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Abstract 

Several applications like signal compression, enhancement, classification, recognition 

in the field of engineering field are constantly updating the signal processing 

technology. Signal processing techniques also have overlapping borders with areas of 

applications like, probability and statistics, decision theory and numerical analysis.  

Signal compression, enhancement, and classifications use their own 

mathematical procedures for manipulation of signal, called as ‘transforms’.  There are 

several methods to represent the signal either in time, frequency and wavelet domain.  

Digital signal analysis by using time frequency representation (TFR) is a major 

developing research area in the field of digital signal processing (DSP).  The Fourier 

transform (FT) assumes that the spectral characteristics of a signal do not change with 

time and hence it is not appropriate for the analysis of non-stationary signals. Also 

Short time Fourier transform has its limitations in analyzing the signal, due to fixed 

window size. Multiresolution analysis of wavelet transform makes it superior TFR for 

DSP applications. Smart communication systems in mobile, web applications are 

highly reliant on signal compression and coding technology to recover large amount 

of data.  

Signal compression is another sub field in DSP, essential in developing 

advanced computer technology. It is a technique in which any source information, can 

be represented with a reduced number of bits without affecting its originality. Based 

on reconstruction capacity, it was classified as lossy and lossless compression 

methods. Multimedia and mobile applications are examples of having lossy 
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compression approaches, whereas, medical imaging, satellite and defense data 

handling applications use lossless compression techniques. Both lossy and lossless 

compression techniques are found their own significance in the field of specific signal 

processing applications. Identification of suitable TFR tool for signal compression 

application is one of the challenging tasks in DSP. 

The present investigation is to develop new compression techniques for image 

data, by using TFR tool that includes wavelet transform and fractional transforms. 

However, coding of low frequency wavelet coefficients for compression is one of the 

challenging part of the present signal compression technology. It is found that, the 

combination of formal wavelet compression techniques with other compression 

techniques significantly improves the compression performance.  

The thesis has two contributions in hybrid wavelet compression schemes and is

targeted for high compression ratio along with better image quality. The thesis 

investigates the problems in present compression technology like JPEG2000 using 

wavelet transform. The advantages of wavelet mathematics with respect to time 

frequency plane creates a foundation for the development of new signal compression 

algorithm.  

 The main focus of this work is towards two dimensional signal compression and 

digital image compression using wavelet transform is explained by using general 

block diagram. The key features of wavelet in image compression using threshold 

techniques and progressive encoding schemes like EZTW, SPIHT, SPECK, WDR and 

ASWDR are discussed and a new compression algorithm with an improved neigh 

shrink in DWT-DCT for grey scale image is developed. This compression results and 

their comparison with JPEG 2000 shows, significant improvements in image 
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compression. The idea of coding low frequency wavelet coefficients is extended by 

using fractional transforms and two compression algorithms DWT_DFRCT and 

DWT_DFRFT are developed by the combination of wavelet transform and fractional 

transforms. The lossy compression algorithm uses DFRCT to code low-frequency 

wavelet coefficients, but neglects, first level high frequency wavelet coefficients 

along with imaginary part of DFRCT to make it lossy approach. However, even 

though it is a lossy approach, the algorithm efficiently preserves the quality of 

reconstructed image. Another lossless compression algorithm was tried by using 

DFRTFT to code low frequency wavelet coefficients. The extension of this lossless 

method was tried in medical image compression. The method uses block based 

DFRFT to code low frequency wavelet coefficients. The results of these methods are 

compared with two dimensional DFRFT, DFRCT, DFRST and JPEG2000 and found 

that proposed algorithms show improvement in quality of reconstruction and 

compression percentage. 

 In the end, the thesis discuses a new approach for pre-processing procedure based 

on median based singular value decomposition (MSVD) is designed, which can 

improve the compression performance of wavelet based image compression 

technique. Basically, adaptive SPIHT, EZTW and binary tree coding algorithms 

operate at high compression ratio but they tend to lose image quality during 

reconstruction process. This could be improved by combination above methods with 

modified SVD. Median based SVD is used as pre-processing step for BTC and 

ASPIHT and mean based SVD is used for EZTW for gray scale image compression. 

The results show some significant improvement in compression performance in terms 

of PSNR and compression percentage. 

The thesis is concluded with discussion on its limitations and future work 
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Chapter 1

Introduction

1.1 Introduction to Digital Signal Processing

Digital signal processing (DSP) is cutting edge technology with wide range of applica-

tions in the field of science and technology. DSP plays a vital role in increasing computa-

tional speed and miniaturization of advanced digital computers. It is compassion of every

one’s of present information technology and impact is felt all over the everywhere: in

mobile technology, seismic pulsations, medical data analysis, and defense communication

technology. Naturally occurring sound waves, image signals, electromagnetic waves and

vibrations are considered as signals which are manipulated by using DSP techniques [1-3].

DSP extends its applications beyond the boundaries of signal processing to other areas

of science and technology, like medical science, business statistical analysis, mathematical

modeling, genetics, and forensic science [4-6]. It became a powerful tool for designers

to increase the efficiency of newly arriving technologies. Several ground-breaking signs

of progress have been already made in wide range of applications [7,8]: multi-rate signal

processing in speech/audio technology, nonlinear signal processing in image recognition, a

time frequency signal analysis in radar and sonar.

In general, a signal is an entity which conveys information and is defined as function

1
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of one or more independent variables. For example, a speech signal, where amplitude

is function of an independent variable time, an image has intensity as function of two

independent variables in spatial coordinates (x, y). Most of digital signal processing con-

cepts formed to analyze non stationary signals [9-12]. Naturally occurring most of the

signals like speech, image, sensor waves, and vibrations are nonstationary signals. These

signals are a convenient form of basic signals like sine, cosine, square waves and etc. and

require specialized tools to process. This is where the time-frequency techniques come

into picture.

Study of time-frequency techniques in signal analysis gain more attention in the field

of DSP because of their characteristic features. Prior knowledge of features of signals is

often advantageous to study and represent the signal in either time or frequency domain.

A set of functions (transforms) are enough to extract the features of signals and represent

them in a better way [13].

Digital signals obtained after sampling of analog signals through analog to digital

(A/D) converters are loaded with redundancy which is will not make any significant

contribution in reconstruction process [14]. Hence elimination of redundancy in digital

signal and its compact coding increases the speed of computation and reduces the required

storage space. In order to develop an efficient algorithm to analyze and characterization

of digital signals, prior analysis of digital signals are very important.
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1.2 Digital signal analysis in time-frequency domain

Digital signal analysis (DSA) deals with the study of digital signal characteristics, which

are obtained through digitization of natural analog signals like sound waves, electric sig-

nals, image signals, and seismic vibrations. Basically, a sequence of a digital signal is

represented either in time, frequency or in wavelets domain [15]. Time domain repre-

sentation uses finite input response (FIR) or infinite input response(IIR) filters, whereas,

frequency domain representation uses Fourier transform (FT) to analyze the frequency

spectrum of the signal [16-20]. But in wavelet domain, signals are represented both in

time and frequency domains.

A French mathematician ’Jean-batiste Joseph Fourier’ (1807) made an importatant

contribution in DSA by introducing an equation for frequency representation to analyze

the behavior of discontinuous signals [21]. He represented, any discontinuous function

with the sum of continuous functions and he termed it as Fourier transform (FT).

X(f) =

∫ ∞
−∞

x(t)e−j2πftdt (1.2.1)

FT is a powerful tool which acts as sliding door for the signal and convert them into their

frequency segments [22, 23]. However, the biggest limitation of FT is that, it presumes

that the spectral characteristics of signals are not varying with time and hence it is

ineffective in analyzing non-stationary signals. In order to get spectral characteristics at

different time scale, a time-frequency representation (TFR) was introduced. This is done

by application of small window for non-stationary signals and then computing FT for

windowed signal, and is referred as short time Fourier transform (STFT) [24]. STFT for
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any sequence of signal is given by,

w(n, φ) =
∞∑
−∞

x(m)h(n−m)e−jφm (1.2.2)

Here, the STFT analyze the behavior of the signal by using the sliding window [25].

However use of windows cause unexpected truncation of signals in STFT, leading to Gibb’s

phenomenon and reduces the time/frequency resolution [26].

