human study. A subset of machine learning is pattern recognition.

Machine learning is based on the detection of patterns and regularities in data. It is also

de�ned as the process of categorizing input data into patterns based on key features. In

most cases, pattern recognition is combined with machine learning. In general, pattern

recognition techniques formalise and explain the visualised pattern. However, machine

learning focuses on increasing the recognition rate. This method usually yields better



Prologue 8

results.

Image processing, image acquisition, and image analysis are fundamental components

of machine learning. The pattern recognition technique is important in the machine

learning system because it allows for image analysis as well as recognition. The �rst step is

to acquire an image. Image acquisition is accomplished through the use of digital imaging

techniques, which are then processed by computers. The image segmentation process is

the next step. Image segmentation is the process of extracting a speci�c region of interest

from an image. During this process, the object is separated from the other regions as

well as the background of the image. Noise reduction and image sharpening can also be

performed during segmentation. The third step is the feature extraction process. The

goal of feature extraction is to classify an object using a measurement value. Objects with

similar measurement values are classi�ed into one category, while objects with di�erent

measurement values are classi�ed into a di�erent category. In this step, speci�c image

features are extracted. These features are referred to as feature vectors, and they are useful

for describing the image's content. The fourth step is classi�cation. During this step, the

objects are classi�ed into various categories. If prede�ned categories are used, it is referred

to as supervised classi�cation; otherwise, it is referred to as unsupervised classi�cation.

Various validation methods can be used to estimate the resultant classi�cations during

the post-processing process.

1.3 Classi�cation of Document Image

Image classi�cation is a current research topic. Image processing pattern recognition

techniques are now used for real-world objects such as medical images, document im-
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ages, satellite images, and so on. The focus of this research is on segmentation, feature

selection, and classi�cation. When images are classi�ed, especially text and non-text doc-

ument images, a validation problem arises. Di�erent features should be chosen for each

category to di�erentiate them. As a result, the feature can depict the object's required

properties. Descriptors derived from images are used in the image classi�cation process.

Colors, textures, and shapes are all important image characteristics that are used in im-

age classi�cation. These image characteristics are speci�ed by computing various types

of descriptors.

A number of di�erent of descriptors are used to describe the content of an image.

For identi�cation and classi�cation, the proposed method considers circular shaped seals,

logos, signatures, and Kannada/English uppercase and lowercase characters. When com-

pared to machine printed text, which is uniform in nature, identifying handwritten text

is a critical task. The reference processing of complex documents is a di�cult task for

live retrieval and recognition document applications. Algorithms that work well on sim-

ple documents may not work well on complex documents (which contain a mixture of

noise, handwriting, machine printed text with di�erent fonts and font sizes, seals, tables,

stamps, and rule lines) because the elements impose many constraints on the algorithms.

The primary task of processing such document images is to isolate the document's

various components. Documents that have been separated into components are known as

indexed documents. Document indexing can be done using textual and/or graphical en-

tities. Organizations are currently implementing digital document images to improve the

e�ciency of paper-intensive work�ows and to reduce the workload of processing informa-

tion from o�ce document images, faxes, invoices, reports, and so on. Organizations are
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compelled by this digital document images to automate the distribution of incoming mails

to their respective departments based on the content of the digital documents. For veri�-

cation and validation of the proposed algorithm, o�cial forms with machine printed text

in various font sizes and handwriting patterns are used. It also includes some graphical

elements such as a seal, logos, signatures, and sign images.

1.4 Applications of Document image processing using

Machine learning

With the growing variety of tasks and domains, the fundamental techniques used in

DIA have shifted. Early applications relied heavily on heuristic rules that applied to

speci�c document domains but did not generalize well to all document classes. Supervised

machine learning techniques are now widely used, in which a generalizable model is learned

from human-annotated examples of input and output pairs. Rather than developing new

heuristic rules for each language/domain/task combination, the same machine learning

model can be applied to di�erent sets of labeled data. While traditional machine learning

models operate on user selected task-speci�c features, a class of hierarchical models known

as deep neural networks learn superior task-speci�c features directly from image pixels.

Deep learning has recently transformed many �elds of research, including computer

vision, natural language processing, and bioinformatics, and DIA is no exception. Each

layer of the deep network abstracts the previous layer's representation, gradually trans-

forming an input image into high level semantic information such as document type. A

document is typically a piece of paper that contains printed and handwritten text as well

as tables, graphs, stamps, seals, logos, circuit diagrams, pictures, and so on. A document
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can be simple or complex. A wide range of information that was previously stored on

paper is now converted into digital form using a scanner or fax machine for e�cient stor-

age and intelligent processing. Common documents include college admission application

forms, business letters, bank cheques, challans, circulars, doctor's prescriptions, postal de-

partment documents, engineering drawings and maps, exam halltickets, incomtax letters,

invoices, petitions, requests, purchase bills, symbolic data, technical manuals, and so on.

All of these document images are processed using digital image processing techniques in

order to extract, retrieve, modify, transmit, and reuse information.

1.5 Literature survey

From the literature, we found that most of the works on text extraction is monolingual

and bilingual documents various types, in that it is oblivious for containing the bi-lingual

scripts those are a regional script (Kannada) and International script English(Roman). It

is the combination representation of language each document has got its own characteris-

tics. There have been several techniques proposed for in the literature for text extraction.

Text detection and extraction can be achieved using the feature extraction methods. Var-

ious preprocessing techniques are available in the literature, some of the techniques are

highlighted, they are Mathematical Morphological operations and Dilation (Adesh Kumar

et al., 2015; Anuj Singh et al., 2014; xiao-weizhang et al., 2008; ChaudhariShailesh A. et

al., 2015; Dhandra B.V. et al., 2012), image binarization, thresh-holding approach (Ankit

Kumar et al., 2012),Gabor Filter (Kumary R Soumya et al., 2014; PeetaBasaPati et al.,

2004; Anubhav Kumar et al., 2014), Gray-scale transformation, Smoothing, Contrast En-

hancement and BBs (Jian Yuan et al., 2009; Paraag Agrawal et al., 2012; Sourav Ghosh,
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et al., 2018), Image edge detection, Sobel, Prewitt, Laplacian of Gaussian (Zhihu Huang

et al., 2014; Shekar B.H. et al., 2015). Re-sampling, Geometrical properties and Otsu al-

gorithm (DanialMd Nor et al., 2011; Hye-Ran Byun et al., 2002; Frank D. Julca-Aguilar

et al., 2017; Lei Sun et al., 2015), deblurring methods & kernel estimation (Hojin Cho et

al., 2012).

Contrast edge detection using rough set theory (Radhika Patel., et al 2015), SWT

and canny edge detector, (Najwa-Maria Chidiac et.al., 2016), TIE&Text extraction al-

gorithm(Chowdhury S P et.al., 2009; Mamatha B S et al., 2014; ShervinMinaee et al.,

2017; Uma B. Karanje et al., 2014; Karanjeet al., 2009), Block Based local threshold-

ing (Yassin M. Y. et al., 2000), MSER & SWT (Hui Wu, et al., 2016), Text detec-

tion (Uma B. Karanje et al., 2014), heterogeneous parallelization scheme (Yun Song et

al., 2017), Document Image Analysis (DIA) (Vikas Yadav et al., 2016). In the area

of segmentation, major techniques used are speci�ed, such asHaar and Discrete wavelet

transform (DWT) (Adesh Kumar et.al., 2015), The Horizontal projection (Ankit Kumar

et.al., 2012), A two-dimensional wavelet transform and K-means clustering algorithm

(Anuj Singh et.al., 2014; xiao-weizhang et.al., 2008), Gabor �lter, Morphological opera-

tion and Heuristic Filtering process, (Anubhav Kumar, 2014), Color chain segmentation.

(Chowdhury S P et.al., 2009), Otsu method & Geometric (DanialMd Nor et.al., 2011),

connected components (Frank D. Julca-Aguilar et.al., 2017; Viet Phuong Le et.al., 2015),

Bottom-UpApproach, Clustering, Top-Down&MultiscaleStrategy, HoughTransform tech-

nique, morphological postprocessing& x-projection techniques (Kumary R Soumya et.al.,

2014),Deblurring methods & kernel estimation, (Hojin Cho et.al., 2012), Connected com-

ponents extraction and non-text �ltering (Hui Wu et.al., 2016),8 � connected pixel con-



Prologue 13

nectivityand NN matrices(Paraag Agrawal et.al., 2012), Texture based segmentation al-

gorithm (PeetaBasaPati et.al., 2004),Text segmentation, k-means &sparse decomposition

(ShervinMinaee et.al., 2017), Prewitt edge detection algorithm, Canny edge detector (Jian

Yuan, et al., 2009).

FAST (Features from Accelerated Segment Test), (Vikas Yadav et al., 2016), Markov

Random Field (MRF) and a Conditional Random Field (CRF), (Uma B. Karanje et.al.,

2014), Block segmentation(Zaidah Ibrahim Dino Isa et.al., 2014). Gabor function based

multichannel directional �ltering, (PeetaBasaPati et.al., 2004), Line removal, Discontinu-

ity &Dot removal (Paraag Agrawal et.al., 2012), discriminating features and Binary Tree

classi�er (Priyanka P. Yeotikar et.al., 2013), PCA, connected component &Block blob

(Radhika Patel et.al., 2015), Text localization and Kirsch Directional Masks, (Shekar B.H

et.al., 2015), Edge based text extraction algorithm (ShervinMinaee et.al., 2017), Con-

nected component, GLCM, LBP, NB, MLP, SMO, K-NN and RF (Sourav Ghosh et.al.,

2018), MSER, SIFT, Connected component HOG and SVM (Uma B. Karanje et.al.,2014;

Yun Song, et.al., 2017), Component and edges extraction (Vikas Yadav et.al., 2016).

Those features utilize size, shape, stroke width and position information of connected

components (Viet Phuong Le et.al., 2015), Morphological gradient, Nonlinear �lter and

CCs (Yassin M. Y. Hasan et.al., 2000), Edge detection methods (Sobel, Prewitt, Lapla-

cian Gaussian and canny method), 8-connected objects detection algorithm &SWT (Zhihu

Huang et al., 2014) Used.

To process the documents e�ectively, enhancement of documents is very much essential

[(Raman Maini et al., 2010; Iwasokun et al., 2014; Vaquar et al., 2019), Atena Farahmand

et al., 2013; Firdausy, Kartika et al., 2007; Purba, Angga et al., 2019; Z. Shi, et al., 2011;
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Poonam et al., 2014; Shi, Zhixin et al., 2004; Ravinder Kaur et al., 2016; Satnam Kaur et

al., 2017; Harraj et al., 2015; Sitti Rachmawati Yahya et al., 2010; S. Perumal et al., 2018;

Rubina Parveenet al., 2018; Ganbold Ganchimeg 2015; Harmandeep Kaur Ranota et al.,

2014; Brindha, Bharathi et al., 2015; Di Lu et al., 2018; Sitti Rachmawati Yahya et al.,

2009; Reza Farrahi Moghaddam et al., 2009; Parashuram Bannigidad et al., 2016; Jianbin

Xiong et al., 2021; Mustafa, Wan et al., 2018; Sugapriya.C et al., 2017; V. Magudeeswaran

et al., 2013; Samrudh. et al., 2018; Sarath K et al., 2017; Puri, Shalini et al., 2020; A.

Thakur et al., 2015; Zhixin Shi et al., 2004; Sattar, Farook et al., 1999; Antoni Buades

et al., 2005; Ravikumar M., et al., 2020; Ravikumar M. et al., 2020; Chidiac et al., 2016;

S.P. Chowdhury et al., 2009; Y.M.Y. Hasan et al., 2000;, H. Wu et al., 2016; B.H. Shekar

et al., 2015; V. Yadav et al., 2016)].

In this section, we discuss the related work on text extraction/detection from both

printed as well as handwritten document images.

Using di�erent text extraction methods like region-based method, edge method, tex-

ture method, morphological-method, text from an image is extracted (K.R. Soumya et

al., 2014). After the detailed survey given on comparison and performance evaluation

and di�erent text extraction methods, it is found that region and text-based methods

give poor result compared with the morphological and edge-based methods.

By using edge-based and K-means clustering algorithm, text extracted from live cap-

tured image is with diversi�ed background (A. Singh et al., 2014). K-means clustering

algorithm is performed on dataset,which partitions)into group according to some distinct

distance measure. Non-text region from an image is removed using morphological op-

erations. After the experimentation the overall precision rate and recall rate result was
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compared with the edge-based algorithm and connected component-based algorithm.

A two-dimensional wavelet transform used for text extraction is proposed (X.-W.

Zhang et al., 2008), For the purpose of classi�cation of the images into text region, sim-

ple background region, and complex background region, k-means clustering algorithm is

used. After the classi�cation is performed, clustering is done using morphological oper-

ation. Experimentation is carried out on 100 diverse gray-scale pictures, which contain

content data with distinctive languages, textual styles, and sizes.

Text detection and extraction from natural scene images, which are captured through

mobile camera and digital devices is proposed (J. Yuan et al., 2009), The proposed algo-

rithm also tackles the complications involved in scene images like uneven illumination and

re�ection, poor lighting conditions and complex background analysis. Sharp transitions

are detected using a revised Prewitt edge detection algorithm. The image is segmented

into several regions. Each region can be regarded as an object. Finally, it is considered

as abnormal objects (area too large or too small, width is far longer than height, etc).

Text regions are detected by 8-connected objects in natural scene images using which

region-based extraction method is proposed (Z. Huang et al., 2014). Image can be detected

using the median �lter which is used to reduce the noise present in the image. In order to

improve the precision of edge detection methods (Sobel, Prewitt, Laplacian Gaussian and

canny method), experimentation is carried out on ICDAR-2014 dataset containing 509

English images, in which 258 images are taken for training set and 251 images are taken

for testing set. To improve the performance of Stroke Width Transform method (SWT),

the modi�ed method is conducted.

Some more work are addressed on Signature and Logo detection [(Romit Beed et al.,
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2018), (Rajesh et al., 2015), (Umesh et al., 2017), (Luiz et al., 2017), (HWEI-JEN LIN

et al., 2001), (Ilkhan Cuceloglu et al., 2018; Ranju Mandal et al., 2011; Ranju Manda et

al., 2013; Mohammed Javed et al., 2013), (Corinna Cortes et al., 2000; Wafa Elmannai et

al., 2012; Mayada et al., 2010; Sabourin 1988; Nabin Sharma et al., 2018; Ranju Mandal

et al., 2013; Sheraz Ahmed et al., 2012), (Hongye Wang et al., 2009; Zhe Li et al., 2010;

Naqvi et al., 2011; Umesh et al., 2015; Sheetala et al.,2015; Umesh et al., 2013; Vaijinath

et al., 2017; Nabin Sharma et al., 2018; Ri�ana et al., 2018; Tuan et al., 2003; Mohammed

et al., 2013; Jans et al., 2017; Showmik et al., 2018; Afsoon et al., 2017; Mohammad et

al., 2012; Yifei et al., 2014; MatheelE et al., 2017; Alireza et al., 2014; Alireza et al., 2013;

Smita et al., 2016), (Romit Beed et al., 2018; Rajesh. T.M et al., 2015; Umesh D. Dixit

et al., 2017; Luiz G. Hafemann 2017).]

In this chapter (P.B. Pati et al., 2004), the authors have proposed a Gabor function-

based multichannel directional �ltering approach that is used for separation of text and

non-text regions from the images (containing graphs, natural images, and other kinds of

sketches drawn with lines) is proposed. Experimentation is carried out on images of 1000

words (Tamil, Hindi, Odiya, English). The documents considered for experimentation are

bilingual, where English is a common script. Using linear discriminant function, script is

identi�ed for document containing Hindi and English.