A famous quadratic TFR representation method introduced by Ville [27], as Wigner

Ville distribution (WVD) resolves the problems caused by STFT. The WVD Sf (n, φ) of

any discrete signal S(n) s given by,

Sf (n, φ) = 2 ∗
∞∑

k=−∞

e−j2kφf(n+ k)f ∗(n− k) (1.2.3)

WVD returns, many useful signal analyzing properties like marginal properties, instan-

taneous frequency and group delay [28]. Most common difficulty in applying WVD to

discrete signal is aliasing effect in time-frequency plane due to the periodic disproportion

between band limit signal and Wigner distribution [29]. This effect can be overcome by

sampling the band limited signal twice of its maximum frequency [30]. Another hurdle in

time frequency analysis of signal using WVD is, counterfeit structure formation of ’cross

term interference’ due to its bilinear form, which reduces the time-frequency resolution

[31]. Many attempts have been made by a researchers to suppress the cross term inter-

ference in time-frequency representation by smoothing the window and optimizing the

kernel for the limited set of signals [32-35].

Fractional Fourier transform (FRFT) became the superior alternative to the FT in

time-frequency representation. Use of chirp signal as an orthonormal basis and better in-

terpretation as rotational angles in time-frequency plane made FRFT more advantageous
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in a study of discrete signals [36]. For finite input samples y(n) at sampling intervals ∆u

closed form of discrete FRFT (DFRFT) Yα(m) at sampling interval ∆t is written as,

Yα(m) =
N∑

n=−N

Fα(m,n)y(n) (1.2.4)

where normalized kernel Fα(m) is given by,

Fα(m) =

√
|sinα| − jsgn(sinα)cosα)

2M + 1den
ej

cosα
2
m2∆n2

ej
cosα
2
n2∆t2e

−j2nπm
2M+1 (1.2.5)

This DFRFT computational method is straightforward and uses two chirp multiplica-

tion and one FFT operation [37]. The most common approach for computation of DFRFT

[38] is by computing fractional power (rotational angle) for the DFT kernel matrix. This

method gives theoretical justification for DFRFT but doesnt comply with rotational rules,

and finds itself in difficulty during signal reconstruction using inverse transform. DFRFT

implementation introduced in [39] uses the orthogonal DFT Hermite Eigenvectors to re-

late the FRFT, and preserves the rotational properties of a signal in the time-frequency

plane.

Discrete wavelet transform (DWT) is a dominant approach in processing digital sig-

nals with its time-varying spectra. It processes the signal by using scaling and shifting

operations of ’mother wavelets’ [40]. Mathematical representation of Haar wavelet for

infinite sum of large numbered functions is given by,

f(t) =
∞∑

k=−∞

xkφ(t− k) +
∞∑

k=−∞

∞∑
j=0

yj,kψ(2jt− k) (1.2.6)

where, xk and yj,k are the coefficients to be computed by using scale function φ(t) and

Haar wavelet function ψ(t) . Basically scale function φ(t) is a unit pulse

φ(t) =

1, if 0 ≤ t ≤ 1.

0, otherwise.
(1.2.7)



Chapter-1: Introduction 6

Haar wavelet, is a step function,

ψ(t) =

1, if 0 ≤ t ≤ 0.5.

−1, if 0.5 ≤ t ≤ 1.
(1.2.8)

In DWT multiresolution analysis, the signal with higher frequency is analyzed by using

a window with high time resolution and low-frequency resolution. Similarly, at lower fre-

quencies, the analysis is done with a window of poor time resolution and high-frequency

resolution [41]. If we compare all these methods, the cross term interference in bilinear

transform WVD, made it less attractive in time-frequency analysis. STFT suffers from

fixed window size and time-frequency tradeoff. However, FRFT also affected by its lim-

ited rotational angles and time-frequency tradeoffs. But multiresolution property, choice

of orthonormal basis functions, optional sampling rate, and perfect reconstruction filters

made DWT more attractive and efficient in a digital signal analysis in the time-frequency

plane. Time-frequency analysis uses distributive functions to map the energy of digital

signal on time-frequency plane. The time frequency distribution (TFD) is used to extract

features like power spectrum, energy, harmonic feature, noise etc. [42-44] from the signal.

It also facilitate to analyze the frequency varying nonstationary signals such as seismic

waves, speech, image, radar, sonar and mechanical vibrations etc [45-47]. TFD techniques

are very effective in energy characterization of signal in time-frequency plane, which helps

to extract significant information from the signal. Applications like speech/image mod-

eling, speech/image compression, watermarking, recognition, restoration etc., use time-

frequency representation techniques to process the source information [48-51]. Hence, by

developing new algorithms by using TFR techniques a significant contribution can be

made in the field of science and technology.
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1.3 Signal compression

Handling of large data is a most familiar problem in modern data communication system.

Large data, refers to the signal, which requires a large number of the memory location to

store and process. Signal processing techniques are necessary to manipulate and format

the signals digitally, which in turn help in reducing the memory required to store these

processed signal and ease the communication process.

1.3.1 Definition

Nonstationary signals are finite time-varying spectra with compact signal boundaries.

Even then there exist some signal components which are repeatedly occurring in a spec-

trum forms redundancy and process of efficient removal of such undesirable components

and coding of the signal without affecting original signal is considered as signal compres-

sion. Formally, a process of representation or coding of any finite signals with reduced

number of bits without affecting its originality is termed as signal compression [52].

The compression technology always finds itself in significant role in designing new

computer technologies as it enhances the efficiency of any digital computational device

by increasing its computational speed and also reduces the size of the device.

1.3.2 Types of signal compression techniques

Based on reconstruction capability, the compression techniques are broadly classified as

lossy and lossless compression techniques. In compression process, signal is encoded and

is reconstructed from decoder during decompression. If reconstructed signal resembles its

source signal then it is called as lossless compression technique, otherwise it is called as
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lossy compression technique [53].

a. Lossy compression Techniques

In lossy compression, the compressed data will not be identical, bit-for-bit with the

original data. This method is also called Perceptive coding as it utilizes the fact that some

information is truly irrelevant in that the intended recipient will not be able to perceive

that, it is missing. In most cases, information that is close to irrelevant is neglected,

which results in loss of quality of the reconstructed signal. However, this quality loss

is small and is fine, as we think of the data reduction [54]. The main objective of lossy

compression is to get maximum benefit, i.e., compression ratio (CR) or bit rate reduction,

at a reduced cost, i.e., loss in quality [55]. An example for application of lossy compression

technique is, joint photographic expert group (JPEG) image file, which is commonly used

for photographs. The JPEG compression, allows designers to decide how much loss can

be introduced and make a trade-off between file size and image quality [56].

b. Lossless compression techniques

Lossless compression technique, works by removing the redundant information present

in a signal. This would be the ideal compression technique as there is no loss of informa-

tion. Every single bit of data, that was in original data file, will remain after the file is

decompressed and all the information is completely restored.

However, lossless compression has two common drawbacks, as, it offers small com-

pression ratio, using it alone is not economically viable. Also, it does not produce stable

output data rate as the compression ratio is very much dependent on the input data [57].

Lossless techniques that are used in general are run-length encoding (RLE) and entropy

encoding[58], graphics interchange file (GIF).
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1.4 Real-time applications of signal compression

Signal compression has unlimited applications, since it is a necessary tool to create smart

embedded systems and to develop high speed communication devices. Signal compression

has become an integral part of computing systems and some real time applications in

which compression techniques used are as follows.

a. Astronomical and communication applications: Signals and images cap-

tured in space are suffered by blur due to rapid change in refractive index of the atmo-

sphere. 1D and 2D signals captured by spaceship are degraded due to motion variations

of a source with respect to a spaceship. Storage of large information for long period in

smart devices is possible only due to compression techniques. To avoid network traffick-

ing, the only solution is to compress and code the signal with low bit rate. This technique

is used in high definition television (HDTV), three dimensional TV (3DTV), personnel

computers (PC)[59]. Incremental cost-effectiveness ratio (ICER) is wavelet-based image

compression file format used by the NASA Mars rovers. The mars exploration rovers

spirit (MER-A) and Opportunity (MER-B) both use ICER technology [60].

b. Medical imaging: Today a lot of hospitals handle their medical image data

with computers. The use of computers and a network makes it possible to distribute the

image data among the staff efficiently. As the healthcare is computerized, new techniques

and applications are developed, and the medical resonance imaging (MRI) and computed

tomography (CT) techniques are among them. MR and CT produce sequences of images

(image stacks) for every cross-section of an object. The amount of data produced by these

techniques is vast and this might be a problem when sending the data over a network.

To overcome this, image data can be compressed. For two-dimensional data, there exist
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many compression techniques such as JPEG, GIF and the new wavelet-based JPEG2000

[61,62].

c. Defense and investigation: Many defense applications require signal com-

pression, such as naval commands, to handle communication between boat with navy

base. We can improve the sound amplification and ranging (SONAR) performance by

pulse compression. In visually guided missiles, which may obtain distorted images from

cameras mounted on missiles, due to the effects of pressure differences in environment.