Image segmentation and text extraction from natural scene images are proposed (D.M.

Nor et al., 2011). Using Otsu method where Geometric Properties are used text local-

ization and extraction are performed by using connected component algorithm and Run

Length Smoothing Algorithm (RLSA) approaches. The proposed algorithm gives a reli-

able OCR results.
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Using text-speci�c properties, text image deblurring is proposed for text-speci�c image

deconvolution approaches (H. Cho et al., 2012), where the proposed algorithm not only

estimates a more accurate blur kernel but also restores sharper texts. Experimentation

is carried out on both blurred and also deblurred images, the Peak Signal Noise Ratio

(PSNR) value is found to be 15.66 for blurred and 28.52 for deblurred images. Experimen-

tal results show that the proposed method generates higher quality results on deblurring

text images.

Some good number of algorithms are attempted towards segmentation and skew esti-

mation of non-text information In this section, In most of the cases, documents will be

multilingual in nature comprising di�erent languages with multiple skews. A multiple

skew estimation technique is proposed (Guru et al., 2013), (Tang Y et al., 1996), (Ka-

siviswanathan et al., 2010) where skew is estimated by �tting a minimum circumscribing

ellipse and k-means clustering is used to estimate skew of multiple blocks. A method

for estimating document image skew angle is presented (Shah et al., 2014), (Babu et al.,

2006), (Kavallieratou et al., 2002), (Singha et al., 2008) where it depends on objects with

rectangular shape such as paragraphs, texts, and �gures. The angle of that rectangle rep-

resents the angle of document skew. Skew detection and correction using linear regression

technique is proposed (Wagdy et al., 2014), (Boukharouba, et al., 2012) and this method

uses the Hough transform to detect skew with large angles.

A method for skew estimation in binary images is proposed. This method is based on

binary moments, where moment-based method to each binary object evaluates their local

text skews (Brodi´c et al., 2012). A geometrical technique for line and word segmentation

is presented in (NarasimhaReddy et al., 2017) which also estimates multiple skews if



Prologue 18

present in the document and corrects it by natural method which helps in �nding top

and bottom border points of shirorekha, and accuracy of 94% is recorded for Indian

government o�ce documents. [(Shah et al., 2014), (Ravikumar et al., 2017), (Ghosh,

et al., 2012), (Rani, et al., 2015), (Ramakrishna Murty et al., 2011), (Pramanik et al.,

2021; Akhter et al., 2020), (Salagar et al., 2020), (Oliveira et al., 2018), (Ma et al., 2018),

(Bafjaish et al., 2018; Mandal et al., 2018), (Boukharouba et al., 2017), (Shakunthala et

al., 2021), (Khatatneh et al., 2015; Bezmaternykh et al., 2021), (Mechi et al., 2019; Saiyed

et al., 2021; Gurav et al., 2019; Shivakumar et al., 2005), (Jo et al., 2020), (Guru et al.,

2015; Zhao et al., 2019), (Deivalakshmi et al., 2013), (Gauttam et al., 2013), (Wang et

al., 2021), (Chen et al., 2018), (Dutta et al., 2021), (Lombardi et al., 2020), (Viana et al.,

2017), (Chethana et al., 2016), (Shobha et al., 2015), (Mondal et al., 2020; Sasirekha et

al., 2012), (Aradhya et al., 2021; Lyu et al., 2018), (Qi et al., 2011), (Huang et al., 2019),

(Bezmaternykh et al., 2020), (Neha et al., 2012; Srivastva et al., 2013; Konya et al., 2010),

(Shivakumar et al., 2005), (Jo et al., 2020), (Guru et al., 2015; Zhao et al., 2019), (Viana

et al., 2017; Fourure et al., 2017; Chethana et al., 2016; Shobha et al., 2015; Mondal et

al., 2020; Sasirekha et al., 2012; Aradhya et al., 2021; Lyu et al., 2018), (P. Agrawal et

al., 2012), (R. Patel et al., 2015), (A. Kumar et al., 2014).]

The authors have proposed (B.S. Mamatha et al., 2014) a method to extract text

from images with complex background which can be achieved using an edge-based text

extraction algorithm based on the fact that edges are reliable feature of text regardless of

font sizes, styles, color/intensity, layout, orientation, etc. Experimental results show that

this method is very e�ective and e�cient in localizing and extracting text-based features.

Using the proposed method, separating texts from a textured background with sim-
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ilar color to texts is performed (S. Minaee et al., 2017). Experimentation is carried out

with their own dataset containing 300 image blocks in which several challenges like man-

ually generated images by adding text on top of relatively complicated background. The

proposed algorithm is robust to the initialized value of variables.

In this survey chapter, di�erent issues like text detection, segmentation, and recogni-

tion natural scene images are discussed (U.B. Karanje et al., 2014). Comparison of dif-

ferent text detection methods based on the Maximally Stable Extremal Regions (MSER)

is highlighted followed by advantages and disadvantages. From the survey, it is observed

that detecting and recognizing text from natural scene images is more di�cult task than

all other existing methods. Even though there are many algorithms, no single uni�ed

approach can �t for all applications.

For text extraction in complex natural scene images, di�erent methods based on color

and gray information are proposed (H.-R. Byun et al., 2002). The proposed method

works even if the document containing skew and perspective of candidate text regions.

The method is tested in 128 natural scene images that are captured in various places such

as in schools, hospitals, subway stations, and streets. The dataset is classi�ed into two

categories, simple and complex from the experimentation, color-based method gives better

results than gray-based method for complex images but it has more false detections. The

gray-based method has better performance for simple images. The combination of both

the methods gives better results than that of each method [(Z. Ibrahim etal., 2008 ), (L.

Sun et al., 2015), (Y. Song et al., 2017)].

More number of works on classi�cation of text and non-text information can also be

studied [(Chaithanya et al., 2019), (Tran et al., 2015),(Arvind et al., 2006), (Ghosh et al.,
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2018), (Puri et al., 2016), (He et al., 2019), (Lee et al., 2018), (Mishra et al., 2018), (Chen

et al., 2007), (Diligenti et al., 2003), (Liu et al., 2021), (Hu et al., 1999). (Shirdhonkar

2010), (Zagoris et al., 2014). (Augusto et al., 2017), (Bhowmik et al., 2018), (Le et al.,

2016), (Dhandra et al., 2010), (Saxena et al., 2019), (Kumar et al., 2016), (Thangaraj

et al., 2018), (Blessieet al., 2019), (Kowsari et al., 2019), (Lin et al., 2017), (Kasar et

al., 2013), (Gupta et al., 2019), (Banerjee et al., 2012). (Bhavani et al., 2021), (Gatos

et al., 2005), (Ibrahim et al., 2008), (Gilani et al., 2017), (Bavdekar et al., 2015), (Riba

et al., 2019), (Liu et al., 2013), (Li et al., 2018), (Ghosh et al., 2022), (Julca-Aguilar et

al., 2017), (Ikonomakis et al., 2005), (Saha et al., 2019), (Schreiber et al., 2017), (Zhao

et al., 2019), (Chen et al., 2011), (Tupaj et al., 1996), (Hao et al., 2016), (Kavasidis et

al., 2018), (Schreiber et al., 2017), (Chen et al., 2007), (Kavasidis et al., 2018), (Zeiler et

al., 2014), (Simonyan et al., 2014), (Gilani et al. 2017), (Okun et al., 1999), (Moll et al.,

2008), (Nayef et al., 2015), (Fletcher et al., 1988), (Tombre et al., 2002), (Kavasidis et al.,

2018), (Yi et al., 2017), (Ren et al., 2015), (He et al., 2015), (Everingham et al., 2010),

(Lin et al., 2014), (Deng et al., 2009), (Girshick et al., 2015), (He et al., 2016), (S. Ghosh

et al., 2018), (F.D. Julca-Aguilar et al., 2017), (Mandivarapu, et al., 2021 )]

It is also important to note that no attempt to extract information from printed or

handwritten bilingual document images. In India, most o�ce documents, Advertisement

boards, Inauguration Boards, Direction Boards, Answer Scripts (which are half printed

and partially handwritten) are bilingual, with various text and non-text separation of

document pictures. This presents new hurdles in the �eld of document image analysis,

which has motivated us to continue this research work.



Prologue 21

1.6 Challenges

From the literature review, we �nd that many challenging issues are still exists in text

extraction from document images: they are

1. Extraction of text from blurred images.

2. Text extraction from handwritten document images.

3. Text extraction from multi scripts.

4. Multi oriented text detection.

5. Text extraction from logos.

6. Text recognition and many more.

7. Text extraction from partially visible documents.

1.7 Motivation and Objectives

From the literature review, we �nd that many challenging issues are still existing in

text extraction from images: they are

Text and non-text separation is an important processing step in any document analysis

system. It then divides o�-line printed/handwritten document images into several types

based on the nature of the problems each �nds, in an attempt to provide understanding

of the various techniques presented in the literature.

The characterization of complex text and non-text document images, necessary for

both image segmentation and text and non-text classi�cation remains a di�cult and
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challenging problem. Feature selection is a challenging process in designing image classi-

�cation systems. The complexity in this is user should be able to achieve insight into how

observations behave in the feature space, since this may lead to design of better feature

extraction methods.

To the best of our knowledge, no work has been documented on extracting text and

non-text extraction from printed/handwritten bilingual document images with several

challenges. As a result, in our research, we propose developing a novel contour approach

and applying bounding boxes to various sections of document images. The developed

model can be employed with or without a priori knowledge of document images for both

handwritten and printed documents, and it can extract various text and non-text docu-

ment images if they exist. The proposed models e�cacy will be tested on a large number

of document images with various parameters. The following are the major objectives of

the proposed research work:

1. To propose an e�cient classi�er for classi�cation of text and non-text information.

2. To Develop an e�ective segmentation algorithm for extracting the text.

3. To design an algorithm for estimation and correction of skew angle.

1.8 Organization of the Thesis

In Chapter 2, details on di�erent types of datasets on printed/handwritten document

images which are publicly and also all the datasets which are captured by the mobile

camera and scanned document images. The interest of this chapter is to make the readers

familiar with datasets on bilingual printed/handwritten document images available in

literature on various qualities.
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In chapter 3, Initially, we take gray scale real-time o�ce document images, and in-

terpolation is used to improve an image's visual appearance, i.e., its quality. The visual

appearance of such an image is obtained by resizing it with the bilinear interpolation

method. When the interpolation is concluded, we use the fuzzy logic approach to improve

it. In fuzzy logic, an image is partitioned, and each partition is considered a fuzzy window.

The fuzzy window is enhanced by using mean and variance. Similarly, all fuzzy windows

are enhanced, and �nally, all fuzzy windows are summed. Fuzzi�cation, inference engines,

and defuzzi�cation are the three main parts of fuzzy logic. In this way skew angle of all the

enhanced documents are calculated. The results of extensive experimentation conducted

are tabulated. The performance is evaluated using quantitative measures like Michelon

Contrast (MC), Entropy, Peak Signal to Noise Ratio (PSNR), Structure Similarity Index

Measurement (SSIM), Absolute Mean Brightness Error (AMBE), Mean Squared Error

(MSE) and Normalized Root Mean Squared Error (NRMSE) as a parameter.

Chapter 1, gives introduction of Text and Non-Text printed/handwritten bilingual

document image enhancement, segmentation and Classi�cation. The state of art existed

methods and brief survey methods are presented.

In Chapter 2, we just made an attempt to brief our e�ort towards creation of the

datasets. The �rst dataset consists of printed/handwritten bilingual document images

with multiple skews and logos, pictures, tables, equations, numbers, seal impressions.

In chapter 3, we have proposed an e�cient approach for enhancement of real time

document images. The proposed approach Fuzzy Logic(FL) approach perform better

than the existing methods.

In chapter 4, we have presented an approach for signature extraction from a bilingual
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document images. The proposed approach is based on contour and blob's method. The

proposed algorithm is tested a two di�erent cases i.e., before enhancement and after

enhancement. Logo extraction is done by using masking and median �lter techniques. To

measure the performance di�erent performance metrics are used like, Accuracy, Precision,

Recall and F1-score.

In chapter 5, we proposed a hybrid U-SegNet model which integrates both U-net and

SegNet architectures. The performance is evaluated using metrics like accuracy, precision,

recall and F1-score and comparison analysis is also conducted with other segmentation

methods such as watershed method, Fuzzy C- means and U-net method.

In chapter 6, We have proposed U-net and component-based region network is a di�er-

ent method for analyzing features of document images, such as regions, bounding boxes,

convex hulls, �lters, and enhancements, when compared with existing methods. The

performance metrics used to measure performance are Accuracy, Precision, Recall, and

F1-Score. The proposed method is compared with existing methods. Our method per-

forms well.

In chapter 7, the overall contributions of the thesis are mentioned along with the

summary of the work followed by directions for future research work.

The superiorities of the newly proposed methods in terms of e�ectiveness and robust-

ness are established in the respective chapters theoretically, experimentally and also by

an extensive comparative analysis with the other well-known methods.



Chapter 2

Creation of Real-Time Datasets

2.1 Preamble

Data availability has increased signi�cantly as digital technology has progressed in

recent years. A dataset is a collection or set of data. This information is usually presented

in a tabular format. Each column represents a di�erent variable. We give visual de�nitions

of datasets and their potential elements. We collect a di�erent types of datasets to describe

the structure and concepts in a dataset, as well as the relationships between them. We

apply to the several existing datasets derived from document images.

According to research, the quality of datasets is essential to the objectives of empirical

studies in printed and handwritten document image analysis. For many years, researchers

have used publicly accessible dataset repositories in their research. Although datasets are

important in research, few studies consider the quality of their datasets which may result in

questionable results if the datasets have quality issues. Some types of data were observed

to get quality issues, according to studies. These studies take into account quality issues

such as noise, missing data, and incorrect data. However, one issue that has received

little attention whether or not the data is ambiguous or incapable of being interpreted

correctly (D. Baviskar et al., 2021).

The ultimate goal of data analysis is to evaluate the quality of datasets collected in

printed and handwritten document images, o�ce documents, newspaper, magazines, road
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side name boards, and street boards. As a �rst step, we need all of the documents scanned

and captured using an HP laser multi-jet scanner with a resolution of 300 dpi, as well

as in terms of cameras, there is a 16-mega pixel mobile camera with a high resolution

16-mega pixel primary camera with an f/2.2 aperture and a 2-mega pixel camera with an

f/2.4 aperture. Phase detection auto focus is available on the rear camera setup. It has

a 16-mega pixel front-facing camera with an f/2.0 aperture. It's a good way to �gure out

what datasets are meant to represent. We start by looking at existing datasets to see how

they're organized. Researchers then generate precise descriptions for datasets and their

potential characteristics. As previously said, we develop a conceptual model that speci�es

a datasets structure and concepts, as well as the relationships between them. Researchers

will be able to decide whether a dataset contains enough information to be relevant for

analysis using the De�nitions and model.

In this chapter, we present a new dataset of sentiment classi�cation printed and hand-

written document images for bilingual literature documents. This dataset tends to vary

from previous semantic similarity datasets in that it contains documents as well as ex-

amples of di�cult sentiment classi�cation problems found in the literature. This dataset

enables researchers to investigate the characteristics of long-distance within-document

images as well as cross-domain performance for the task of being generally motivated.

Initially, the benchmark dataset was used for shared tasks on modeling unrestricted fre-

quently deal. Almost all modern systems are entirely dependent on this data. However,

domains are relatively narrow, focusing primarily on document images (o�ce documents,

street signs, and signboards) While datasets exist for other domains such as document

images, scienti�c articles, and school exams, Kannada and English texts is one area in
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which robust data is lacking.

In comparison to other languages like Kannada and English, real-time document im-

ages in DIA is still in its early stages. We created a page-level printed/handwritten

document image dataset (PPHD) of o�cial standard documents, such as O�ce Docu-

ments, Signboards, Street boards, Scanned Booklets, and Name boards, in this work.

PPHD is made up of tens thousands of text and non-text document images from var-

ious parts of Karnataka. We also present the printed/handwritten benchmark results

document identi�cation (PHDI). Apart from document image detection, the dataset can

be utilized in various of other document image analysis applications, including text-line

segmentation, word segmentation/recognition, word spotting, handwritten and machine

printed text separation, and writer identi�cation.

2.2 Dataset of Bilingual Documents

In this section, we present details on real time of a dataset of bilingual document images

containing two languages i.e., one is the state o�cial language Kannada, second one is

national language and the other one is English which is a common o�cial language at

global level. in this case we have categorized the text and non-text separation of document

images dataset into two types:�rst one is synthetically collected di�erent places in common

people, where we asked the individual to collected from outside in two di�erent varieties

of text and non-text documents i.e., Kannada and English with di�erent orientations. In

this way, a of total of 10000 document images were captured from di�erent places. A

sample of this synthetically created bilingual document images with multiple distortions,

blurred document images, tilt letters, di�erent image sizes and multiple skews.



Creation of Real-Time Datasets 28

Training data is collected from a variety of locations, such as streets, government of-

�ces, road or national highway side recorded photographs, private or government sector

campuses dataset, and test data is collected from text and non-text images. All of the

consistent standard images were set aside as a test dataset to ensure that the methodolo-

gies developed with this dataset generalize well to new educational images and possibly

other �elds. We also o�er a baseline system based on a standard deep neural architecture

and explore how to deal with the challenge of limited training data. Large datasets of

labeled images, such like Image Net, are propelling convolution neural networks (CNNs)

further in machine learning. Many information retrieval visuals, such as charts, tables,

and diagrams, are made using software rather than photography or scanning.

A robust classi�er of o�cial document images illustrations o�ers wide range of appli-

cations in information extraction. Natural language systems could choose images by kind

depending on what information a user is looking for, and techniques could immediately

reveal �lters by expected label. Additional analytic systems might be employed to extract

more information from an image so that it can be indexed by classes. Software is used

to design the majority of standard o�cial images, which are qualitatively di�erent from

photos and scans (Sowmya Vajjala et al., 2020).
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2.2.1 Five di�erent datasets:

Dataset-I O�ce document images

(a) (b)

Figure 2.1: Sample (a) Sample (b)

Dataset-II Street board document images

(a) (b).

Figure 2.2: Sample (a) Sample (b)
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Dataset-III Inauguration board images

(a) (b)

Figure 2.3: Sample (a) Sample (b).

Dataset-IV Sign board images

(a) (b)

Figure 2.4: Sample (a) Sample (b).
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Dataset-V Answer scripts

(a) (b)

Figure 2.5: Sample (a). Sample (b).

Table 2.1: Di�erent types of Datasets.

Data Class 1 Class 2 Class 3 Class 4 Class 5 Total

sets

1 O�ce

Docu-

ments

Adverti-

sement

Boards

Inaug-

uration

Boards

Direction

Boards

Answer

Scripts

Over-all

datasets

Total 2000 2000 2000 2000 2000 10000

2.3 Datasets

The ideal data set would allow researchers to project the performance achieved exper-

imentally to the application domain represented by dataset.

Datasets allow researchers to train and test algorithm on signi�cant numbers of data

items and to compare performance on speci�c images. These are two main areas of
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OCR research (o�-line documents, on-line documents) which can be either handwritten

or machine written.

O�ce documents typically contain text and non-text, text may contain alphanumeric

characters, where as non-text contains logo, pictures, etc.,

An important condition in the design of datasets in this area is how well the subjects

are gathered. subject should be chosen from the same population and date gathered under

same condition.

The data sets gathered for o�-line document processing are explained below in detailed.

1. O�ce documents: are the records kept to show details about sales and purchase or

organization makes. They include invoice, credit note, debit note, receipt , delivery

note, catalog, user guide, spread sheets bills �nancial statements etc.,

2. Academic documents: which includes marks sheets, transcripts, thesis, paper charts,

journals, manuscripts etc.,

3. Boards: These are various kinds of board such as advertising boards, store boards,

which again contain information in di�erent languages and may contain logos which

is non-text information.

4. Sign boards: on street boards, sign boards contain di�erent information in multi-

lingual form. The analysis of boards and processing into digital forms helps the

user to understand the board easily which might be in di�erent language. User can

translates it into another known language to understand its meaning.

5. Answer scripts: which contain student registration number, which can be combi-

nation both numbers and alphabets it also contains questions and Answer written
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by students in one or two languages. Analysis and processing of answer scripts

helps in digital evaluation of answer scripts which further reduce the load of human

intervention.

2.4 Conclusion

In this chapter, we just made an attempt to brief our e�ort towards creation of the

datasets. The �rst dataset consists of printed/handwritten bilingual document images

with multiple skews and logos, pictures, tables, equations, numbers, seal impressions. In

this case. We have �ve di�erent types of dataset classes Table 2.1; each classes consisting

of 2000 document images with forwarded notices. The second dataset consists of 2000

bilingual printed/handwritten document images of di�erent o�ce documents. The third

dataset consists of 2000 street boards images. Fourth and �fth dataset consists of each

classes have 2000 sign boards and scanned booklets document images. Further, we also

created a text and non-text document image datasets by extracting words, logos, tables,

signatures from the all classes datasets. Here we extracted di�erent bilingual printed and

handwritten document images totaling a images dataset of 10000 document images.



Chapter 3

Enhancement of Document Images

Using Machine Learning Approach

3.1 Preamble

The goal of image enhancement is to make an image more e�ective for a certain jobs,

such as making a more individually pleasant image for human sight. The quality of an

image as perceived by a person can be improved using image enhancement techniques.

Because many real time document images on a color display provide insu�cient informa-

tion for image interpretation, these techniques are quite bene�cial. There is no conscious

e�ort to improve the image's integrity in comparison to some ideal form. Image quality

can be improved using a variety of approaches. The most widely utilized techniques are

contrast, stretch, density slicing, edge enhancement, and spatial and frequency domain.

After correcting for geometric and radiometric distortion, image improvement is tried.

Image enhancement procedures are applied separately to each band of a multispectral

image. Because of the precision and variety of digital processes, digital techniques have

been proven to be more satisfying than photographic procedures for image enhancement.

Image enhancement techniques are frequently ad hoc, with little or no attempt to

Some parts of the materials in this chapter have appeared in the following research paper.

1. Ravikumar M, Shivakumar G and Shivaprasad B J. 2022. �Enhancement of Real Time Docu-

ment Images Using Fuzzy Logic and Machine Learning Approach�, Journal of Jilin University

(Engineering and Technology Edition Vol:41 Issue:09:2022. (Scopus Indexed).
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anticipate the real image deterioration process. This procedure has no e�ect on the data

fundamental information content. Gray level and contrast adjustment, noise reduction,

edge sharpening, �ltering, interpolation and magni�cation, and pseudo coloring are all

included. Frequency domain and spatial domain methods are the two types of image

enhancing techniques. The former transforms the image into a two-dimensional signal

and the enhances using the image's two-dimensional Fourier transform. The low-pass

�lter approach removes noise from the image, and high-pass �ltering enhances the edge,

which is a type of high-frequency signal, and clari�es the fuzzy image. The local mean

�ltering�based approach and the median �ltering (take intermediate pixel value of the

local neighborhood)�based methods are two common spatial domains�based algorithms

that can be used to eliminate or weaken noise.

A document image is �rst preprocessed with decolorizing, denoising, �ltering, or gray

boosting, among other things, in a standard OCR system. The gray scale image is then

converted to a binary image using a threshold value for ease of usage in the following

phase. Characters in the document picture are then separated and normalized during the

character segmentation procedure. Furthermore, speci�c character feature statistics can

be extracted and utilized in the �nal recognition stage, which results in the production of

ultimate character strings as the text content in that image. Marginal noise is found and

removed using the suggested strategy, which involves three iterations of block identi�ca-

tion using the Hu moments method and converting the neighbour pixel to the background

pixel. Marginal noise is commonly found towards the edges of document images, result-

ing in a non-uniform lighting gradient. In geosciences, astronomy, facial reconstruction,

multiple-description coding, resolution enhancement, and geographic information systems,
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interpolation is a common approach for image scaling.

The spatial domain refers to the image plane itself and methods in spatial domain

are based on directly modifying the value of the pixels. Document image enhancement

is required in many situations when analyzing the quality of documents like handwrit-

ten/printed text documents, answer booklets, Street Boards and inauguration board im-

ages that have become noisy and low-contrast after scanning. One of the most important

issues in document image analysis is contrast enhancement. Various types of need-based

analysis tasks become more di�cult as a result of high or low contrast on images. The

solution for such images is to improve them by reducing the noise and increasing text

contrast. This is possible by incorporating point operations

Here we have compared three di�erent methods for image enhancement for document

Images (i) Contrast stretching and (ii) Histogram Equalization. A number of contrast

measures were proposed for complex images as document images. During image acqui-

sition the images are a�ected due to poor illumination, lack of dynamic range in the

imaging sensor, or even wrong setting of a lens aperture etc., To overcome this, we have

to increase the dynamic range of the gray levels in the image being processed.

In this work, we propose a method i.e. Fuzzy Logic approach to enhance the real

time document images and the proposed method is compared with spatial domain and

frequency domain methods. Based on the quantitative metrics result is measured and

result shows the superiority of the proposed method.

This chapter is organized as follows: In section 3.2 proposed method is discussed.

In section 3.3 we discuss the Results and Discussions also a result are given and �nally

conclusion is given in section 3.4.
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3.2 Proposed Method

Based on a review of literature, we understand that, no work has been reported on

fuzzy based approaches for printed/handwritten document images of bilingual document

images. However, the literature also suggests that, di�erent feature extraction methods

and classi�ers a�ect the performance of document images di�erently, with an intuition

that fuzzy of di�erent feature extraction methods as well as combination of classi�cation

algorithms may enhance real time document images identi�cation accuracy, we make

an empirical analysis for possibility of fuzzy based approaches for real time bilingual

document images which work both at frequency domain and spatial domain.

In this section, we discuss the proposed method for enhancing real time document

images and the block diagram of the proposed method is shown in the Figure3.1.

Figure 3.1: Block diagram of the proposed method.

Initially, we take grayscale real-time o�ce document images, and interpolation is used
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to improve an image's visual appearance, i.e., its quality. The visual appearance of such

an image is obtained by resizing it with the bilinear interpolation method (Puri Shalini

et al., 2020). When the interpolation is concluded, we use the fuzzy logic approach to

improve it. In fuzzy logic, an image is partitioned, and each partition is considered a

fuzzy window. The fuzzy window is enhanced by using mean and variance. Similarly, all

fuzzy windows are enhanced, and �nally, all fuzzy windows are summed. Fuzzi�cation,

inference engines, and defuzzi�cation are the three main parts of fuzzy logic (A. Thakur

et al., 2015), which are given in the equation 3.1 and 3.2.

Here fuzzi�cation is required to map the input image with fuzzy plane, vice versa for

defuzzi�cation i.e., the membership of a point Pij(x, y) ∈ D to the window Wij(x, y) are

given by the equation 3.1.

Wij =
(Pij(x, y))

γ∑n
i=1

∑m
j=1 (Pij(x, y))

γ (3.1)

where, Wij : D → [0, 1]

Wij described the membership and Pij(x, y) described the pixel value. γ ∈ (0,∞) and

control the fuzzi�cation and defuzzi�cation.

The transform ψenh is built as a sum of the transformed Wij weights with degree of

membership ψij. The enhanced image is given by equation 3.2.

Ψenh(f) =
n∑

i=1

m∑
j=1

wijXΨij(f) (3.2)

where, ψij (f) is image (f) before enhancement. ψij (f) is image (f) after enhancement.

After the Fuzzy Logic process is completed, we compute quality of an images by using

quantitative measure like Entropy, Peak Signal Noise Ratio (PSNR), Michelson Con-

trast (MC), Structure Similarity Index Measurement(SSIM) and Absolute Mean Bright-
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ness Error(AMBE), Mean Squared Error (MSE), Normalized Root Mean Squared Error

(NRMSE) as parameter. Obtained results are tabulated in Table.[3.11 to 3.15] and cor-

responding the images are shown in the Figure [3.22 to 3.26].

In the next section, experimentation and results are discussed.

3.3 Results and Discussion

For the purpose of experimentation, we have used considered,real time scanned docu-

ment images and captured images produced by the devices may have distortions such as

blurred or noisy images. blurred document images, handwritten/printed text documents,

answer booklets, Street Boards and inauguration board images, among other things. To

enhance the real time document images, the di�erent spatial domain enhancement meth-

ods are used like Histogram Equalization (HE), Adaptive Histogram Equalization (AHE),

Gamma Correction(GC), Linear Transformation(LT), Log Transform(LogT) and Con-

trast Stretching(CS). Frequency domain methods focus on the image orthogonal trans-

form instead of the image itself. Low Pass Filter(LPF), High Pass Filter (HPF), Gaussian

Filter (GF), Non Local Means (NLM), Constrained Least Squares (CLS),Pseudo Inverse

Filter(PIF) are used. After the experimentation, the results are shown in Spatial and

Frequency domain the Figure 3.22 to 3.26.

To measure the performance of the images, we have considered quantitative parame-

ters. They are Entropy,MC, PSNR, SSIM, AMBE,MSE and NRMSE. Table [3.1 to 3.10].

Various evaluation metrics were using NLM, LT and Fuzzy Logic(FL) processed image

their respective spatial domain, frequency domain and fuzzy logic. The evaluation metrics

used are described as follows. From table [3.1 to 3.5]., it is observed that the di�erent real
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time dataset gives good result for Entropy, PSNR, AMBE and quantitative metric values

are show in the Figures3.3, 3.5, 3.7, 3.9, 3.11, 3.13, 3.15, 3.17, 3.18 and 3.21, where the

lower AMBE and higher Entropy, MC, SSIM, PSNR values indicates good quality image.

Further, we need to extend our proposed method to improve MC and SSIM matrices.

Table 3.1 to 3.5 spatial domain and Table3.6 to 3.10, Frequency domain and Finally,

Fuzzy Logic summarizes the various methods available in literature along with the pro-

posed one. It is understood that unlike other, ours works on enhanced real time document

images.

For experimentation purpose, we have considered our dataset into �ve di�erent cate-

gories, they are

There are the �ve di�erent datasets combined for one experimentation purpose and

the total dataset containing �ve thousand images. Here we have applied these di�erent

approaches for enhancement and those images. They are spatial domain, frequency do-

main and fuzzy logic approaches. Here we have proposed fuzzy logic approaches which

gives a good results and the proposed method compared with other two methods. Exper-

imentation is discussed in these cases i.e., spatial domain and frequency domain methods.