Compression methods are used to restore X-ray images of aircraft parts to improve avia-

tion inspection procedures. It is also used to improve the RADAR image quality [63,64].

1.5 Challenges in wavelets for signal compression

The most common challenging part of signal compression is to reduce the size of a signal

without affecting the signal quality during signal transmission. But there is an ambigu-

ity between compression percentage and quality in a reconstruction of signals [65]. In

this situation, some compression techniques are developed to enhance the compression

performance based on their requirement for specific applications.

In image compression, the lack of spatial adaptive quantization may result in serious

blurring problem, in areas with subtle texture. Secondly, wavelets dont seem to code

visual energy of image effectively [66]. Thus wavelet codecs have a tendency to look

much blurrier than discrete cosine transform (DCT) -based codec, however, the peak

signal to noise ratio (PSNR) likes blur, and is often seen as a beneficial during video

compression. Another problem that periodically crops up is the visual aliasing that tends

to be associated with wavelets at lower bitrates [67,68]. Decimated wavelet transform
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is not shift invariant and, as a result, it scales up the coefficients badly which leads to

suppression of wavelet coefficients. In signal compression, the high frequency sub-band

coefficients are not exactly reconstructed and introduces cyclo-stationarity into the image.

JPEG2000 is one of the classic example of wavelet failure, despite having more advanced

entropy coding, being designed much later than JPEG, being much more computationally

intensive, and having much better PSNR, comparisons have consistently shown it to be

visually worse than JPEG at same file sizes. [69,70].

1.6 Aim and objectives of the research

a. Problem statement

The idea of the present investigation is to develop new compression technique by using

TFR tool that includes wavelet transform and fractional Fourier transforms for digital

signal/image data. However, coding of low frequency wavelet coefficients for compression

encoding is challenging part in present signal compression technology. By the combination

of formal wavelet compression techniques with other compression techniques significantly

improves the compression performance.

b. Objectives

An attempt has been made

1. To analyze the TFR of signals using wavelet transform.

2. To develop a new lossy compression algorithm for a two-dimensional signal.

3. To develop an improved wavelet-based lossy compression algorithm.

4. To develop new lossless hybrid wavelet compression.
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c. Solutions

The solutions for the problem statements are obtained by following way:

1. Time-frequency responses and filter implementation for mother wavelets are studied.

2. A new lossy compression algorithm using neigh shrink in DWT-DCT is developed.

3. An improved lossy compression using modified singular value decomposition and

wavelet-based progressive image compression methods are developed.

4. A novel lossy and lossless compression algorithm is developed by hybridizing the

wavelet transform with fractional Fourier transforms.

d. Results and discussion

Combination of existed wavelet transform algorithm with optimal threshold coder pro-

vides good digital signal representation with fewer bit rate transmission, with good com-

pression performance without compromise in image quality. Significant improvement of

hybridization of wavelet with fractional transforms creates a new development in image

compression.

This thesis is prepared as fallows

The Chapter 1, presents the outline of the thesis with introduction to digital signal

analysis in time frequency plane, followed by signal compression techniques. An introduc-

tion to wavelet transform for digital signal analysis in time frequency plane and its role

in compression process is discussed in this chapter. Lastly, objectives and contributions

of proposed research work are exhibited.



Chapter-1: Introduction 13

Chapter 2, presents the mathematical background of wavelet transform as a time-

frequency based signal analysis. This chapter gives prior knowledge about a multireso-

lution property of wavelets and quadrature mirror filtes design used to code the digital

signals. The TFR of digital signals using Fourier transforms (FT), continuous wavelet

transform (CWT) and discrete wavelet transform(DWT) are briefly emphasized.

Chapter 3, introduces the standards of two-dimensional signals and role of wavelet

transform in signal compression. Description for a traditional procedure of two-dimensional

signal compression using wavelet transform is given. A new compression algorithm with

an improved neigh shrink in DWT-DCT for grey scale image is discussed. Results are

compared with standard compression technique JPEG2000.

Chapter 4, extends hybridization scheme proposed in Chapter 3. This chapter in-

troduces another new lossless compression scheme by the combination of wavelet with

fractional Fourier transforms for grey scale image. Wavelet decomposition is well known

for spectrum characterization of image signals, it partitions the image signal into four

different frequency subclasses. Whereas coding of low frequency is challenging part of

image compression. In this chapter, these low-frequency wavelet coefficients are coded by

using well-known signal coders discrete fractional cosine transform (DFrCT) and discrete

fractional Fourier transforms (DFrFT). The results, discussions and comparative studies

show the enhancement in quality of reconstruction and compression percentage.

Chapter 5, introduces a new hybridization scheme for progressive image compression

using modified singular value decomposition (SVD) to improve the compression perfor-

mance. A new lossy compression scheme segmented rank one updated SVD is introduced.
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This modified SVD is applied as the pre-processing step for three wavelet-based progres-

sive image compression algorithms embedded zero tree wavelet (EZTW), adaptive set

partition hierarchical tree(ASPIHT), and binary tree coding. The results show some sig-

nificant improvement in compression performance in terms of PSNR and compression

percentage.

Chapter 6, encapsulate the core efforts of this thesis and puts frontward ideas for

future work.



Chapter 2

Digital signal analysis using wavelets

2.1 History of wavelets

In early 1700s the harmonic series data are measured by using the tables of astronomical

positions called ’ephemerides’ [71]. The classical concepts of epicycles in astronomy were

analogous to Fourier series. Several modifications were made by ’Alexis Clairaut’ in 1754

to compute orbit function by the use of cosine series referred as discrete cosine transform

(DCT). In 1759 ’Joseph Louis Lagrange’ developed a trigonometric series to characterize

the vibration of a string by using sine series called as discrete sine transform (DST). In

1807 a French mathematician ’Joseph Fourier’ discovered a trigonometric series to analyze

the behaviour of heat [72,73] and stated the Fourier series as a ’periodic function, which

can be expressed as a sum of sine and cosine functions’. The features of wavelet transform

can be traced out by Fourier transform, hence it is more appropriate to begin with Fourier

transform

15
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2.1.1 Fourier transform

Time and frequency are the two most commonly used parameters in analyzing the signal

in the field of science and technology. Naturally occurring phenomena are represented

by oscillations or waves as function of time or frequency. According to Fourier, the

transformation of any periodic function from its time domain to frequency domain is very

easy [74-76]. The term Fourierseries (FS) is defined as:

x(t) =
1

2
a0 +

∞∑
p=1

anp cosωt+
∞∑
p=1

bnp sinωt (2.1.1)

For non-periodic function, it can be represented as linear combination of complex expo-

nentials, which are infinitesimally close in frequency. So FS can be represented as weighted

integrals of complex sinusoids which are harmonically not related [77].

It can be derived from FS as,

x(t) =
∞∑
p=1

cne
jpωt (2.1.2)

the fundamental frequency ω = 2π
T

. In the Fourier series representation, as the period

increases the fundamental frequency decreases and the harmonically related components

become closer in frequency. As the period becomes infinite, the frequency components

form a continuous and the Fourier series becomes an integral [78]. And hence equation

2.1.2 is rewritten as,

X(f) =
1

2π

∫ ∞
−∞

x(t)e−jaφωtdt (2.1.3)

where, inverse continuous Fourier transform (ICFT) is given as:

x(t) =
1

2π

∫ ∞
−∞

X(f)ejaφωtdf (2.1.4)
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By the application of Fourier transform, one can easily transform the periodic or non

periodic functions from its time domain to frequency domain [79].

The main drawback of Fourier representation is that, it fails to describe the status

of each frequency component of signal at a specific point of time [80]. Fourier transform

(FT) characterizes the frequency information of complete signal, but fail to describe the

frequency information at a given time interval. Infinite duration integration over a time

scale and complementary nature in time and frequency representation of FT creates loses

in time locality [81].

2.1.2 Short time Fourier transform

Short-time Fourier transform is termed as ’Windowed Fourier Transform’ reproduced by

’Dennis Gober’ to overcome the problem of temporal locality in FT. He modifies the FT

by dividing the signals into the small section and then computes the FT for each section.

It represent the signal as a two-dimensional function of time and frequency. STFT (τ, x)

for a signal x(t) at time t and frequency x is defined as,

STFT (τ, x) =
N−1∑
k=0

x(t)h∗(t− τ)e−jωt (2.1.5)

where, h∗(t− τ) is a window function (* denotes complex conjugates). STFT computes,

a time-varying spectra by sliding a window along the signal x(t) . Each time, the win-

dow moves, its FT is computed by the product x(t)h∗(t − τ) . Figure 2.1. shows the

computational procedure of STFT by varying the window function (τ = −6, 0, 6).