[H] Entropy =
C∑
i=1

−pi ∗ log2 (pi) (3.3)

[H]PSNR = 10 log10

(
MAX2

I

MSE

)
(3.4)

[H] SSIM(x, y) =
(2µxµy + c1) (2σxy + c2)

(µ2
1 + µ2

2 + c1) (σ2
1 + σ2

2 + c2)
(3.5)

[H]MSE =
1

mn

m−1∑
0

n−1∑
0

∥f(i, j)− g(i, j)∥2 (3.6)
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3.3.1 Case I. Spatial Domain Approach

In this section we have taken �ve real time datasets.

Dataset-I O�ce Documents:

(a) (b)

Figure 3.2: (a) Input Image. (b) Output Image.

Table 3.1: Comparison of Di�erent quantitative methods.

Methods Entropy MC PS-NR SSIM AM-BE MSE NRMSE
HE 16.88 1.0 0.7 0.0 233.27 55337.99 1.0
AHE 21.12 0.95 0.71 0.01 233.03 55225.44 1.0

Gamma 4.6 15.93 29.13 0.99 7.17 78.32 0.04
LogT 2.18 1.0 15.72 0.9 11.84 1744.02 0.18
CS 1.07 1.0 20.01 0.93 13.33 649.3 0.11
LT 4.23 1.0 17.97 0.98 3.21 1038.6 0.14

Figure 3.3: Graphical representation of di�erent quantitative measures.
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In this dataset, LT gives best result among all the remaining methods which is shown

in Table 3.1.

Dataset II-Advertisement Boards

(a) (b)

Figure 3.4: (a)Input Image.(b)Output Image.

Table 3.2: Comparison of Di�erent quantitative methods.

Methods Entropy MC PSNR SSIM AMBE MSE NRMSE
HE 21.08 1.0 5.58 0.02 128.34 17997.54 1.0
AHE 21.77 1.0 5.58 0.02 128.3 17996.24 1.0

Gamma 6.94 1.0 18.93 0.94 28.31 831.39 0.21
LogT 5.61 1.0 8.96 0.8 88.8 8268.83 0.68
CS 6.86 1.0 13.49 0.69 48.14 2909.86 0.41
LT 6.93 0.99 47.68 1.0 1.0 1.11 0.01

Figure 3.5: (a) Real time o�ce document image enhanced document.
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In this dataset, LT gives best result among all the remaining methods which is shown

in Table 3.2.

Dataset-III Inauguration Boards

(a) (b)

Figure 3.6: (a) Input Image.(b) Output Image.

Table 3.3: Comparison of Di�erent quantitative methods.

Methods Entropy MC PSNR SSIM AMBE MSE NRMSE
HE 20.56 1.0 10.21 0.02 57.75 6196.11 0.99
AHE 21.78 1.0 10.2 0.02 57.87 6212.64 0.99

Gamma 5.92 1.0 21.86 0.77 19.89 423.31 0.26
LogT 6.51 49.8 6.71 0.47 115.23 13860.67 1.49
CS 2.4 1.0 16.72 0.24 32.02 1385.38 0.47
LT 6.47 0 47.52 1.0 1.0 1.15 0.01

Figure 3.7: Graphical representation of di�erent quantitative measures.
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In this dataset, LT gives best result among all the remaining methods which is shown

in Table 3.3.

Dataset-IV Direction Boards

(a) (b)

Figure 3.8: (a) Input Image.(b) Output Image.

Table 3.4: Comparison of Di�erent quantitative methods.

Methods Entropy MC PSNR SSIM AMBE MSE NRMSE
HE 21.29 1.0 4.33 0.0 144.69 2397.28 1.0
AHE 21.78 1.0 4.33 0.0 144.69 2397.28 1.0

Gamma 7.57 1.0 19.64 0.95 24.94 706.26 0.17
LogT 6.0 1.0 9.06 0.68 77.76 8070.99 0.58
CS 6.04 1.0 15.14 0.65 30.31 1992.29 0.28
LT 7.47 1.0 22.49 0.97 1.0 366.53 0.12
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Figure 3.9: Graphical representation of di�erent quantitative measures.

In this dataset, LT gives best result among all the remaining methods which is shown

in Table 3.4.

Dataset-V Answer scripts

(a) (b)

Figure 3.10: (a) InputImage. (b) OutputImage.

Table 3.5: Comparison of Di�erent quantitative methods.

Methods Entropy MC PSNR SSIM AMBE MSE NRMSE
HE 15.4 1.0 0.46 0.0 240.26 58486.09 1.0
AHE 21.02 0.99 0.47 0.01 239.99 58361.84 1.0

Gamma 4.71 1.0 29.83 0.99 4.73 67.66 0.03
LogT 3.82 1.0 13.22 0.76 2.56 3097.1 0.23
CS 2.12 1.0 26.64 0.91 2.92 141.0 0.05
LT 4.87 1.0 13.95 0.87 12.21 2615.77 0.21
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Figure 3.11: Graphical representation of di�erent quantitative measures.

In this dataset, LT gives best result among all the remaining methods which is shown

in Table 3.5.

3.3.2 Case II. Frquency Domain Approach

In this section we have taken �ve real time datasets.

Dataset-I O�ce Documents

(a) (b)

Figure 3.12: (a) Input Image.(b) Output Image.
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Table 3.6: Comparison of Di�erent quantitative methods.

Methods Entropy MC PSNR SSIM AMBE MSE NR-MSE
LPF 5.41 4.4 26.76 0.94 0.6 137.12 0.05
HPF 7.62 1.0 4.16 −0.01 126.62 24969.61 0.68
GF 5.42 4.4 26.78 0.94 0.59 136.53 0.05
CLS 21.81 0.85 0.82 0.01 229.81 53874.7 1.0
PIF 21.81 0.85 0.82 0.01 229.81 53874.7 1.0
NLM 5.41 1.0 20.99 0.85 0.78 517.33 0.1

Figure 3.13: Graphical representation of di�erent quantitative measures.

In this dataset, NLM gives best result among all the remaining methods which is

shown in Table 3.6.

Dataset-II Advertisement Boards

(a) (b)

Figure 3.14: (a)Input Image. (b)Output Image.
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Table 3.7: Comparison of Di�erent quantitative methods.

Methods Entropy MC PSNR SSIM AMBE MSE NRMSE
LPF 7.01 1.0 40.85 0.97 0.48 5.35 0.02
HPF 7.83 1.0 8.43 −0.02 5.01 9340.19 0.73
GF 7.01 1.0 40.87 0.97 0.49 5.33 0.22
CLS 21.81 1.0 5.72 0.02 126.05 17434.66 1.0
PIF 21.81 1.0 5.72 0.02 126.05 17434.66 1.0
NLM 7.0 1.0 31.96 0.92 0.4 41.4 0.05

Figure 3.15: Graphical representation of di�erent quantitative measures.

In this dataset, NLM gives best result among all the remaining methods which is

shown in Table 3.7.

Dataset-III Inauguration Boards

(a) (b)

Figure 3.16: (a)Input Image. (b)Output Image.
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Table 3.8: Comparison of Di�erent quantitative methods.

Methods Entropy MC PSNR SSIM AMBE MSE NRMSE
LPF 6.52 251.0 26.74 0.94 0.69 137.86 0.15
HPF 7.89 1.0 6.83 −0.01 62.38 1349.65 1.46
GF 6.53 251.0 26.75 0.94 0.69 137.34 0.15
CLS 21.81 1.0 10.18 0.01 58.19 6245.49 1.0
PIF 21.81 1.0 10.18 0.01 58.19 6245.49 1.0
NLM 6.52 1.0 20.37 0.81 1.05 596.87 0.31

Figure 3.17: Graphical representation of di�erent quantitative measures.

In this dataset, NLM gives best result among all the remaining methods which is

shown in Table 3.8.

Dataset-IV Direction Boards

(a) (b)

Figure 3.18: (a)Input Image. (b)Output Image.
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Table 3.9: Comparison of Di�erent quantitative methods.

Methods Entropy MC PSNR SSIM AMBE MSE NRMSE
LPF 7.67 126.0 26.25 0.88 0.51 154.11 0.08
HPF 7.98 1.0 7.69 −0.04 20.09 1107.41 0.67
GF 7.67 126.0 26.27 0.89 0.52 153.61 0.08
CLS 21.81 1.0 4.26 0.01 142.49 24372.7 1.0
PIF 21.81 1.0 4.26 0.01 142.49 24372.7 1.0
NLM 7.67 1.0 19.34 0.68 0.44 756.78 0.18

Figure 3.19: Graphical representation of di�erent quantitative measures.

In this dataset, NLM gives best result among all the remaining methods which is

shown in Table 3.9.

Dataset-V Answer Scripts

(a) (b)

Figure 3.20: (a)Input Image.(b)Output Image.
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Table 3.10: Comparison of Di�erent quantitative methods.

Methods Entropy MC PSNR SSIM AMBE MSE NRMSE
LPF 4.63 1.0 31.79 0.96 0.42 43.05 0.03
HPF 6.37 1.0 2.51 −0.03 163.58 36508.69 0.79
GF 4.63 1.0 31.81 0.96 0.41 42.87 0.03
CLS 4.64 1.0 23.53 0.83 0.62 288.19 0.07
PIF 21.81 1.0 0.46 0.01 239.88 58484.44 1.0
NLM 21.81 1.0 0.46 0.01 239.88 58484.44 1.0

Figure 3.21: Graphical representation of di�erent quantitative measures.

In this dataset, LT gives best result among all the remaining methods which is shown

in Table 3.10.

3.3.3 Fuzzy Logic Method

Dataset-I O�ce Documents
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(a) (b)

Figure 3.22: (a)Input Image.(b)Output Image.

Table 3.11: Comparison of Di�erent quantitative methods.

Methods Entropy MC PSNR SSIM AMBE MSE NRMSE
FL 9.14 0.91 37.27 1.0 0.01 0.0 0.01

Dataset-II Advertisement Boards

(a) (b)

Figure 3.23: (a)Input Image.(b)Output Image.

Table 3.12: Comparison of Di�erent quantitative methods.

Methods Entropy MC PSNR SSIM AMBE MSE NRMSE
FL 13.84 1.0 12.93 0.78 0.08 0.05 0.43
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Dataset-III Inauguration Boards

(a) (b)

Figure 3.24: (a)Input Image.(b)Output Image.

Table 3.13: Comparison of Di�erent quantitative methods.

Methods Entropy MC PSNR SSIM AMBE MSE NRMSE
FL 8.67 1.0 9.71 0.54 0.07 0.1 0.33

Dataset-IV Direciton Boards

(a) (b)

Figure 3.25: (a)Input Image. (b)Output Image.
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Table 3.14: Comparison of Di�erent quantitative methods.

Methods Entropy MC PSNR SSIM AMBE MSE NRMSE
FL 14.16 1.0 19.23 0.89 0.04 0.1 0.18

Dataset-V Answer Scripts

(a) (b)

Figure 3.26: (a)Input Image.(b)Output Image.

Table 3.15: Comparison of Di�erent quantitative methods.

Methods Entropy MC PSNR SSIM AMBE MSE NRMSE
FL 4.82 1.0 −47.39 0.0 232.14 54783.76 245.345
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Table 3.16: Comparison of the results from proposed method for �ve di�erent enhance-
ment datasets.

Sl Methods Entropy MC PSNR SSIM AMBE MSE NR
No. MSE

Balamurugan 4.23 1.0 17.97 0.98 3.21 7103.6 70.14
1 et.al.,[11]

Antoni 5.41 1.0 20.99 0.85 0.78 517.3 0.1
2 et.al.,[46]

Ravinder 16.88 1.0 0.7 0.0 233.27 5446.4 1.0
3 et.al.,[15]

Spatial 4.23 1.0 17.97 0.98 3.21 1038.6 0.14
Domain 6.93 0.99 47.68 1.0 1.0 1.11 0.01

4 6.47 0 47.52 1.0 1.0 1.15 0.01
7.47 1.0 22.49 0.97 1.0 366.53 0.1 2
4.87 1.0 13.95 0.87 12.21 2615.7 0.21

Frequecy 5.41 1.0 20.99 0.85 0.78 517.33 0.1
Domain 7.0 1.0 31.96 0.92 0.4 41.4 0.05

5 6.52 1.0 20.37 0.81 1.05 596.87 0.31
7.67 1.0 19.34 0.68 0.44 756.78 0.18
21.81 1.0 0.46 0.01 239.8 5848.4 1.0

Proposed 9.14 0.91 37.27 1.0 0.01 0.0 0.01
(Fuzzy Logic) 13.84 1.0 12.93 0.78 0.08 0.05 0.43

6 8.67 1.0 19.71 0.54 0.07 0.01 0.33
14.16 1.0 19.23 0.89 0.04 0.01 0.18
4.82 1.0 −47.39 0.0 232.14 5478.7 245.3

From Table 3.16, we have given the various approaches in enhancement of document

images are given and sl.no.6, in the spatial domain approaches which contain �ve doc-

uments indicates that for experimentation we have used �ve di�erent datasets shown in

each row similarly frequency domain and the proposed method in Fuzzy Logic approach.
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Table 3.17: Comparative analysis of Three di�erent cases.

Cases Entropy MC PSNR SSIM AMBE MSE NRMSE

Spatial D4 7.47 1.0 22.49 0.97 1.0 366.53 0.12
Domain
Frequency D3 6.52 1.0 20.37 0.81 1.05 596.87 0.31
Domain
Proposed D1 9.14 0.91 37.27 1.0 0.01 0.0 0.01

(Fuzzy Logic)

Figure 3.27: Graphical representation of di�erent quantitative measures.

In this work we have used �ve di�erent real time datasets for three cases and we have

selected the best method from each case and case three i.e. fuzzy logic(FL) approach is

the best method for enhancement of document images which is shown in the graph 3.27.

3.4 Conclusion

In this work, we have proposed an e�cient approach for enhancement of real time docu-

ment images. The proposed approach uses Fuzzy Logic(FL) method. Experimentation is

carried out on our own �ve di�erent datasets containing Five thousand complicated docu-

ment images. The proposed method is compared with spatial and also frequency domain

methods. Finally, Fuzzy Logic approach perform better than the existing methods.



Chapter 4

Extraction of Signature and Logo from

Bilingual Document Images

4.1 Preamble

Section A

Signature is one of the most essential part generally studied for recognizing the bio-

metric modalities. Nowadays signature detection and veri�cation performs a dynamic

part in the organizations somewhere security and con�dentiality are the main anxieties.

Especially in countries like India because these two features of the manuscript are the

�nest concepts for the retrieval of the contented information of the document. As the

population is increasing day by day unique identi�cation of a document can be done

through signatures of the authors of an individual o�ce. Signature extraction is the recent

biometric proof of identity method, with high permissible recognition. Even uncertainty

Some parts of the materials in this chapter have appeared in the following research paper.

1. Shivakumar G., Ravikumar M., Shivaprasad B. J. and Guru D. S., 2022. �Signature Extrac-

tion from Bilingual Document Images Using Blobs Method�, In Modern Approaches in Machine

Learning and Cognitive Science, pp. 283-294. (springer).

2. Shivakumar G., Ravikumar M., Shivaprasad B. J. and Guru D. S., 2022. �Extraction of Logo

from Real Time Document Images Using Masking and Median Filter Approaches�, IEEE INCET,

Technically Co-Sponsored by IEEE Bangalore Section and IEEE USA, pp. 01-07. (IEEE).
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handwritten signature veri�cation has been comprehensively considered in the preceding

eras. The furthermost accurate techniques essentially always take development of dynamic

features like acceleration, velocity, and the di�erence between up and down strokes.

Signatures may be responsible for amusing information about a person as they consist

of exclusive belongings of human behavior, therefore they are used for detection/Identi�cation

determinations. The signature has been well-thought-out for bio-metric authentication

in organizational documents, legal documents, etc. In a manuscript, the signature may

be inspected by means of forensic document analysis experts for validating documents

and to con�ne forged. It is a common organisational preparation currently to store and

maintain large databases which is a determination to move towards a paperless o�ce.

Large quantities of administrative documents are often scanned and archived as images

(e.g. O�ce documents dataset) without suitable directory information.

To segment documents from two layers: one layer supposed to contain printed text

and other layer contain the handwritten parts. Such a segmentation problem has usual

an inordinate deal of consideration in the literature for the reason that of the di�erent

processing methodologies for printed and handwritten texts. The objective is to apply

corresponding techniques on the printed and handwritten parts. Many exploration works

are going on for automatic online/o�ine signature veri�cation and recognition (Guangyu

Zhu et al., 2018; K S Radhika et al., 2014; Prakash H. N. et al., 2010; Prakash H N et al.,

2009; Prakash H N et al., 2009).

Signature is a unique object and helps in indexing of large o�cial papers stored in

the database. Signature detection/veri�cation from the document images and retrieving

documents using the signature as a query is challenging task in the area of document image
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exploration and processing. Nevertheless, these methods take on that the signatures are

inaccessible and do not touch/overlap with other text in the document.

In a machine-printed manuscript that comprises a signature, there might be some

printed texts that may touch and/or overlap the signature. As a sign of that, such run-

through has generated a remarkable demand for robust conducts to access and manipulate

the information that these images contain. Obtaining information resources relevant to

the query from such repositories is the main objective of document retrieval.

A sample scanned document from the O�ce document dataset So, signatures could

be used as key data for searching and retrieval of documents. Thus, the handwritten

signature will undoubtedly add an advantage for document indexing and searching. Since

a signature is treated as non-text, it will be useful in the classi�cation of text and non-text

information from given document images.

4.2 Proposed model

In this section we discuss the proposed methodology. The illustration of the proposed

method is shown in Figure 4.1.

Figure 4.1: Block diagram of the proposed method.
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At the beginning, bilingual document is considered for experimentation. Since the doc-

uments is real time, collected from di�erent government o�ces it may contain noises, low

resolution, may be blurred. Hence preprocessing is needed. To enhance such documents

we use Otsu method. After this the document is free from noises. Normally signatures

are irregular in shape containing di�erent features like strokes, curves, edges, etc., to store

all these features blob's were created. Since our intension is to extract signature from the

document, it is necessary to separate foreground from back ground.

Since signatures generally have di�erent parts, there may be some discontinuity in

them. To �ll up the discontinuity we are applying a method called connected component

analysis. Normally area of the signature is more when compared with all the blobs and

these small blobs are removed using region props, which is performed by �xing some

threshold values, and �nally the area i.e, a blob which is left in the documents is considered

as a signature.

Since signature is having its own features when compared with text, by applying

thresholding concepts background and foreground are separated. Here signature is con-

sidered foreground which is based on the threshold value and thus signature is considered

as a blob. Some times there may be the same size of signature and non-signature infor-

mation apart from this some small blobs also be created. Using connected component

analysis any discontinuity present in the signature is �lled. Normally area of the signature

is more when compared with all the blobs and these small blobs are removed using region

props. In order to eliminate smaller areas called blobs, region props are used which is

performed by �xing some threshold values and �nally the area i.e, a blob which is left in

the documents is considered as a signature. The proposed algorithm extracts signatures
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from a bilingual document with any orientation in a real-time scenario even if most of the

documents containing more than one signature at di�erent locations.

4.3 Results and Disussion

For experimentation, we have created our own dataset containing 150 document im-

ages. The images are given to the proposed algorithm and performance is evaluated by

measuring the Accuracy, Precision, Recall and F1-Score, Jaccard similarity, Dice and in-

tersection over union as parameters. The proposed method gives good results compared

to all the existing methods shown in Table 4.1.

Table 4.1: Di�erent measuring parameters used for signature detection.

Methods Parameters

Accu- Preci- Re- F1- Jaccard Dice Inter-
racy sion call score simila- section

rity over
union

Histogram(Napa 0.38 0.64 0.39 0.41 0.279 0.32 0.19
et al., 2013)
Contour(Aravinda 0.43 0.59 0.44 0.42 0.250 0.47 0.30
et al., 2019)
Surf (Pal 0.47 0.63 0.47 0.50 0.373 0.38 0.23
et al., 2012)
K-means(Alpana 0.49 0.70 0.49 0.54 0.437 0.30 0.18
et al., 2018)
LBP (Tejas Jadhav 0.62 0.73 0.62 0.66 0.571 0.40 0.25
et al., 2019)
Proposed 0.84 0.94 0.88 0.91 0.829 0.48 0.32

From the Table 4.1, it is observed that the proposed method gives good signature

detection results for all metrics used. Results are shown in the Figure 4.2 to 4.11 and the

corresponding graphical representation for all the techniques is plotted in graph which is

shown in the Figure 4.12.
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Figure 4.2: (a) Monolingual document images with three di�erent signatures. (b) output.

Figure 4.3: (a) Bilingual document image with one signature. (b) Output.
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Figure 4.4: (a) Bilingual document image with single signature. (b) Output.

Figure 4.5: (a) Monolingual handwritten document image with one signature. (b) output.
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Figure 4.6: (a) Monolingual document image with two signatures. (b) Output image.

Figure 4.7: (a) Bilingual document with signature. (b) Output image.



Extraction of Signature and Logo from Bilingual Document Images 65

Figure 4.8: (a) Document image with signatures. (b) Output image.

Figure 4.9: (a) Bilingual document with two signature. (b) Output image.
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Figure 4.10: (a) Bilingual document with signature. (b) Output image.

Figure 4.11: (a) Document image with three signatures. (b) Output image.
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Figure 4.12: Graphical representation of signature detection for di�erent techniques.

Section B

A logo is the visual representation of a company or organization, which forms the

foundation of its identity. It is composed of name, symbol, monogram, emblem, and

trademark, designed for easy and de�nitive recognition by public. Generally, logo is an

essential part studied for recognizing the representation modalities. Recent study reveals

an initiative taken to organize and verify the admired records using the computer logos

in a particular location, which essentially contains collection of objects. A logo is a key

component of a complex model for identi�cation that must be applied fundamentally to

form organization's communications. The creation of integration of logos into the proper

technological scheme therefore is among the most di�cult and important �elds of graphic

design. Research will continue to expand it to include access to sensitive documents such

as scanned papers, documents by the university, governmental certi�cates, etc., large

discoveries the corresponding institute. Every organization has a unique logo, but the



Extraction of Signature and Logo from Bilingual Document Images 68

size, color, texture, and pattern of it may vary (Vaijinath et al., 2017; Umesh et al.,

2015).

Given an image of the document, identifying and di�erentiating that logo becomes

a major task in retrieving and identifying documents based on logo. Logo identi�cation

helps primarily in the optimization of document images and improves the user's ease of

authenticating documents contained in the database. Therefore, many researchers in the

�eld of document image processing and document image analysis have drawn attention to

the identi�cation of a logo and its separation from the document. Furthermore, we deal

with the problem of logo detection and include an ideal solution in this article (Umesh et

al., 2016).

Nevertheless, the isolated or overlapping printed text present in the logo is di�cult

to extract. In a machine-printed manuscript that comprises a logo, there might be some

printed texts that may touch or overlap the logo. As these di�culties are mentioned in the

above case it is mandatory to access and manipulate the information present in the logo,

obtaining data resources relevant to the query from such repositories is the main concept

of document retrieval. A sample of a printed document images with a logo. So, the logo

could be used as key data for searching and retrieval of documents. Since a logo is treated

as non-text, it will be useful in the classi�cation of text and non-text information from

related document images. In Section 4.4, we present the proposed technique, in Section

4.5, we conducted Experimentation achieved by the proposed procedure, and �nally in

Section 4.6, the paper is concluded.

In the following we discuss the proposed method for logo extraction.
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4.4 Proposed Methodology

In this part, we will discuss in detail about the proposed methodology. Figure 4.13,

describes �owchart for logo extraction from document image.

In this section, we discuss the propose methodology and the block diagram of the

proposed method is given Figure 4.13. Initially the input image is converted to binariza-

tion. Since we have collected document images and these image were captured through

mobile camera as with di�erent resolutions. Because of di�erent resolution the quality

of the images is also varies (some have good quality and some poor quality). Hence it is

necessary to improve the quality of the image and can be performed using enhancement

technique. In this work we have extracted logo from the document using two di�erent

approaches that is with enhancement and without enhancement. Once image is binarized

and the binarization process can be performed using threshold level.

Figure 4.13: Flowchart of proposed method.
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f(x, y) =

{
0, if f(x,y)<T

1, if f(x,y)≥T
(4.1)

In this work our main intention is to extract logo from document image. The given

image contain both text and non-text logo is a non-text and area of the text is normally

smaller than are non-text in order to identify this larger area we are using a method called

masking. Using masking the larger area from the document is extracted & masking is

also used for segmentation purposes. In this way logo is extracted. In another approach

after binarization we need to remove the noises for enhancement purpose. Here we have

used median �lter and removes impulse noise and it is denoted by

f̂(x, y) =
1

mn

∑
(s,t)εSxy

g(s, t) (4.2)

Noise removal: This step applies median �lter to remove non-logo part in the document.

Mainly it removes impulse noise from the image after masking operation. It keeps much

of the logo part as it is in the document and converts remaining part of the document

into background color.

Logo extraction: Now we draw a bounding box to the output obtained from the

previous steps. This helps to �nd out location of a logo in the binarized image. The

co-ordinate points of the bounding box in the barbarized image are used to extract a logo

from original gray scale/color image.

Once the image is enhanced we go for masking as explained above and logo is extracted.

After this we have compared both the approaches.
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4.5 Experimentation

In this section, we will discuss the result obtained from the proposed methodology.

Experimentation is carried out on our own data set of 500 document images containing

both printed/handwritten which may be monolingual or bilingual. In this experimentation

we have considered two di�erent cases. Case one is for without enhancement and the other

with enhancement.

4.5.1 Case-I: Logo Extraction Without Enhancement.

For experimentation, we have made our own dataset containing 500 document images.

The input image given the proposed algorithm and performance is evaluated by mea-

suring the Accuracy, Precision, Recall, F1-Score, Speci�city, Dice Co-e�cient, and Jac-

card similarity as parameters. The proposed method gives good results compared to the

Masking and Median �ltering methods. The tabulated results are shown in Table 4.2,

From that table, it is observed that logo extraction without enhancement gives less re-

sults of compared with with-enhancement documents contain noisy, blurred. Distortion

logo present in the documents.

From Table 4.2, shows that the proposed method gives good logo extraction without

enhancement results for all metrics used. Result are shown in the Figure 4.14 to 4.17

and the corresponding graphical representation for all the techniques is plotted in graph

which is shown in the Figure4.18.
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Table 4.2: Di�erent measuring parameters used for logo extraction using (without en-
hancement).

Methods Accu- Re- F1- Preci- Specif- Dice Co- Jaccard
racy call score sion icity e�cient similarity

Histogram 0.46 0.56 0.47 0.50 0.30 0.30 0.397
Contour 0.42 0.53 0.42 0.45 0.24 0.29 0.243
Surf 0.56 0.65 0.56 0.60 0.31 0.25 0.527
SVD 0.59 0.61 0.59 0.60 0.36 0.39 0.540
Proposed 0.86 0.87 0.86 0.86 0.45 0.45 0.851

For Logo extraction without enhancement, the performance of the proposed algorithm

is evaluated by using di�erent measuring parameters like accuracy, precision, recall, F1-

score, speci�city, Dice-coe�cient and jaccard similarity. The values are tabulated in Table

4.2 and corresponding results are show in the Figure 4.18.

4.5.2 Case-II: Logo Extraction with Enhancement.

In this case we have extracted logo form the document after enhancement and the

corresponding results are show.

For the purpose of experimentation, we considered 500 printed/handwritten document

images collected from mobile camera which are real-time datasets. To improve the doc-

ument images, dissimilar improvement approaches like Low Pass �lter(LPF), High Pass

Filter(HPF), Gabour Filter(GF), and Bilateral Filter(BLF) are used. After the experi-

mentation, results are shown in Figure 4.19. to 4.22 The tabulated outcomes are revealed

in Table 4.3.

By using dissimilar enhance logo document image with BLF value, image is improved

and consuming �lters. The consequences be present exposed in the above tabulated im-

ages. The PSNR and AMBE value is calculated in Table 4.4. When without enhancement

document image compare to with enhancement value of PSNR is 0.0287 and AMBE is
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0.0627, it gives proper outcome, result is stately founded on PSNR as a parameter.

This paper logo documentation RGB image as input from our own database created

at that moment transform the RGB image to gray scale image then select the actual logo

from image extract the logo from o�ce documents by means of accuracy. This paper

documentation dissimilar images of di�erent institution with di�erent sizes to the module

and this module yield only extracted logo from huge images. And the logo size is not

unique dimension with full accuracy. In this paper relates Masking method to extract

and match the logo. Median �lter method is used to extract the logo from document

images. But previous methods enhanced than this method.

From the Table 4.4, it is observed that the proposed method gives good logo recognition

with enhancement outcomes intended for all metrics used. Results are shown in the

Figure 4.19 to 4.22 and the corresponding graphical representation for all the techniques

is plotted in graph which is shown in the Figure 4.18 The proposed method gives good

result for Accuracy, Precision, Recall, F1-Score, Speci�city, Dice Co-e�cient, and Jaccard

similarity, we need to improve the further enhancement working methods.

The proposed method is compared with other existing methods, proposed method

gives good result. Finally, from the experimentation it is observed that logo extraction

with enhance gives good result of 90% recognition accuracy.
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Figure 4.14: (a) Bilingual document with Logo image. (b). Logo detected.

Figure 4.15: (a) Bilingual document with university prospect logo image.(b) Logo de-
tected.

Figure 4.16: (a) Bilingual document with Karnataka Govt. o�ce logo image.(b) Logo
detected.
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Figure 4.17: (a) Bilingual document with university logo image input image. (b) Logo
detected.

Figure 4.18: Graphical representation of Logo detection for without enhancement.
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Table 4.3: Logo extraction with enhancement from document images. Di�erent measuring
parameters used for logo extraction.

Logo
with
En-
hance-
ment

Methods AMBE Entropy Mich-
elson
contrast

SSIM PSNR

Original 0.0 2.3557 1.0 1.0 0
LPF 6.5397 1.9495 13.941 0.6290 15.376

Image 1 HPF 16.448 1.6693 1.0000 0.2107 2.0304
GPF 6.5367 1.9514 13.941 0.6290 15.374
BLF 3.1065 2.8839 1.0 0.9536 19.077
Original 0.0 2.5487 1.0 1.0 0
LPF 11.431 2.6607 1.0 0.6263 13.463

Image 2 HPF 13.358 1.6736 1.0 0.1797 3.0717
GPF 11.424 2.6632 1.0 0.6263 13.461
BLF 11.052 2.9998 1.0 0.6306 13.528
Original 0.0 6.70536 1.0 1.0 0
LPF 34.825 5.0940 6.9375 0.5277 13.553

Image 3 HPF 11.987 1.7308 1.0 0.1834 3.4706
GF 34.9138 5.10222 6.9375 0.5278 13.543
BLF 1.4125 6.6202 1.0 0.9410 20.572
Original 0.0 4.4644 1.0 1.0 0
LPF 14.2876 3.8093 1.0 0.2015 11.614

Image 4 HPF 13.749 2.3849 1.0 0.0950 2.6578
GF 14.252 3.8198 1.0 0.2016 11.607
BLF 2.8882 5.4542 1.0 0.8385 15.910

Logo with Enhancement is given in Figure 4.19 to 4.22.