Chapter-2: Digital signal analysis using wavelets · · · 18

Figure 2.1: STFT computations by sliding a window

Limitation of STFT is that, it has fixed window size for overall process. Better time

locality can be observed in small window size, but it provides poor frequency resolution.
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However, the use of rectangular window function gives better frequency resolution but it

creates ’Gibbs ripple’ [82]. In order to avoid Gibbs ripple, window functions are replaced

with hanning or hamming window with slight compromise in frequency resolution. This

frequency resolution can also be enhanced by increasing the window length excluding at

the rate of time resolution [83]. Squaring the magnitude of STFT in equation 2.1.5 is also

increases frequency resolution, and is given as

X̂STFT (τ, x) =
1

N
|
N−1∑
k=0

x(t)h∗(t− τ)e−jωt|2 (2.1.6)

However, use of STFT always results in trade-off between time and frequency resolution.

2.2 Continuous wavelet transform

CWT is an improved version of STFT and computational procedure of CWT is similar

to that of STFT in time domain [84]. From the figure 2.2, we can observe that the sine

wave is smoother and infinite in length, on the other hand the wavelet is very compact

and irregular in shape.

Figure 2.2: (a) sine wave; (b) mother wavelet (debauches)

Shape irregularity of mother wavelet helps in analyzing the non-stationary signals and its

compactness supports for temporal localization of signal features. The mother wavelet
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uses shifting and scaling operation to analyse any non stationary signal in time-frequency

plane.

Shifting and scaling operations in wavelets

To overcome the time locality problem in FT, wavelet transforms use shifting operation for

time domain analysis and scaling operation for frequency domain analysis of any signal

[85]. Shifting and scaling operations are explained with the help of an exponentially

sudden decaying signal. Consider, the signal Y (t) where,Y (t) = cos5te−x
2

is subjected

to wavelet transform by performing shifting and scaling operation. Shifting operation

is realized by subtracting the variable t with shifting factor τ , is Y (t − τ) It shifts the

function by units,

i.e. Y (t− τ) = cos(5t− τ)e−x
2

(2.2.1)

after shifting operation, the scaling process begins by dividing the variable by scaling

factor λ and which compress the function as:

i.e. Y

(
(t− τ)

λ

)
= cos

(
(5t− τ)

λ

)
e−x

2

(2.2.2)

A function shifted by unit 2 and scaled by factor 0.4 is plotted in figure 2.3.

The shifting and scaling operation in wavelet decomposition process generates a set of

wavelet coefficients.
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Figure 2.3 Wavelet decomposition of function Y (t) by shifting (τ = 2) and scaling(λ = 0.4)

operations

For any function ψ(t) , is said to be a ’mother wavelet’, it must satisfy the following two

property [86],

1. Integral of the function is zero ∫ ∞
−∞

x(t)ψ(t)dt = 0 (2.2.3)

2. Squared integral of function has finite energy∣∣∣∣∣
∫ ∞
−∞

x(t)ψ(t)

∣∣∣∣∣
2

dt <∞ (2.2.4)

CWT of a function Y (t) with respect to ψ(t) is termed as,

Xy(τ, λ) ∼=
∫ ∞
−∞

Y (t)
1√
|λ|
ψ ∗

(
t− τ
λ

)
dt (2.2.5)



Chapter-2: Digital signal analysis using wavelets · · · 22

where, τ and λ are shifting and scaling variables respectively and ψ ∗
(
t−τ
λ

)
is a mother

wavelet function (∗ indicates complex conjugation). 1√
|λ|

is the normalizing factor, which

represents the energy of shifting and scaling variables. The wavelet transform is a function

of two real variables τ and λ. The function of wavelet can be redefined as,

ψτ,λ =
1√
|λ|
ψ ∗

(
t− τ
λ

)
(2.2.6)

By combination of equation 2.2.5 and 2.2.6, we can rewrite the CWT as,

Xy(τ, λ) ∼=
∫ ∞
−∞

Y (t)ψτ,λ ∗ (t)dt (2.2.7)

Similarly, inverse CWT is written as,

Y (t) ∼=
1

C

∫ ∞
−∞

∫ ∞
−∞

1√
|λ|
Xy(τ, λ)ψτ,λ ∗ (t)dτdλ (2.2.8)

where, the η(ω) is a Fourier transform of ψ(ω)

η(ω) =

∫ ∞
−∞

ψ(t)e−jωtdt (2.2.9)

hence C is defined as,

C =

∫ ∞
−∞

|η(ω)|2

|ω|
dω (2.2.10)

Inverse CWT exists, if ’C’ is positive and finite. The computation of CWT is nothing

but the inner product of function Y (t) with the wavelet function ψτ,λ . It finds out the

correlation of the signal Y (t) with a shifted and scaled wavelet function ψτ,λ .
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Figure 2.4 CWT of the function using ’Haar’ wavelet

Figure 2.4 demonstrate that, the function Y (t) as a sum of two sine waves which are used

to compute CWT Xy

(
t−τ
λ

)
by using Haar mother wavelet with two different shifting and

scaling factors τ = 2, 4 and λ = 0.4, 0.2 respectively.

2.3 Discrete wavelet transform

Lack of phase information and rigorous computation procedure in CWT creates too much

redundancy and imperfect signal reconstruction [87]. In order to tune the problem, CWT

is sampled in dyadic grid, τ = k2−j and λ = 2−j are substituted in equation 2.2.5, so

that,

Xy(k2−j, 2−j) =

∫ ∞
−∞

Y (t)
1√
|2−j|

ψ ∗

(
t− k2−j

2−j

)
dt (2.3.1)



Chapter-2: Digital signal analysis using wavelets · · · 24

=

∫ ∞
−∞

Y (t)
√
|2−j|ψ ∗ (2jt − k) (2.3.2)

=

∫ ∞
−∞

Y (t)
√

2jψ ∗j,k (t) = wjk (2.3.3)

where, ψj,k(t) is shifted and scaled form of mother wavelet ψ(t) and is given by

ψj,k(t) = 2j/2ψ(2jt − k) (2.3.4)

hence, the original signal can be reconstructed by sampling the CWT.

DWTx(t) =
∑
j

∑
k

wjkψ ∗j,k (t) (2.3.5)

where, wjk is a discrete wavelet coefficients of function X(t) and are obtained by an inner

product

wjk = 〈Y (t), ψj,k(t)〉 =

∫ ∞
−∞

Y (t)ψj,k(t)dt (2.3.6)

Wavelets are orthogonal in nature since its inner product is zero

〈ψa(t), ψb(t)〉 =

∫ ∞
−∞

ψa(t) ∗ ψb(t)dt = 0 (2.3.7)

2.4 Multiresolution analysis in wavelets

Ability of wavelets to decompose any function at different scaled levels is called as MRA

and MRA involves ’layered sequence’ [88]. It became popular mathematical tool for TFR

as is often used in signal compression techniques. MRA uses mother wavelet and scaling

function to analyze any signal

a. Scaling function

Consider φk(t) is a scaling function and is also an element of functional space L2(t)

φk(t) = φ(t− k)∀k ∈ I, φ ∈ L2
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where, ′I ′ is a set of all integers. The L2(R) is most commonly using functional space in

signal processing applications, which contain finite and distinct integrals of squares. The

set of functions from scaling functions generates a subspace of L2(R), and is given by

Z0 = ¯Span(φk(t)) = sumkwkφk

The basic scaling function spans set of two-dimensional functions by shifting and scaling

operations and is defined as

φj,k(t) = 2
j
2φ(2jt− k) (2.4.1)

By changing the time scale in scaling function one can span a larger sub space L2(R).

Spanning of subspace is termed as:

V s = ¯Span(φk(2j)) = ¯Span(φk(t))

Since, Y (t) ∈ V j then the function can state as

Y (t) = wkφ(2jt− k)

Where,j < 0, φj,k is narrow and covers larger span, leads to a scaling function represen-

tation with finer details. If j < 0, φj,k is wider and shifted into larger steps to represent

with crude sequence [89].

The function Y (t) is a linear combination of scaling φ(t) by a factor 2j and shifted in

terms of k. However, is compressed by j units and shifted by k units.

Compressed : φjo = φ(2jt) Shifted : φok = φ(t− k)

In MRA, the functional space is decomposed into small sub spaces. If functionY (t) is

decomposed, each parts in the function Y (t) is occupies each sub spaces and creates the
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nest of spanned subspaces:

0 ⊂ ..V −2 ⊂ V −1 ⊂ V 0 ⊂ V 1 ⊂ V 1 ⊂ .... ⊂ V j ⊂ V j+1 ⊂ ...... ⊂ L

Where V 0is a center of space, V j is the common subspace contained in all subsequent sub

spaces. Each subspaces V j is spanned by scaling functionφ(2jt− k) if φ(t) ∈ V 1 . Hence

φ(t) weighted sum of shifted φ(2t) , is given as

φ(t) =
∑
n

h(n)21/2φ(2t− n) n ∈ I

where h(n) is the coefficient of scaling function and 21/2 is used to normalize the scaling

function with scale of 2.

b. Wavelet function

In general, wavelet equation can be written as

ψ(t) =
∑
l

h(l)21/2φ(2t− l) l ∈ I (2.4.2)

where, ′I ′ is a set of integers, ψ(t) is a weighted sum of shifted and scaled function φ(2t)

. Equation 15 produces the wavelet function that exists in space, is obtained by scaling

function φ(t). By using wavelet function, we can generate mother wavelet, and is given

as:

ψj,k(t) = 2j/2ψ(2jt− l) j, l ∈ I (2.4.3)

A set of function ψj,k(t) differentiates the spaces created by dissimilar time scales of scaling

functions. Which also represent as detailed space W j and these spaces are orthogonal to

each other [90].

If at level ′j′ is denoted by Y j(t) , then Y j(t) ∈ V j.
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Basically, resolution information at level ′j′ is essentially included in the high-resolution

information, which contains V j+1 :

V j ⊂ V j+1

This function, implies that

Y j+1(t) ∈ V j+1

In space, V jmust satisfy the scaling condition

Y (t) ∈ V j ∼= Y (2t) ∈ V j+1

It describes that the variables in a space are the scaled version of the variable in the next

space. The decomposition of subspace is given as:

V j + 1 ∈ V j ⊕W j

whereas, set of elements vj +wj in V j and W j are orthogonal, since the inner product of

V j and W j is zero [19]. Hence Y j(t) ∈ V j, Gj(t) ∈ W j and are given by

Y j(t) =
∞∑
−∞

wj,kφ(2jt− k) =
∞∑
−∞

wj,kφj,k(t) (2.4.4)

Gj(t) =
∞∑
−∞

zj,lψ(2jt− l) =
∞∑
−∞

zj,lψj,l(t) (2.4.5)

wj,k(t)k,l∈I and zj,k(t)k,l∈I coefficients belongs to L2(R).

For, any function Y (t) in a functional space L2(R) ,V −2 ⊂ V −1 ⊂ V 0 ⊂ V 1 ⊂ V 1 ⊂ ....L2

belongs to a subspace (V j)∞j = −∞,

1. Density:The union of a sequence ∪j∈IV j is highly dense in the real squared integrals

function.

∪j∈I V j = L2(−∞,∞) (2.4.6)
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It describes that the union of the sequence of members is approximated by its

squared integrals in a vector space.

2. Separation: Intersection of any sequence is a null set:

∩j∈I V j = {0} (2.4.7)

3. Scaling: Y (t) ∈ V j∀Y
(
t

2j

)
∈ V 0 shows that scaling by a dyadic scale, one can move

from one nested sequence to other.

4. Orthonormal basis: the set of the scaling function {φ(t− k)}k∈I is an orthonormal

if only if

∫ ∞
−∞

φ(t− k) ¯φ(t− k1)dt = f(x) =

0, if k 6= k1.

1, otherwise.
(2.4.8)

Any scaling function of mother wavelet, that meet the above four properties performs

efficient MRA [91].

c. Wavelet family

The wavelet transforms basically operated by using basic functions called as ’mother

wavelet’. Different scaling and shifting functions are used by mother wavelets to charac-

terize the wavelet transform. The family of wavelet basis functions are derived by scaling

and shifting the mother wavelet with respect to their family. The inner product compu-

tation, between input signal and with different mother wavelet yields wavelet coefficients.

Figure 2.5 demonstrates few wavelet functions which are common in use. Early 1909, first

wavelet basis function ’Haar’ was introduced by Alfred Haar [92]. It was a unit step func-

tion supported for few signals. ’Daubechies’ is a popular wavelet function widely used in

signal processing applications because of flexibility in selecting its order [93]. ’Symlet’ and
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’coiflet’ are also a class of wavelet functions having better frequency response with max-

imum flatness at zero to R frequencies and is advantageous during signal reconstruction

[94]. The Haar, Daubechies, Symlet and Coiflet are densely sustained at orthogonality.

Apart from these, several wavelet families like Mayer, Morlett, Mexican hat are shape

based biorthogonal wavelets, efficiently serving in many applications [95-97].

Figure 2.5 Different families of wavelets

2.5 Wavelet decomposition

The idea of decomposition is often used in signal processing for estimation of signal

spectrum in time domain. The decomposition is also known as analysis process, which

engages in partitioning of signals into its frequency components for further process. For
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our discussion point of view, the equations 2.4.4 and 2.4.5 are rewritten respectively as,

Y j(t) =
∞∑
−∞

wj,kφ(2jt− k) =
∞∑
−∞

wj,kφj,k(t) (2.5.1)

Gj(t) =
∞∑
−∞

zj,lψ(2jt− l) =
∞∑
−∞

zj,lψj,l(t) (2.5.2)

MRA for a functional space is given by

V j+1 = V j +W j

Y j+1(t) = Y jt+Gjt

=
∑
k

wj,kφj,k(t) +
∑
l

zj,lψj,l(t)

where,ψj,k(t) = 2j/2ψ(2jt − l) and φj,k(t) = 2
j
2φ(2jt − k) The 2j is a unitary function,

hence scaling factor is given as,

φ(t) =
∑
l

h(l)21/2φ(2t− l) (2.5.3)

shifting and scaling of time variable ’t’ is represented as

φ(2jt− k) =
∑
l

h(l)21/2φ(2(2jt− k)− l)

=
∑
l

h(l)21/2φ(2j+1t− 2k − l)

where, m = 2k + l

φ(2jt− k) =
∑
m

h(m− 2k)21/2φ(2j+1t−m) (2.5.4)
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Therefore,

V j = Span
{

2j/2φ(2jt− k)
}

(2.5.5)

Y (t) ∈ V j+1 =
∑
k

wj+1,k(t)2
(j+1)/2φ(2j+1t− k) (2.5.6)

In equation 2.5.6, scale j+1 is used as a scaling function and neglected wavelet function.

Since at low-resolution representation, wavelet functions are not so necessary to regain

details [98].

If the φj,k(t) and ψj,k(t) are orthonormal then scaling coefficients are also computed by

inner product,

wj,k(t) =

∫ ∞
−∞

Y (t)2j/2φj,k(2
jt− k)dt = 〈Y (t)φj,k(t)〉 (2.5.7)

By using equation 2.5.4, equation 2.5.7 is reduced as:

wj,k(t) =

∫ ∞
−∞

Y (t)2j/2
∑
m

h(m− 2k)2jφj,k(2
j+1t−m)dt (2.5.8)

by interchanging the sum and integral of equation 2.5.8

wj,k(t) =
∑
m

h(m− 2k)2j
∫ ∞
−∞

Y (t)2j/2φj,k(2
j+1t−m)dt

where,

∫ ∞
−∞

Y (t)2(j+1)/2φj,k(2
j+1t−m)dt = wj+1,k(m)

wj,k(t) =
∑
m

h(m− 2k)wj+1,k(m) (2.5.9)

and hence the related wavelet coefficients are given by

qj,k(t) =
∑
m

h1(m− 2k)wj+1,k(m) (2.5.10)
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2.6 Wavelet reconstruction

The reconstruction process uses same scaling function and wavelet function (that are

used to decompose the signal) to reconstruct the signal. Consider the signal with scaling

functional space Y (t) ∈ V j+1 , and the function is given as,

Y (t) =
∑
k

wj+1,k(t)2
(j+1)/2φ(2j+1t− k) (2.6.1)

for next scale,

Y (t) =
∑
k

pj+1,k(t)2
(j+1)/2φ(2j+1t− k) +

∑
k

qj+1,k(t)2
(j+1)/2φ(2j+1t− k) (2.6.2)

where,

ψ(t) =
∑
l

h(l)21/2φ(2t− l) (2.6.3)

From equation 2.5.4, 2.6.1 and 2.6.2,

Y (t) =
∑
k

wj,k(t)
∑
l

h(l)2(j+1)/2φ(2j+1t− 2k − l)+ (2.6.4)

..+
∑
k

qj,k(t)
∑
l

h(l)2(j+1)/2φ(2j+1t− 2k − l)

multiply the term 2(j+1)/2φ(2j+1t−k) with equation 2.6.4 and then integrate to regenerate

coefficients

wj+1,k(k) =
∑
m

wj(m)h0(k − 2m) +
∑
m

qj(m)h1(k − 2m) (2.6.5)

2.7 Interpretation of wavelet filter

In general, the digital systems are operated by using a set of digital filters, like low pass

or high pass filters. Wavelet transform also uses a combination of low pass and high
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pass filter banks termed as quadrate mirror filters (QMF) for signal decomposition and

reconstruction [99]. In wavelet decomposition process, equation 2.5.9 and 2.5.10 uses

the coefficients wj+1,k(m) to perform convolution for time reversal recursive coefficients

h0(m) and h1(m) . However, it was followed by down sampling process to generate a set

of approximate and detailed coefficients [30]. Down sampling, is a filtering process which

avoids the sampling of insignificant components in the signal.