Figure 4.19: (a) Bilingual document with one Logo. (b) Logo detected.
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Figure 4.20: (a). Bilingual document with university prospect logo image. (b). Logo
detected.

Figure 4.21: (a). Bilingual document with Karnataka Govt. o�ce logo image. (b). Logo
detected.

Figure 4.22: (a). Bilingual document with university logo input image. (b). Logo de-
tected.
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Figure 4.23: Graphical representation of logo extraction for di�erent enhancement ap-
proaches.

Table 4.4: Di�erent measuring parameters used for logo extraction with enhancement.

Methods Accu-
racy

Re-
call

F1-
score

Preci-
sion

Specif-
icity

Dice Co-
e�cient

Jaccard
similarity

Histogram 0.53 0.66 0.54 0.58 0.77 0.23 0.537
Contour 0.50 0.72 0.50 0.60 0.82 0.13 0.500
Surf 0.65 0.75 0.65 0.69 0.85 0.24 0.651
SVD 0.67 0.77 0.67 0.71 0.86 0.29 0.670
Proposed 0.90 0.94 0.91 0.92 0.97 0.21 0.905
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Figure 4.24: Graphical representation for bilingual without enhancement.

Table 4.5: Di�erent measuring parameters used for logo extraction without enhancement
and with enhancement

Methods Accu-
racy

Recall F1-
score

Prec-
ision

Speci-
�city

Dice Co-
e�cient

Jaccard
similarity

Without
Enhan-
cement

0.86 0.87 0.86 0.86 0.45 0.45 0.851

With
Enhan-
cement

0.90 0.94 0.91 0.92 0.97 0.21 0.905

The proposed method gives good result for Accuracy, Precision, Recall, F1-Score,

Speci�city, Dice Co-e�cient, and Jaccard similarity, Further we need to improve the

enhancement methods. From the Table 4.5, it is observed that the proposed method

gives good results for logo extraction.
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Figure 4.25: Graphical representation for bilingual logo with enhancement and without
enhancement document image extraction for di�erent methods.

4.6 Conclusion

In this work, we have presented an approach for signature extraction from a bilingual

document images. The proposed approach is based on contour and blob's method. Ex-

perimental results show the e�ectiveness of the proposed method. Experimentation is

carried out on real time dataset containing 150 document images. For all the parameters,

proposed method gives good results. And also we have presented an e�cient algorithm

for extraction of logo from bilingual real time document images. The proposed algorithm

is tested an two di�erent cases i.e., before enhancement and after enhancement. Logo

extraction is done by using masking and median �lter techniques. From the experimen-

tation, it is observed for enhancement good result is 90% achived when captured is for

without enhancement 86%.



Chapter 5

Segmentation and Skew Estimation at

Word Level from Document Images

5.1 Preamble

Section A

The concept of document image processing, being the separation of text and non-text

from scanned printed bilingual document images is a critical component of facts processing

and provides inspiration for image analysis. The reliability of separation in an image-based

completely digital identi�cation system is carefully examined, with the exception of the

statistics of the images. For maximal real-time record image processing, non-text portions

of images must be examined promptly and properly in order to improve pooling and timing

accuracy, while at the same time reducing rejection rates and increasing image �rst rates,

by using spatial, frequency, and fuzzy �lters to remove undesirable items. Document image

Some parts of the materials in this chapter have appeared in the following research paper.

1. Ravikumar M, Shivaprasad B.J, Shivakumar G, and Rachana P G. 2019. �Estimation of Skew

Angle from Trilingual Handwritten Documents at Word Level: An Approach Based on Region

Props�. Advances in Intelligent Systems and Computing, 419-426. (Springer Nature Singapore).

2. Shivakumar G, Ravikumar M Sampathkumar S, and Shivaprasad B J. 2022. �Segmentation of

Non-Text from Bilingual Real-Time O�ce Document Images Using U-Net Architecture�. The

Seybold Report Journal (TSRJ), 17(07), 811�827. (Scopus Indexed).
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processing has recently received the attention of researchers and strategies due to its good

sized ability in possible program. A number of data extensions are used to increase the

generalization capacity of the network while training it on this dataset. In addition, create

a comprehensive own dataset that covers a variety of real-world conditions. A quantitative

and qualitative evaluation of the proposed model must be conducted in conjunction with

the previous non-learning of the basic method.

To detect signi�cantly changed perspectives, the immediate approach worked simi-

larly to the Hough transform. Because normal distribution enhances reliability, authors

compared the Hough transform, cross-correlation, K-nearest neighbour transform, and

Fast Fourier transform. A Fast Fourier Transform improves performance and accuracy

over other techniques by correcting skew in documents (Sakila et al., 2017). Handwritten

documents with multiple orientations require additional pre-processing for segmentation

subsequent phases for proper functioning in the handwriting recognition system (Pra-

manik et al., 2021).

A deep learning approach to detection Distorted scan document angles with di�er-

ent spellings language (Akhter et al., 2020). RLSA algorithm is used Rows and columns

of document images (Salagar et al., 2020). Web page extraction, baseline extraction,

format evaluation, or a couple of illustration and image extraction typologies. The au-

thor suggests using U-net document images and CNN-based pixel-sensible challenge-based

post-processing blocks (Oliveira et al., 2018). Documents are conventionally scanned us-

ing an expensive, non-portable �atbed scanner device. With the increasing popularity

of mobile cameras, taking images physical documents has become the simplest way to

digitise physical documents. Images are further �ltered after capture by text detection
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and identity pipelines for content analysis and information extraction (Ma et al., 2018).

Using FFT (Fast Fourier transform) median �ltering, the author proposed skew de-

tection and correction method (Watts et al., 2014). skew detection and correction for

Mushaf Al-Quran image pages based totally on Hough rework technique (Bafjaish et al.,

2018). Traditional segmentation approaches, machine learning segmentation, as well as

computational intelligence segmentation are indeed the three types of background subtrac-

tion. Traditional segmentation techniques include area-based segmentation, edge-based

segmentation, and threshold-based approaches. Machine learning-based segmentation ap-

proaches, which are a subset of machine learning, comprise neural networks with layers

for segmentation after unsupervised or supervised learning methods (Mandal et al., 2018;

Boukharouba et al., 2017).

In handwritten Kannada documents with no constraints, a deskewing algorithm leads

to line and word segmentation (Shakunthala et al., 2017). In order to determine whether

skew detection is possible, the author evaluates three commonly applied techniques,

namely (i) Projection Pro�le Analysis (PP), (ii) Hough Transform (HT), and (iii) Nearest

Neighbour (NN) (Khatatneh et al., 2015; Shakunthala et al., 2021). Using a geometri-

cal method, this paper shapes a line from the components separated for various reasons

(Soora et al., 2018). A convolutional neural network (CNN) is applied to create the U-

Net architecture. An algorithm for segmenting text content lines based on deep learning

(Mechi et al., 2019; Saiyed et al., 2021). Using an Adaptive U-Net Architecture for Text

Line Segmentation (Gurav et al., 2019).

The process to separate text and non-textual areas in such an image by combining

Wavelet-based Gray Level Co-Occurrence Matrix (GLCM) functions and K-method clus-
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tering (Deivalakshmi et al., 2013). In this paper, the author uses Symlet wavelet and

2-suggest classi�cation for text segmentation from image documents (Gauttam et al.,

2013). This paper analysed the classi�cation and segmentation of non-text blocks in

documents into tables, graphs, and �gures. Algorithms end up extra green, strong, and

concise. There are numerous true segmentation and distorts estimating and correcting al-

gorithms inside the literature overview. However, the time required to calculate the skew

attitude remains a problem (Wang et al., 2021; Ibrahim et al., 2008; Chen et al., 2018;

Jobin et al., 2017). Deep Neural Networks (DNN) (Bures et al., 2019). This research

utilizes the concept of semantic segmentation with the aid of a multi-scale convolutional

neural network community (Dutta et al., 2021). First broadly recognized structure based

on Convolutional Neural Networks (CNN) that ultimately cause the wave of research

on ANNs this is nevertheless taking area these days (Lombardi et al., 2020). We have

Achieved impressive performance with various image segmentations Tasks and real time

printed bilingual document grouped into �ve categories, including: as: CNN and FCN,

RNN, R-CNN, Extended CNN, Attention Base Includes models, generative models and

hostile models other (Minaee et al., 2021).

For better understanding, the remaining document part is organized as follows: pro-

posed methodology is detailed in section 5.2 , followed by result and discussions in section

5.3, �nally conclusion is given in section 5.7.

5.2 Proposed Method

In this section, we discuss our approach in detail. Figure 5.1 shows a �owchart of the

proposed method. The proposed method mainly consists of three di�erent stages they are
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pre-processing, Data augmentation, segmentation for experimentation purpose we have

considered real time bilingual printed (Kannada and English scripts document images.

the input images containing both text and non-text (here we have considered signature

& Logo) information. If the input image contains graphs and tables, the e�ciency will

be reduced because the proposed algorithm will not be rained for graph, tables. Since

the input images real time documents, may be blurred, noisy and some distortions may

present. Performance may undergo if we process the documents without removing these

noises. As a result, in order to improve performance, we must improve the documents by

the use of some pre-processing techniques.

In the subsequent sections, we discuss the Preprocessing, Data augmentation and

Segmentation.

Figure 5.1: Block diagram of the proposed method.

This in�uences improvement while training the network, and the pre-processed yield

would then be farmed into segmentation. Whenever a digital input image is divided into

di�erent subgroups to improve by decreasing complexity and make analysing simple and

easy. Here, the deep constitutional neural network U-Net is used.
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Figure 5.2: U-Net architecture.

In this works documents all enhanced using Spatial domain methods, Frequency do-

main methods (DFT) and Fuzzy approach, better enhancement in achieved.

5.2.1 Preprocessing

The real-time o�ce document is typically scanned with a normal scanning and trans-

formed to a jpeg image. At this point, we have data in the form of an image, which can

be further analysed to retrieve the relevant information. Distraction could be present in

the image obtained during the scanning process. Images could be Spattered or disrupted

depending on the resolution of the scanner and the success of the technology used, such

as Thresholds. Some of these disadvantages It can be eliminated by using a pre-processor,

which may result in reduced detection performance eventually on. Characters that are

quickly and e�ectively digitised.

In this works documents all improved the use of Spatial domain strategies, Frequency

area strategies (DFT), and the Fuzzy approach, better enhancement in completed. As

an end result, fuzzy set theory can help with a spread of uncertainties in laptop vision

and photo processing programs. Fuzzy image segmentation describes a hard and fast of
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fuzzy image evaluation strategies that may recognise, represent, and technique images.

The three number one steps are documented image fuzzi�cation, membership feature

value change, and defuzzi�cation. To enhance fuzzy images, gray degree mapping into a

foundation features is used. The goal is to provide a greater contrasted image than the

unique by means of giving more encumbrance to gray stages towards the image mean grey

level than grey stages similarly from the mean.

Smoothing relates both to �lling and thinning. Filling eradicates minimal breaks, gaps,

and holes in digitally enhanced characters, whereas thinning reduces line width. The far

more familiar smoothing method includes changing a window from around character's

binary image although implementing de�nite standards to a content and structure of the

window. So, to improve the quality of the input image, image enhancement operations

such as noise removal, normalisation, binarization, and so on are performed.

Fuzzi�cation is compelled here to map the input image with a fuzzy plane, and defuzzi-

�cation is desired, i.e., the membership of a point Pij(x, y) ∈ D to the window Wij(x, y)

are given by the equation 5.1.

Wij =
(Pij(x, y))

γ∑n
i=1

∑m
j=1 (Pij(x, y))

γ (5.1)

where, Wij : D → [0, 1]

Wij described the membership and Pij(x, y) described the pixel value. γ ∈ (0,∞) and

control the fuzzi�cation and defuzzi�cation.

The transform ψenh is built as a sum of the transformed Wij weights with degree of

membership ψij. The enhanced image is given by equation 5.2.

Ψenh(f) =
n∑

i=1

m∑
j=1

wijXΨij(f) (5.2)
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where, ψij (f) is image (f) before enhancement. ψij (f) is image (f) after enhancement.

5.2.2 Data augmentation

In facts evaluation, information augmentation methods are used to increase the amount

of records via including barely changed duplicates of pre-present facts or newly created

synthetic facts from pre-current statistics. When training a machine learning model, it

acts as a regularization term and helps reduce �tting problem. Minor changes to data

or the use of deep learning methods to yield statistical models are applications of data

augmentation. Data augmentation strategies can be an excellent tool in dealing with the

complex conditions that the synthetic intelligence international faces.

Data augmentation methods could indeed improve machine learning algorithm by

appears to be a�ected that the model can encounter in the real world. Whenever the

repository for the model is rich & su�cient, the model is better and more e�ectively.

Figure 5.3 illustrate the principle of the Data augmentation model.

Figure 5.3: Training a deep neural network on both augmented

With a rich and su�cient dataset, the model is better able to estimate results more

accurately and e�ciently. Figure 5.3 shows the working principle of Data augmentation
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model.

5.2.3 Segmentation

U-Net segmentation uses document images in a CNN (convolutional neural network)

structure for picture segmentation. This is correct and green. Data have outperformed

an earlier satisfactory approach (a sliding-window convolutional network) for segmenting

axonal frameworks in electron microscopic layers. U-Net is a segmentation structure. It

contains a contracting course and an expanding focus. CNN's are used to design the

contracting path. The convolutions are made up of 3x3 (unpadded convolutions) and can

be repeated with recti�ed linear units (ReLU), along with a 2x2 pooling operation with

stride 2. Each down sampling step doubles the number of function channels. In the course

design, convolution kernels are used.

The convolutions (unpadded convolutions) are repeated and observed via recti�ed lin-

ear units (ReLUs) with a 2x2 maximum pooling operation for down sampling. Each step

of down sampling multiplies a number of channels examined. Expansive route starts with

an up sampling of the feature space, then a convolution ("up-convolution") that cuts the

range of characteristic channels in half, a concatenation with the consequently cropped

function map from the contractual route, and two 3x3 convolutions with ReLUs. Con-

volutional networks lack boundary pixels, so cropping of the image is necessary. Finally,

every 64-component feature vector is mapped to an apparent magni�cence label using a

1x1 convolution. It appears that this state contains 23 convolutional layers.

The input image is passed through the model by a convolutional layer with a ReLU

activation function. In this case, we can see a decrease in image size from 2480X3508 to

1242X1754. Due to the use of unpadded convolutions to de�ne the convolution layer as
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valid, the overall dimensionality was reduced. Additionally, there are encoder and decoder

blocks on the left and right of the Convolution blocks. Figure 5.2 shows an architecture

with encoders and decoders.

5.2.4 Encoder path:

Convolution layers are composed of 3x3 kernels, 2x2 Maxpool layers, and RELU acti-

vation functions. Consequently, this reduces the feature map's dimensionality, allowing

hidden layers to remain and not just the most signi�cant ones. Connections between

U-nets are presented at the best layers, which reduces the wide range of parameters. By

converting volatile statistics signals into coded messages, or analog warnings into virtual

indicators, an encoder converts statistics signals into coded messages. An N bit code is

represented by the N output lines resulting from the conversion of binary information into

2N input traces. The encoder converts a signal into coded binary output when it receives

an input signal.