Figure 2.6 First level decomposition filter bank

Figure 2.6 shows the implementation of level one, wavelet decomposition using equation

2.5.9 and 2.5.10, where h0(m) and h1(m) are set of low pass and high pass finite impulse

response (FIR) filters respectively. The filtered signal is down sampled by a factor two,

which reproduce the set of scaling and wavelet coefficients for further decomposition levels.

This decimation process is repeated for level one approximate coefficients to obtain second

level decomposition as shown in figure 2.7.

Figure 2.7 Second level decomposition filter bank

For reconstruction purpose, same FIR filter banks g0(m) and g1(m) are used to recombine
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the approximate and detail coefficients by using equation 2.6.5, as shown in figure 2.8.

Figure 2.8 First level reconstruction filter bank

The combination of decomposition filters and reconstruction filters with scaling and

wavelet function is shown in figure 2.9.

Figure 2.9 Combination of decomposition and reconstruction filter banks

For orthogonal property in wavelet transform shows,

φ = φ̂, ψ = |̂ψ

and h0(m) = g0(m), h1(m) = g1(m). Similarly, for bi-orthogonal wavelet transform, the

scaling and wavelet function are given as:

φ(k) =
√

2
∑
m

h0(m)φ(k − 2m) φ̂ =
√

2
∑
m

g0(m)φ̂(k − 2m) (2.7.1)

ψ(k) =
√

2
∑
m

h1(m)ψ(k − 2m) ψ̂ =
√

2
∑
m

g1(m)ψ̂(k − 2m) (2.7.2)
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2.8 Summary

The chapter begins with the brief history of evolution of wavelet transform from time-

frequency based signal analysis transforms. Drawbacks of FT and STFT are discussed in

section 2.1, which explicate the need of wavelet transform in signal analysis. The scaling

and shifting operations in CWT to analyze continuous signal are discussed in section

2.2. Reduction of CWT from its continuous time to discrete time as DWT by using

scaling and wavelet function is discussed in section 2.3. In section 2.4 the mathematical

interpretation for MRA, in extraction of a series of approximations using scaling function

and details of the signal from wavelet functions is elaborated. The section ends with

a small description on wavelet family. The explanation of wavelet decomposition and

reconstruction of signal using MRA is illustrated in section 2.5 and 2.6 respectively. The

chapter ends with section 2.7, with discussion on digital filter banks for decomposition

and reconstruction at different levels.



Chapter 3

Two-dimensional signal (Image)
compression using wavelets

3.1 Fundamentals of digital image

A human can visualize the surrounding system because of reflection property of matter.

Reflected signals from the matter are continuous in nature, which are captured by using

camera sensors. These continuous signals are converted into the digital signal by using

sampling and A/D converters. Digital images are structured with irregular intensities in

a two-dimensional space. The smallest unit of digital image is called as ’image pixel’.

3.1.1 Digital image

The image is a two dimensional signals with two spatial coordinates (m,n) as independent

variables and intensity as dependent variable. Consider I(m,n) is an image with pixel

position variation (n = 1, 2, 3....M ;n = 1, 2, 3....N) along mth row and nth column as

shown in figure.3.1.

36
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Figure 3.1: Digital image with M ×N dimension

The quality of an image is defined by its resolution and is specified in terms of three

parameters:

• Spatial resolution: it defines, the number of pixels occupied spatial positions in a

captured image (i.e. it defines a dimension of an image). It can be represented as

column(c)× rows(r) (Example:256× 256, 512× 512.....etc. ).

• Temporal resolution: capturing the multiple images with respect to the time period

is defined by ’frame’. Each captured image is considered as frame and number

of frames per unit time is termed as frames per second (FPS). (Example: visual

perception in TV surveillance is at 25-30 FPS).

• Bit resolution: it defines the gray level intensity value of pixels in a captured image.

It is also related to quantization process, i.e. the number of bits required to store
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the image in a given quantization level (Monochromatic image with two gray levels

needs 2 bit representation, gray scale image with 256 different gray level needs 8

bit representation and colored image with 768 gray levels and needs 24-bits rep-

resentation). Bit resolution is also referred as a dynamic range of an image [100,

101].

3.1.2 Types of image

In order to process image data, a prior knowledge of image data type is necessary. In

general, images are classified[102] as,

• Monochromatic image:each pixel in an image is represented by one bit, either white

or block called monochrome.

• Grayscale image: an image in which, the pixel has single numerical value, varies

from 0 to n − 1 (one of 2n shades of gray level). It has a number of bit planes

(n might be a multiple of 4 or 8) with most significant bit plane consists of most

significant bits of all pixels in an image.

• Continuous tone image: in this type of image, gray level correlations between

adjacent pixels are nearly one. Small differences are hard to notice by human eyes,

and hence a pixel of an image can be symbolized by a single big number. Color image

has 3 vectored arrays, which allocate a numerical value to each pixel. Each array

has its individual channels of red, green and blue and they are ordered subsequently.

(Example: Natural image captured by digital camera)
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• Discrete tone image: image has either indistinguishable gray levels or they may

vary from one-pixel position to another pixel position. These images have a more

number of redundancies, because pixel values occur repeatedly in image. (Example:

Graphical images generated by the computer)

• Cartoon-like image: : image with a homogeneous gray level area. Each area has

identical pixel value but neighboring area pixel values are entirely different.

3.1.3 Image formats

The digital computer needs to display, store and communicate the image data in the form

of binary bits. For effective storage and communication of image data, it was standard-

ized into different image file formats. Table 3.1 shows some of the image file formats used

frequently and their properties.

These image formats store any image data by adapting its own compression scheme and

header information. Based on user requirement, different image file formats are avail-

able in online sources. In general, to store image with more number of detailed/gray

levels, JPEG/TIFF image file format is appropriate. However, to store image with fewer

details/gray levels, GIF/PNG are better.
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Table 3.1 Image file formats used frequently and their properties [103].

Img. for-

mats

Expansion Properties

GIF Graphical inter-

change file

Limited gray levels; lossless compression.

JPEG Joint Photographic

Experts Group

Flexible, less complex, speed; both lossy

and lossless compression.

BMP Bit map pictures Less flexible; both lossy and lossless com-

pression.

TIFF/TIF Tagged image file

format

flexible, adaptive and detail in nature.

3.2 Image compression using DWT

An image is two dimensional signals, with a set of pixels arranged in a matrix form

composed by low and high frequency bands [104]. Hence it is important to separate the

low and high-frequency information from an image. Wavelet transform, explicitly classify

the frequency bands into high and low frequency sub bands in terms of approximate and

detailed coefficients [105]. Figure 3.2 shows the general block diagram of wavelet-based

image compression

Figure 3.2 General block diagram of wavelet compression and decompression process
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3.2.1 Wavelet decomposition using filter banks

Wavelet based subband coding is an efficient encoding technique, which takes an advantage

of human perceptual visual system to code the two-dimensional signal. Basically, it saves

the bandwidth of signal by discarding the unwanted sub-band at encoding stage. A split

band quantization method introduced in [106] uses pulse code modulation to code high and

low-frequency sub bands. Later on, a Laplacian pyramid decomposition is introduced in

[107-108] to generate approximate and detailed frequency coefficients. For a given digital

filter Hk[109], its QMF Hg is defined as,

Hg(ω) = Hk(
ωj
2
− ω) (3.2.1)

λg(ω) = λk(ω)± (
pi

2
) (3.2.2)

where,Hg(ω)e(jλk(ωj)) is complex frequency response of a filter Hk ,and ωj = eπfj is

sampling rate.

Figure 3.3 Two channel QMF

From figure 3.3, the input signal X[n] is filtered by analysis filters ( Hk is high pass filter

and Hg is low pass filter), where, xl(n) and xh(n) are low frequency and high-frequency

sub bands, which are down sampled by factor two to satisfy ’nyquist criteria’ [110]. At

receiver side xl(n) and xh(n) are up sampled by factor two and to bypass through synthesis

filter Ig and Ik respectively.



Chapter-3: Two-dimensional signal (Image) compression using wavelets · · · 42

Implementation of QMF design for image sub-band coding and development of mul-

tiresolution signal analysis lead to a new approach for wavelet based sub-band coding

system [111, 112].

Pyramid decomposition for a source image S by use of QMF [113] is shown in figure.3.4

(a).

Figure 3.4 Level two wavelet decompositions

The rows and columns of the source image are convolved with one-dimensional wavelet

filters H and G respectively. This filtering process generates Akj , low frequency sub-band

(approximate coefficients) and D1
j , D

2
j and D3

j are , vertical, horizontal and diagonal high-

frequency sub bands (detailed coefficients) at the resolution as shown in figure3.4 (b).

Similarly in the reconstruction process, which adds zero in between every two rows and

two columns and then convolves with same one-dimensional filter bank that is used for

decomposition process as shown in figure 3.5,
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Figure 3.5 Level two wavelet reconstructions

3.2.2 Wavelet threshold for image compression

Thresholding is a significant feature in wavelet-based image compression, since it truncates

the unwanted frequency components in a signal by selecting suitable threshold value

[114]. Wavelet decomposition process convert the source signal into a fine frequency sub-

bands. From section 3.2.1, we know that the low-frequency subband has significant image

information but less signal energy than the high-frequency subband. Hence thresholding

process suits for detailed wavelet coefficients and limited for approximate coefficients [115].

The key endeavor of thresholding process is to kill the detailed coefficient to achieve

better compression. Application of threshold increases the number of zeroes in the sub-

band and is the key for compression [116].

Wavelet compression method exploits the decomposition process of an image into

wavelet basis by using shrink method [117]. But in shrinkage process, selection of optimum

threshold is challenging task. However selection of small threshold value leads to less

compression ratio and high threshold value increases the compression ratio but at the
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cost of signal quality. Hence various soft thresholding techniques like bayes shrink [118],

visu shrink [119] and sure shrink [120] along with normal shrink [121], are well-known

methods to find optimal wavelet threshold.

Figure 3.6 The hard and soft threshold in wavelet

After selection of optimal threshold value, there are two choices in wavelet threshold, hard

and soft thresholding. In hard threshold, the coefficients above the optimal threshold are

made zero or killed. Whereas, in soft threshold, the coefficients value above the optimal

threshold are shrinked to its absolute value. From the figure 3.6, we can observe the

smoothness in soft wavelet threshold as compare to hard threshold.

The hard threshold:

Th(X,λ) =

X = X, if |X| ≥ λ.

X = 0, otherwise.
(3.2.3)

Similarly, for soft threshold:

Ts(X,λ) = sign(X)max(0, |X| − λ) (3.2.4)

Hard threshold method creates a discontinuity in the reconstructed signal, which is not

found in soft threshold (found signal smoothing).
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3.2.3 Wavelet-based encoders for progressive image compres-

sion

The wavelet-based progressive image compression techniques evolution is started with,

a. Embedded zero tree wavelet (EZTW)

It was the first progressive transmission algorithm introduced by ’J. Shapiro’ in [122],

which embeds the signal with bit stream by truncating of zero’s in prioritized order. The

concept of ’zero trees’ states that, after each thresholding step, algorithm searches the

insignificant wavelet coefficients and make them zero. If, descendant coefficients are zero,

then are called as ’zero nodes’ or ’zero roots’ . Hence this method of compression is called

as embedded zero tree wavelet (EZTW) coder. It uses parent-child relations in decom-

posed wavelet coefficients and creates a new data structure to encode the symbols. It

classifies the decomposed coefficients into parent, child, and descendant.

The initial threshold of EZTW is calculated by using the formula

T0 = [log2(max(I))]2 (3.2.5)

where I is an image matrix, the significance test is performed on each wavelet coefficient

and a wavelet coefficient ’z’ is considered to be significant, if|z| > T0 , otherwise coef-

ficients considered as insignificant. Based on significance test and status, the symbols

are classified into zero tree root (ZR), isolated zero (IZR), positive significant (PS) and

negative significant (NS). After completion of first iteration, the threshold will become

T1 = T0/2 and process repeats until required bit rate is achieved. These symbols are

encoded by Huffman encoder, finally, a lengthy compressed bit stream is obtained.
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b. Set partitioning hierarchical tree(SPIHT)

The successive algorithm of EZTW is known as SPIHT with best compression perfor-

mance. After wavelet decomposition process, the wavelet coefficients are ordered based

on most significant bit (MSB). The significance of coefficients is determined by,

|C(i, j)| ≥ 2n (3.2.6)

where,n = n0, n0 − 1, n0 − 2, ........k and i, j are the set of coordinates. Sorting process

divides the entire set of coefficients into a sub set T and then compute the magnitude of

coefficients.

max(i, j) ∈ T |C(i, j)| ≥ 2n (3.2.7)

The subset T, that satisfies the above condition become significant set, and it undergoes

partition and creates new subset and the procedure is repeated for the new subset. The

execution of encoder algorithm is imitated by the decoder, using an inverse operation of

the encoder. The function to identify the significance bit of an encoder is given by,

S(τ) = 1,max(i, j) ∈ T |C(i, j)| ≥ 2n0, otherwise (3.2.8)

From the figure 3.7, image pixels are divided into four adjacent pixels called node of a

hierarchical tree. Each node has either no offspring or four offspring. A pixel in the

highest level is called root of the tree with its offspring. Sorting process divides the

clustered pixels into a subset.
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Figure 3.7 Root to descendent’s dependency in a spatial domain

SPIHT algorithm uses two major passing operations on decomposed wavelet coeffi-

cients by using three subsets. After the application of threshold, wavelet coefficients are

classified as list of an insignificant set (LIS), list of significant pixel (LSP), and list of

insignificant pixel (LIP) by using sorting pass and refinement pass operations. For first

iteration, initial threshold is calculated by using equation 3.2.5. Sorting pass is performed,

by loading LIS by all decomposed wavelet coefficients using Morton scanning [123]. In

refinement pass, the coefficients whose values are greater than threshold values are keep

stored in LSP and remaining coefficients are loaded to LIP. This process is repeated for

next iteration, up to defined bit rate, by halving its threshold value. LSP is also loaded

with the sign of the significant pixels. In the end, reduced numbers of significant pixels are

encoded by using different encoding techniques (Huffman encoder is commonly used in

practice). Efficiency can be increased by using entropy-coders but at the cost of increased
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complexity [124].

c. Set partitioned embedded block coder(SPECK)

This algorithm follows progressive bit-plane coding scheme to encode the wavelet co-

efficients. In significance test, if the wavelet coefficient is found significant, it outputs the

sign of code and its position is stored in LIS. Refinement pass, produces the successive

approximation of already known significant bit. After completion of each iteration level,

threshold value will become half and the process repeats for next bit plane.

The scanning mode in SPIHT, performs unnecessary significance test on individual

sub bands even though they are insignificant and the procedure needs more time. To

overcome this situation and improve the efficiency, two partition schemes are used in

SPECK, quad tree partition and octave tree partition as shown in figures 3.9 and.3.10.

Figure 3.8 Transformation of an image ′x′ to set ′S′ and ′I ′

Figure 3.9 Quad tree partition of set ′S′
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Figure 3.10 Octave partition of a set ′I ′

Quad tree partitioning, concentrates on zooming the only area with high energy, in set

S’ and codes them. It codes the significance map with quad-tree, a well-known method

of spatial partition. In quad-tree partitioning, the significance state of an entire block of

coefficients is tested and coded, the block is subdivided into four sub-blocks of approx-

imately equal size, and the significance-coding process is repeated recursively on each

of the sub-blocks. In octave, it exploits hierarchical pyramid structure of the sub-band

decomposition, where it is more likely that, more energy is concentrated at the topmost

levels of the pyramid and as, one goes down the pyramid, energy content decreases grad-

ually. In octave tree partitioning, a set I has group of pixels, in which some significant

information is clustered at certain region. After decomposition, significant pixels get accu-

mulated in set S, and this significant set undergoes sorting process. The large set created

with insignificant bits, undergoes partition into four offspring.

The decoder receives significant test results from coded bit stream by following the

same execution path of an encoder. As with SPIHT, the SPECK algorithm stores sig-

nificant coefficients set, in an implicitly sorted list. Insignificant coefficients are placed

in a list of insignificant sets (LIS). During the sorting pass, each insignificant set in an

LIS is tested for significance against the current threshold. If the set becomes significant,
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it is split into four subsets according to the quad-tree decomposition structure described

above. The four new sets are placed into an LIS, recursively tested for significance, and

split again if needed. SPECK maintains multiple LIS lists in order to implicitly process

sets according to their size. During the sorting pass, each time, a set is split, the resulting

subsets move to the next LIS. When a set is reduced in size to a single coefficient, and

that coefficient becomes significant, then the singleton set is moved from its LIS to a list

of significant pixels (LSP) for later processing in the refinement pass [125,126].

d. Wavelet difference reduction(WDR)

This algorithm follows SPIHT algorithm with improvement in locating the region of co-

efficients of interest. By the use of index coding in differenced reduction, it identifies the

significant wavelet transform coefficients which are essential for resolution enhancement.