5.2.5 Decoder Path:

A segmented mask is made out of the input image after characteristic extraction in

the encoding path. Decoders and encoders switch pooling indices during this step. The

characteristic maps similar to the encoding course are copied to the decoding course.

A decoder is a combinational circuit similar to an encoder, however, it operates in the

opposite section. A decoder is a device that converts n traces of entering into 2n lines of
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output and generates the distinct sign as output from the coded input sign. Despite the

excessive output produced by means of an AND gate, the primary interpreting element

is that it produces a high output if all inputs are immoderate.

5.3 Results and Discussion

The U-Net method is used to separate the non-text from the document image. The

obtained output is compared to the ground truth of the respective o�ce document images

to determine segmentation outputs. We imported the Unet model ResNet as the backbone

network and loaded the image mesh weights. The output is passed to the U-Net model

after it describes the layout of the input intended by the base model and indeed the

specially designed overlay that obtains its base mode input. The UNet model's output

is then propagated to other prede�ned ReLU-enabled ConvNet layers. The �nal result is

reshaped to 1242x1754. Finally, we used the basemodel to construct a design that takes

an input (xinp). and outputs an output (xout).

We de�ned the metrics, losses, and optimizer functions after compiling the model and

de�ning everything that �tted the training and validation data to the proposed model.

After saving the model, I used the trained model to create and save the Xtrain and

Xtest predictions. After making the predictions, we de�ned a function that visualises the

model's predictions. This function expects input and output arrays as well as predictions.

We obtained a mask for same dataset of the selected training sample by randomly selecting
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images from the training data and de�ning k as zero. Then I set the �gure's size and

plotted all three aspects: the image, the mask, and the predictive mask. The proposed

approach yielded the following results, with the ground truth and predicted output for

ideal o�ce document images shown in Figure 5.4.

(a) (b) (c)

Figure 5.4: shows the resultant output images 1-6, as well as the corresponding ground
truth images and predicted outputs.

(a) Represents input images, (b) Represents ground truth images and (c) Represents
predicted images.
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Following training, the performance of a machine learning classi�er is evaluated using

key performance metrics. The confusion matrix, which is a table showing whether a classi-

�ers needs to perform if some truth values/interests are gained, is among the performance

metrics.

The most common matrices used for evaluating this architecture are accuracy, (F1)

score, Precision, Sensitivity and Speci�city. The proportion of classi�ed instances pixels

in an image.

F1Score, F1 = 2 ∗ (PC ∗RC)/(PC +RC)(1) (5.3)

Precision, Pc = (truepositives)/(truepositives+ falsepositives) (5.4)

Sensitivity(Recall), Rc = (truepositives)/(truepositives+ falsenegatives) (5.5)

Specificity = (truenegative)/(truenegative+ falsepositives) (5.6)

Table 5.1: Comparison of Di�erent quantitative methods.

FPR TPR

0.0 0.2

0.1 0.5

0.2 0.9

0.3 1.0

0.4 1.0

0.5 1.0

0.6 1.0

0.7 1.0

0.8 1.0

0.9 1.0

1.0 1.0
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Figure 5.5: ROC diagrams of the proposed U-Net for Real-time dataset.

The values of FPR and TPR for segmentation are given in Table 5.1, and the ROC

diagram of the proposed method is plotted in Figure 5.5. Precision and Recall diagram

for the proposed method is plotted in Figure 5.6. The accuracy diagram of the proposed

method is plotted in Figure 5.7, and the �nal diagram is plotted in Figure 5.8.

Figure 5.6: Precision and Recall diagram of the present work U-net Segmentation.
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Figure 5.7: Accuracy diagram for the proposed method.

Figure 5.8: Loss diagram for the proposed method.

Di�erent segmentation accuracy methods are compared with proposed method and

the values are given in table and graphical representation is shown in Figure 5.9.
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Table 5.2: Segmentation Accuracy of di�erent methods.

Segmentation Methods Accuracy

Block segmentation 89

Watershed 94

U-Net(Proposed) 99

Figure 5.9: Graphical representation of accuracy comparison of di�erent methods.

Finally, di�erent performance measure for segmentation of the proposed method are

given in Table 5.3 and its equivalent graphical representation plotted in Figure 5.10

Table 5.3: Segmentation Accuracy of Di�erent measuring parameter methods.

Segmentation
Methods

Accuracy Speci�city Sensitivity Precision F1-Score

Block segmentation 89 59 82 83 82
Watershed 94 60 90 90 90
U-Net(Proposed) 99 64 99 99 99
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Figure 5.10: Graphical representation of performance comparison for di�erent methods.

5.4 Section B

In document image processing Skew must be estimated and corrected or else analysis

of handwritten document becomes di�cult and it drastically reduces the recognition rate.

Estimation of skew angle can be at block level, line level, and also at word level (Guru

et al., 2013). Most of the work has been done on monolingual documents, but very few

works have been done on skew estimation and correction for multilingual documents.

Reason is di�culty faced while �nding the skew angle of multiple words, which are of

multiple languages and are at di�erent orientations. Besides its complexities, estimation

and correction of multiple skews from multilingual handwritten documents has wide range

of applications which include analysis of real-time o�ce documents, analysis of ancient

script, and analysis of documents prescribed by the doctors. Remaining part of the paper

is divided into three sections. Section 5.5 focuses on proposed methodology in detail,

experimentation with results are discussed in Section 5.6, and �nally, conclusion is given

in Section 5.7.

Next section discusses proposed methodology in detail.
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5.5 Proposed Methodology

Figure 5.11: Block diagram of the proposed method.

After this, next step is to estimate and correct the skew angle, which can be done using

two approaches, and �nally, the two approaches are compared for calculating error rates.

In �rst approach, the skew angle is estimated based on manually drawn lines by human

experts, where human experts considered are of di�erent age-group and they are unaware

of languages present in the multilingual handwritten documents. They were asked to click

manually at two endpoints on the ellipse constructed over word. In order to estimate

skewangle, a line is drawn using the clicked points. These clicked points are considered

as coordinate values (x1, y1) and (x2, y2) which are stored in the form of an array of

two dimensions for further calculations, which are shown in Table 5.4. Then the angle of
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deviation from the horizontal axis is calculated by the formula which is given below:

Table 5.4: Points on coordinate values of the words.

Point 1 Point 2
X1 Y1 X2 Y2

21.50 594.50 269.50 458.50
213.50 1170.50 633.50 1166.50
313.50 450.50 545.50 310.50
349.50 2122.50 637.50 1910.50
605.50 298.50 777.50 166.50
721.50 1850.50 929.50 1714.50
709.50 1138.50 1205.50 1126.50
821.50 154.50 1061.50 −1.50
993.50 1662.50 1453.50 1306.50
1273.50 1134.50 1437.50 1110.50
1517.50 1094.50 2133.50 1090.50
1569.50 186.50 1737.50 390.50
1765.50 470.50 1825.50 574.50
1857.50 630.50 1973.50 810.50
2037.50 858.50 2081.50 926.50

h =
√

(x2− x1)2 + (y2− y1)2

θ = tan−1

(
y2− y1

x2− x1

) (5.7)

where, h = Hypotenuse. Finally, the estimated skew must be corrected, where skew

correction is based on angles of lines drawn manually by experts, which is given in Eq.

5.8.

x2 = x1 + h cos(θ)

y2 = y1 + h sin(θ)

(5.8)

In second approach, the skew angle is estimated using the measuring properties of an

image region, which is corrected by using geometric transformation function with the help

of centroid, major axis, and minor axis. The below formula is used for rotation by an

angle θ:
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x = u cos(θ)− v sin(θ)

y = u sin(θ) + v cos(θ)

(5.9)

where u and v represent lengths of the major and minor axes. The below formula is also

used for rotation by an angle θ in matrix format:

R =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
(5.10)

Finally, the comparative analysis of skew correction among two approaches has been

done.

5.6 Experimentation and Results

In order to compare the error rates of two approaches explained above, experimentation

is carried out on our own dataset with 300 unconstrained handwritten documents. Once

the document is obtained, preprocessing step is applied on the document. The words are

labeled in order to avoid the confusion, which also helps in reconstruction after the skew

is corrected. We considered �ve human experts and they are asked to click manually at

two end points on the ellipse constructed over word. The below �gures shows the di�erent

stages of skew estimation and correction.
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Figure 5.12: (a) Original input image, (b) image after CCA, (c) labeling and line dilation
drawn based on expert clicks, and (d) angle found using line drawn by (e) word segmen-
tation and skew correction experts

Figure 5.12(a) shows the original image before any processing, Figure 5.12(b) shows

the output of morphological dilation and CCA after noise removal, Figure 5.12(c) is

output obtained after human experts clicking two end points and line is drawn on that,

it also represents labeling of words. After obtaining a line the angle of deviation from

the horizontal is represented in Figure 5.12(d), �nally skew corrected words are shown in

Figure 5.12(e).
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Figure 5.13: Comparison between skew angle of experts and region props.

Figure 5.12(a) shows the original image before any processing, Figure 5.12(b) shows

the output of morphological dilation and CCA after noise removal, and Figure 5.12(c) is

output obtained after human experts clicking two endpoints and line is drawn on that; it

also represents labeling of words. After obtaining a line, the angle of deviation from the

horizontal is represented in Figure 5.12(d), and �nally skew-corrected words are shown

in Figure 5.12(e). Sometimes the error rate of �rst approach is better compared with the

second approach, because experts click the points on character which have low intensity

values, and it represents minor axis, but automated system will consider high-intensity

values of character which represents major axis.

Figures 5.12(c) and 5.12(d) show the comparative analysis of skew angle among experts

and region props, where estimation of skew angle varies and result obtained is higher error

rate in human experts when compared with region props. Table 5.5 shows skew angle
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values of region props and experts.

Figure 5.14: Comparison between skew angle among Experts.

Table 5.5: Represents the angle of experts and region props angle.

Expert1 Expert2 Expert3 Expert4 Expert5 Region-props
Angle Angle Angle Angle Angle Angle
27.29 33.43 28.96 29.62 30.96 29.81
2.14 5.71 5.09 1.09 7.74 1.74
29.53 37.20 33.23 38.15 37.72 31.31
38.36 31.73 35.31 34.77 29.89 36.45
34.24 32.85 33.40 37.69 37.97 35.97
37.40 37.79 34.18 43.60 29.85 27.98
3.751 1.43 2.46 3.25 2.70 3.50
34.18 37.36 30.06 37.72 30.51 33.28
37.24 41.32 37.24 38.77 37.33 39.38
4.085 7.69 11.30 11.00 18.82 13.67
0.73 1.10 1.53 −0.38 −0.75 1.35
−48.90 −50.90 −54.56 −49.39 −48.99 −48.03
−53.13 −65.55 −66.57 −59.30 −60.46 −68.87
−47.07 −51.66 −53.32 −40.60 −53.97 −45.93
−48.36 −38.65 −53.13 −29.74 −57.99 55.97
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5.7 Conclusion

In this chapter, U-net architecture to segment non-textual information from a bilin-

gual o�ce document images. Experimentation is carried out on our own dataset and the

results shows that performance of the proposed method from the results shows that perfor-

mance of the proposed method from the results we obtained accuracy of 99%, Speci�city-

64%, Sensitivity-99%, Precision-99% and F1-Score-99%. And also, an e�cient method

is proposed for estimation and correction of multiple skews from unconstrained multilin-

gual handwritten documents at the word level, based on the region props. The proposed

method is compared with the skew angle, which is obtained from �ve human experts, and

�nally, the result is obtained. The results shows that proposed method is e�cient than

human experts.



Chapter 6

Classi�cation of Text and Non-Text

from Bilingual Document Images

6.1 Preamble

An imperative aspect of computer vision is the selection and classi�cation of areas of

interest in scanned images of text documents. Many researchers around the world are

studying how to convert document images into editable formats. There needs to be a

separation of text zones from non-text zones and a correct ordering of them in reading

systems. An image can be analyzed to detect/extract/recognize text. For applications

including optical character extraction, human-machine input distinction, spam detection,

and machine-to-human input di�erentiation, text recognition and classi�cation in natural

images are very signi�cant. Changes in the environment in which images are taken make

it di�cult for in-text recognition to recognize valuable full text in images. Image text

detection identi�es locations that contain meaningful whole text in an image. Taking an

image in a di�erent area makes it di�cult. In analyzing document layouts, it is important

to separate text and non-text elements. The complex structure of the document has

Some parts of the materials in this chapter have appeared in the following research paper.

1. Ravikumar M, Shivakumar G, Shivaprasad B J �Classi�cation of Text and Non-Text from Bilin-

gual Real-Time Documents Using Deep Learning Approach,� International Journal on Document

Analysis and Recognition (IJDAR). (Communicated).
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limited the quality of separation results despite several approaches. In order for the

printed text to be recognized, it must be separated from non-text areas, such as signatures,

handwritten text, logos, and other symbols, in order to be accurate. Most research,

however, focuses on converting images of documents into the editable text because of

the many ways in which this conversion can be used. Survey of text/non-text separation

using various feature classi�er combinations [(Ghosh et al., 2018), (Chaithanya et al.,

2019),(Tran et al., 2015), (Arvind et al., 2006),(Ghosh et al., 2018), (Puri et al., 2016),

(He et al., 2019), (Lee et al., 2018), (Mishra et al., 2018)].

We present an end-to-end deep learning-based framework, called Visual Structure Ob-

ject Recognition (VSOR), for detecting visual objects in document images, such as tables,

�gures, and equations. Data-driven and independent of any heuristic rules for detecting

visual objects in document images, our framework is based on recent object detection

algorithms in computer vision (Chen et al., 2007), (Liu et al., 2021). As our task does

not include labeled training data, deep learning-based methods require large amounts

of data. VSOR explores transfer learning and domain adaptation in order to solve the

scarcity of labeled training data in document images for Visual Structure Object detec-

tion/Recognition. The VSOR more accurately localizes all visual objects in document

images than state-of-the-art techniques based on numerous public benchmark data sets.

An image description framework based on neural networks. The CNN for image en-

coding can be replaced with an RNN encoding for the source text, based on the encoder-

decoder model used in machine translation (He et al., 2019). Using KCRAlexNet and

KCRGoogLeNet (Lee et al., 2018), the structure of this describes the creation of a CNN

network, starting from the organization of test data and ending with plotting the test
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accuracy curve. A visual demonstration of how VSOR technique can successfully locate

various visual objects in abstract images within a document. In particular, the contri-

butions of this work are as follows: The aim of this paper is to present an end-to-end

trainable deep learning approach based on the concept of object detection algorithms

used in recent years in computer vision to locate visual objects (Chen et al., 2007; Puri

et al., 2016). To detect visual objects in document images, we re�ne a model trained by

transfer learning. Based on the public standard dataset, our VSOR framework achieves

outstanding results.

For better understanding, the remaining document part is organized as follows: Pro-

posed methodology is detailed in section 6.2, followed by result and discussions in section

6.3, �nally conclusion is given in section 6.4.

6.2 Proposed Method

In this section, we discuss our approach in detail. Figure 6.1 shows a �owchart of the

proposed method. The proposed method mainly consists of three di�erent stages they are

pre-processing, Data augmentation, classi�cation for experimentation purpose we have

considered real time bilingual printed (Kannada and English scripts document images.

the input images containing both text and non-text (here we have considered signature,

tables, equations, graph & Logo) information. If the input image contains graphs and

tables, the e�ciency will be reduced because the proposed algorithm will not be rained

for graph, tables. Since the input images real time documents, may be blurred, noisy and

some distortions may present. Performance may undergo if we process the documents

without removing these noises. As a result, in order to improve performance, we must
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improve the documents by the use of some pre-processing techniques. In the subsequent

sections, we discuss the Pre-processing, Data augmentation and Classi�cation.

In the subsequent sections, we discuss the Preprocessing, Region proposal network,

Data augmentation and Classi�cation.

Figure 6.1: The Architecture of the Proposed Method.

This in�uences improvement while training the network, and the pre-processed yield

would then be farmed into segmentation. Whenever a digital input image is divided into

di�erent subgroups to improve by decreasing complexity and make analysing simple and

easy. Here, the deep constitutional neural network U-Net and Components-Based Region

method is used.
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Figure 6.2: U-Net architecture.

In this works documents all enhanced using Spatial domain methods, Frequency do-

main methods (DFT) and Fuzzy approach, better enhancement in achieved.

6.2.1 Data acquisition

A dataset of 10000 real-time document images was collected from publicly di�erent

places or regions dataset. All these images have 2480X3508 to 1242X1754 pixels of size

and converted gray-scale for processing further, Figure 6.2 shows the text and non-text

images.

In order to conduct experiments, we collected and annotated a dataset for document

page object detection. Throughout the dataset, we have selected images from each of

the 2500 classes of English and Kannada documents. Each document page object is

manually annotated; there are 10000 objects in total. As far as page objects are concerned,

documents are indeed unbalanced. The networks are trained with 80% of the data, and

they are tested with 20%.
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6.2.2 Preprocessing

After data axquisition images are fed into preprocessing, to improve the quality of

an image, because the intensity value of real-time images varies on the imaging camera

and scanner used. Hence, intensity is normalized to reduce the bias in image. Normalized

inner and inter class combinations for enhanced using Spatial domain methods, Frequency

domain methods (DFT) and Fuzzy approach, better enhancement methods gives good

qualitative results.

The real-time o�ce document is typically scanned with a normal scanning and trans-

formed to a jpeg image. At this point, we have data in the form of an image, which can

be further analysed to retrieve the relevant information. Distraction could be present in

the image obtained during the scanning process. Images could be Spattered or disrupted

depending on the resolution of the scanner and the success of the technology used, such

as Thresholds. Some of these disadvantages It can be eliminated by using a pre-processor,

which may result in reduced detection performance eventually on. Characters that are

quickly and e�ectively digitised.

6.2.3 Segmentation

U-Net segmentation uses document images in a CNN (convolutional neural network)

structure for picture segmentation. This is correct and green. Data have outperformed

an earlier satisfactory approach (a sliding-window convolutional network) for segmenting

axonal frameworks in electron microscopic layers. U-Net is a segmentation structure. It

contains a contracting course and an expanding focus. CNN's are used to design the

contracting path. The convolutions are made up of 3x3 (unpadded convolutions) and
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can be repeated with recti�ed linear units (ReLU), along with a 2x2 pooling operation

with stride 2. Each down sampling step doubles the number of function channels. In the

course design, convolution kernels are used. The convolutions (unpadded convolutions)

are repeated and observed via recti�ed linear units (ReLUs) with a 2x2 maximum pooling

operation for down sampling. Each step of down sampling multiplies a number of channels

examined. Expansive route starts with an up sampling of the feature space, then a

convolution ("up-convolution") that cuts the range of characteristic channels in half, a

concatenation with the consequently cropped function map from the contractual route,

and two 3x3 convolutions with ReLUs. Convolutional networks lack boundary pixels, so

cropping of the image is necessary. Finally, every 64-component feature vector is mapped

to an apparent magni�cence label using a 1x1 convolution. It appears that this state

contains 23 convolutional layers.

The input image is passed through the model by a convolutional layer with a ReLU

activation function. In this case, we can see a decrease in image size from 2480X3508 to

1242X1754. Due to the use of unpadded convolutions to de�ne the convolution layer as

valid, the overall dimensionality was reduced. Additionally, there are encoder and decoder

blocks on the left and right of the Convolution blocks.
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6.2.4 Classi�cation

Figure 6.3: Frame work for the classi�cation of methods.

In this section, we discuss our approach in detail. Figure 6.3 shows a frame work of

the classi�cation method. Our proposed approach is compared with state-of-the-art deep

learning models using VGG-16 pre-trained on ImageNet and BERT base pre-trained on

document images. The BERT base was �ne-tuned with class labels after tokens were

extracted from document images. The VGG-16 model was directly used for classifying

document images based on pre-trained features. There is no further �ne-tuning to this

process. Our model was compared to U-net segmentation, which simpli�es BERT models

with knowledge distillation and is designed explicitly for document-level classi�cation.

As we embed the U-net into the component-based region, the original bounding box

re�nement still remains. The remaining will be used to segment the next document.
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This method applies the component-based region as a generative method to detect and

localize an image. Our results for document image detection and localization are signi�-

cantly improved when the bounding box of the image is added to the U-net structure, as

demonstrated in printed real-time document image experiments. Additionally, we can use

our U-net neural network to detect equations, graphs, tables, charts, and segment images

with minimal adjustment.

Combining the two techniques does improve the sample AUC by for E�-GNN +

Word2Vec and by 86.0 % for U-net segmentation and Region Component based on the

Tobacco-3482 dataset. Using Word2Vec text features alone does not show much improve-

ment over U-net segmentation and Region Component based classi�cation on in real-time

document image datasets. There may be enough information in printed document images

to classify both textual and image content. In addition, the BERT and VGG-16 models

achieve similar classi�cation results.

In Table 6.2, the classi�cation Accuracy of 10000 real-time naturally captured camera

and scanned document data sets are compared. As compared to models in BERT families

(93.95 %) and VGG-16 (93.16 %), Our proposed model achieves 99.0 % under real-time

data sets for O�ce Documents, Advertisement boards, Inauguration boards, Direction

boards, and Answer scripts. Moreover, we tested whether could combine text and image

embedding in the U-net and component region-based approach.

6.3 Results and Discussion

The U-Net method is used to separate the non-text from the document image. The

obtained output is compared to the ground truth of the respective o�ce document images
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to determine segmentation outputs. We imported the Unet model ResNet as the backbone

network and loaded the image mesh weights. The output is passed to the U-Net model

after it describes the layout of the input intended by the base model and indeed the

specially designed overlay that obtains its base mode input. The UNet model's output

is then propagated to other prede�ned ReLU-enabled ConvNet layers. The �nal result is

reshaped to 1242x1754. Finally, we used the basemodel to construct a design that takes an

input (xinp). and outputs an output (xout). We de�ned the metrics, losses, and optimizer

functions after compiling the model and de�ning everything that �tted the training and

validation data to the proposed model. After saving the model, I used the trained model

to create and save the Xtrain and Xtest predictions. After making the predictions, we

de�ned a function that visualises the model's predictions. This function expects input

and output arrays as well as predictions. We obtained a mask for same dataset of the

selected training sample by randomly selecting images from the training data and de�ning

k as zero. Then I set the �gure's size and plotted all three aspects: the image, the mask,

and the predictive mask. The proposed approach yielded the following results, with the

ground truth and predicted output for ideal o�ce document images shown in Figure 6.4.
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(a) (b) (c)

Figure 6.4: shows the resultant output images 1-5, as well as the corresponding ground
truth images and predicted outputs.

(a) Represents input images, (b) Represents ground truth images and (c) Represents
predicted images.

Following training, the performance of a machine learning classi�er is evaluated using

key performance metrics. The confusion matrix, which is a table showing whether a classi-
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�ers needs to perform if some truth values/interests are gained, is among the performance

metrics. The most common matrices used for evaluating this architecture are accuracy,

(F1) score, Precision, Sensitivity and Speci�city. The proportion of classi�ed instances

pixels in an image.

F1Score, F1 = 2 ∗ (PC ∗RC)/(PC +RC)(1) (6.1)

Precision, Pc = (truepositives)/(truepositives+ falsepositives) (6.2)

Sensitivity(Recall), Rc = (truepositives)/(truepositives+ falsenegatives) (6.3)

Specificity = (truenegative)/(truenegative+ falsepositives) (6.4)

Table 6.1: Comparison of Di�erent quantitative methods.

FPR TPR

0.0 0.2

0.1 0.5

0.2 0.9

0.3 1.0

0.4 1.0

0.5 1.0

0.6 1.0

0.7 1.0

0.8 1.0

0.9 1.0

1.0 1.0
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Figure 6.5: ROC diagrams of the proposed U-Net for Real-time dataset.

The values of FPR and TPR for segmentation are given in Table 6.1, and the ROC

diagram of the proposed method is plotted in Figure 6.5 Precision and Recall diagram

for the proposed method is plotted in Figure 6.6. The accuracy diagram of the proposed

method is plotted in Figure 6.7, and the �nal diagram is plotted in Figure 6.8.

Figure 6.6: Precision and Recall diagram of the present work U-net Segmentation.
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Figure 6.7: Accuracy diagram for the proposed method.

Figure 6.8: Loss diagram for the proposed method.

Di�erent classi�cation accuracy methods are compared with proposed method and the

values are given in table and graphical representation is shown in Figure 6.9.

Table 6.2: Classi�cation Accuracy of di�erent methods.

Classi�cation
Methods

Accuracy

VGG-16 93.16

DocBert 90.18

BERT 93.95

E�-GNN +

Word2Vec

86.0

Our (Proposed) 99.62
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Figure 6.9: Graphical representation of accuracy comparison of di�erent methods.

Finally, di�erent performance measure for classi�cation of the proposed method are

given in Table 6.3 and its equivalent graphical representation plotted in Figure 6.10.

Table 6.3: Classi�cation Accuracy of Di�erent measuring parameter methods.

Classi�cation
Methods

Acc-
uracy

Speci-
�city

Sensi-
tivity

Prec-
ision

F1-Score

VGG-16 93 80 89 83 86
Docbert 90 82 88 89 88
BERT 93 86 87 91 92
E�-GNN+Word2Vec 86 68 78 75 79
U-Net (Proposed) 99 81 99 99 99

Figure 6.10: Graphical representation of performance comparison for di�erent methods.



Classi�cation of Text and Non-Text from Bilingual Document Images 120

6.4 Conclusion

As deep learning has shown good performance in detecting natural scene objects, the pa-

per explores how to employ this technique for detecting document page objects (like tables,

formulae, equations, and �gures). A deep neural network model is modi�ed and improved

based on the di�erences between document images and natural images. By combining

U-Net Segmentation and component-based region proposal, we propose a method for gen-

erating moderate candidate regions for objects with multi-scale problems. Additionally,

this paper examines the signi�cant factors a�ecting the performance of deep neural net-

works for detecting page objects, including network structure and training strategies. As

a result of experimenting on our own dataset, the performance of the proposed method

was demonstrated as 99% accuracy, 81% speci�city, 99% sensitivity, 99% precision, and

99% F1-Score obtained from the results.



Chapter 7

Epilogue

7.1 Preamble

The separation of text and non-text printed/handwritten document images poses many

challenges in the �eld of document image analysis, especially when there is bilingual text,

blurry or distorted images, or shadows on the documents. It is inevitable that distortions

will appear in printed/handwritten documents, but separating text from non-text poses

a challenge. For this reason, an e�cient approach to extracting text and non-text from

printed, handwritten, or scanned text needs to be developed. Consequently, deciphering

bilingual document images into text and non-text can be divided into two broad cate-

gories: statistical strategies (local strategies) and texture-based strategies (global strate-

gies). Lines, words, and characters are used for local segmentation in the LWC method.

Logos, tables, equations, signatures, lines, words, and characters must �rst be segmented

before components are available. The models we provide can also be used to separate

text from non-text information in document images. A novel method was also devised to

identify images in bilingual printed and handwritten documents and to distinguish them

from the text.

In this chapter, all the model proposals are summarized. Further, the major contribu-

tions of the research work are listed. Subsequently, the scope for further research in this

direction is also highlighted.
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7.2 Summary

Chapter 1, gives introduction of Text and Non-Text printed/handwritten bilingual doc-

ument image enhancement, segmentation and Classi�cation. The state of art existed

methods and brief survey methods are presented.

In Chapter 2, We just made an attempt to brief our e�ort towards creation of the

datasets. The �rst dataset consists of printed/handwritten bilingual document images

with multiple skews and logos, pictures, tables, equations, numbers, seal impressions.

In chapter 3, We have proposed an e�cient approach for enhancement of real time

document images. The proposed approach Fuzzy Logic(FL) approach perform better than

the existing methods. To enhance the real time document images, the di�erent spatial

domain enhancement methods are used like Histogram Equalization (HE), Adaptive His-

togram Equalization (AHE), Gamma Correction(GC), Linear Transformation(LT), Log

Transform (LogT) and Contrast Stretching(CS). Frequency domain methods focus on the

image orthogonal transform instead of the image itself. Low Pass Filter(LPF), High Pass

Filter (HPF), Gaussian Filter (GF), Non Local Means (NLM), Constrained Least Squares

(CLS), Pseudo Inverse Filter(PIF) are used.

In chapter 4, We have presented an approach for signature extraction from a bilingual

document images. The proposed approach is based on contour and blob's method. The

proposed algorithm is tested a two di�erent cases i.e., before enhancement and after

enhancement. Logo extraction is done by using masking and median �lter techniques. To

measure the performance di�erent performance metrics are used like, Accuracy, Precision,

Recall and F1-score. The proposed method is compared with existing methods; our



Epilogue 123

method performs well.

In chapter 5, We proposed a hybrid U-SegNet model which integrates both U-net and

SegNet architectures. The performance is evaluated using metrics like accuracy, precision,

recall and F1-score and comparison analysis is also conducted with other segmentation

methods such as watershed method, Fuzzy C- means and U-net method.

In chapter 6, We have proposed U-net and component-based region network is a di�er-

ent method for analyzing features of document images, such as regions, bounding boxes,

convex hulls, �lters, and enhancements, when compared with existing methods. The

performance metrics used to measure performance are Accuracy, Precision, Recall, and

F1-Score. The proposed method is compared with existing methods. Our method per-

forms well.

In brief, following are the major contributions of the research work presented in this

thesis work.

7.3 Contributions

A successful attempt towards creation of considerably large datasets viz., A dataset

consisting of 10000 bilingual document images of �ve di�erent document each with 2000

images.

� To proposed an e�cient classi�er for classi�cation of text and non-text information.

� To develop an e�ective segmentation algorithm for extracting the text.

� To design an algorithm for estimation and correction of skew angle.
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7.4 Scope for Future Work

Text and non-text separation is an important processing step in any document analysis

system. It then divides o�-line printed/handwritten document images into several types

based on the nature of the problems each �nds, in an attempt to provide understanding

of the various techniques presented in the literature.

To the best of our knowledge, no work has been documented on extracting text and

non-text extraction from printed/handwritten bilingual document images with several

challenges. As a result, in our research, we propose developing a novel contour approach

and applying bounding boxes to various sections of document images. The developed

model can be employed with or without a priori knowledge of document images for both

handwritten and printed documents, and it can extract various text and non-text doc-

ument images if they exist. The designed model is intended to recognize and extract

document images if they exist, and it can be used with or without prior knowledge of text

and non-text separation of document images for both handwritten and printed documents.

The proposed models e�cacy will be tested on a large number of document images with

various parameters.
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