As in SPIHT, it also uses three different sets to store the indexed positions of wavelet coef-

ficients during encoding process. In sorting pass, instead of storing significant coefficient,

it stores its position and is updated with its previously scanned significant coefficient

during refinement pass, which leads to an effective preservation of edge information.

It offers good perceptual quality and compression ratio, edge correlation and preser-

vation. It suits for a low-resolution medical image at low BPP rate[127].

e. Adaptive scanned wavelet difference reduction(ASWDR)

The performance of WDR shows that, it has some room for improvement. The adaptive

algorithm ASWDR was introduced by walker which modifies the scanning order to pre-

dict the location of new significant values. If any coefficient is significant for threshold,
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then succeeded significant coefficients are predicted by adaptive scanning. This scanning

order of ASWDR dynamically adapts the locations of edge details in an image, and this

enhances the resolution of compressed images[128]

3.2.4 Error metrics

There are several error metrics available to evaluate the quality of a reconstructed image,

some of the most commonly used evaluation parameters are:

a. Mean square error(MSE): Consider Io(m,n) in an original image and Ir(m,n) is

compressed image with dimension M ×N .

MSE =
1

MN

M,N∑
i,j=1

Io(m,n)− Ir(m,n) (3.2.9)

b. Peak signal to noise ratio(PSNR):

PSNR = 10log10(Q2/MSE) (3.2.10)

where,Q is 255 for gray scale image.

c. Structural similarity index mode(SSIM): Variation of brightness in recon-

structed image amplifies the PSNR values. Measuring only PSNR is not the best choice

to evaluate the image quality, therefore the use of SSIM as the improved version of PSNR

clears the inconsistency in human visual perception. It is defined as,

SSIM(x, y) =
(2µxµy + C1)(2σxy) + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

x + C2)
(3.2.11)

Here, x and y correspond to two image blocks need to be measured,µx, µy are average

and σx, σy are the variance of x, y respectively. Is covariance of x and y. are variables
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for stabilization factor. L=dynamic range,K1 = 0.01, K2 = 0.03, measures the similarity

index of the reconstructed image with respect to original image.

d. Compression ratio(CR): The key metric for measuring the image compression

performance is compression ratio. It is defined as,

Compression ratio =
size of uncompressed image

size of compressed image
(3.2.12)

Compression percentage (CP) is also given by [129],

CP =
(Size of original image− Size of compressed image)

Size of original image
× 100 (3.2.13)

e. Bit per pixel(BPP): Alternative measure of compression performance is by com-

puting BPP.

BPP =
No. of bits

No. of pixels
=

8×No. of bytes
Size of the image

(3.2.14)

f. Percentage root mean square difference(PRD): The measure of fractional

variations in signal compression during the application of fractional transform is given as,

PRD =
1

MN

√√√√∑M,N
i,j=1[Io(m,n)− Ir(m,n)]2∑M,N

i,j=1[Io(m,n)]2
(3.2.15)
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3.3 Implementation of an improved neigh shrink in

a hybrid wavelet transform for grayscale image

compression

3.3.1 Previous work

Wavelet-based compression suits well for image compression applications because of its

multiresolution property. Wavelet-based lossy image compression methods like EZTW,

SPIHT, WDR are commonly used in some multimedia image compression, which yields

embedded bit-stream of wavelet coefficients with declining threshold values to encode

the most significant pixels or lists of pixels for reconstruction. But single basis function

in wavelet does not meet all these properties and hence multi-wavelets with more than

one scaling and wavelet functions are preferable [130]. A hybrid compression algorithm

proposed in [131] achieves high compression ratio with moderate image quality for large

size image data. Here the compression is achieved by ignoring high-frequency sub bands

at level one. The high-frequency subbands at level two are encoded directly by eliminate

zero and store data (EZSD). The LL subbands are compressed by DCT and encoded by

arithmetic coding fallowed by run length encoder (RLE). An efficient hybrid compression

algorithm is proposed in this section by using an improved neigh shrink for selection of

optimal threshold for high-frequency subband at level two and three.
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3.3.2 Proposed hybrid compression technique

a. Use of wavelet decomposition:

The wavelets give the best choice for image analysis due to its multi resolution property.

Here decomposition is done by passing source image through a set of low pass and high

pass filters to get approximate and detailed coefficients [132]. For each level decomposition

of source image produces four sub-bands (LL, LH, HL, and HH). As source image under-

goes decomposition, low-frequency subbands shift towards left corner by becoming more

significant. At the same time, high-frequency sub-band shift towards the right bottom

corner as insignificant. Hence, by ignoring this insignificant information in high-frequency

sub-bands more compression can be achieved [133].

Figure 3.11 A block diagram of the proposed hybrid image compression
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In this modified approach, the image is subjected to three-level wavelet decomposition.

The high-frequency sub-band at first level contains less significant information, and hence

it is ignored. While level two and three, high-frequency sub-bands contain some signif-

icant information, the direct encoding or ignoring of these sub-bands result in reduced

image quality, hence the application of an optimal threshold is the key to improving the

quality of the reconstructed image.

b. Quantization:

This step is lossy approach and it requires two levels of quantization. The level1 quanti-

zation reduces the size of LLm by, ratio of maximum value of LLm and Quality factor, as

shown below,

Q1 = Quality factor ×max(LLm) (3.3.1)

LLm = round
LLm
Q1

(3.3.2)

The quality factor in equation 3.13 indicates the quality of the image and is obtained

by the maximum value in LL2 divided by all the values in LL2. The process helps

LL2 subband coefficients to be more convergent (Quality ranges from 0.005 to 0.01) to

get required compression rate. Level2 Quantization is performed on LL2 sub-band after

DCT and then divide the matrix by Q2. This eliminates the insignificant coefficients by

inserting zeros.

Q2(m,n) =

1, if m = 1, n = 1.

−m+ n+R, if m ≤ 1, n ≤ 1.
(3.3.3)
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c. Coding of low-frequency sub-band using T-matrix coding:

The DCT uses a small set of values to reconstruct the original signal and also round up

the very small values to zero during encoding. Hence it high-quality reconstruction is

possible in the compression process.

The decomposed LL2 subband has high energy and more correlated information and

DCT is used to compresses the sub-band. The one-dimensional forward and inverse DCT

are illustrated as,

Jk = Sk

√√√√ 2

N

N−1∑
i=0

Gicos
π

N
K(i+

1

2
) (3.3.4)

where,

Sk =
1√
2
, ifk = 0toN − 1, 1, otherwise (3.3.5)

The normalization factors
√

2
N

and
√

1
N

makes DCT matrix orthogonal.

Because of the high degree of correlation, the LL2 subband coefficients are difficult to

encode directly by arithmetic coding [134]. Therefore, the subband is divided into number

of parts and each part is processed by one-dimensional DCT and is quantized by using

formula,

Q(n) = Q(n− 1) + 2 (3.3.6)

The transformed values are stored in a row matrix called as a transformed matrix (T-

matrix). This process increases the significance of coefficients and de-correlation. Each

row of T-matrix has DC values and AC coefficient stream, T-matrix is scanned column

by column for converting it into a one-dimensional array and is compressed by RLE and

arithmetic code. The RLE reduces the length of repeated data, and arithmetic code con-

verts reduced data set into bit streams [135].
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d. Coding of high-frequency subband using improved neigh shrink

and EZSD:

After the level two and level three wavelet decomposition, redundancy shifted towards

in high-frequency sub-bands. Hence application of improved neigh shrink with stein un-

biased risk estimator (SURE) as optimal threshold possibly increases the compression

quality.

For given detailed sub-band, select the wavelet coefficient need to be shrinking and

place a neighboring window Ci, j at center.

Figure 3.12 A graphical representation of improved method to shrink wavelet coefficient

Let,

S2
i , j =

∑
i,j∈Bi,j

K2
i,j (3.3.7)

whereS2
i,j summation has the pixel indices out of the wavelet sub-band range then corre-

sponding term in the summation is to be ignored [136]. The neigh shrink is given by,

Ki,j = Ki,jCi,j (3.3.8)
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Shrink factor is given by,

Ki,j =
1− λ2

K2
i,j

(3.3.9)

here, the optimal threshold λ and window length L are calculated by SURE for wavelet

coefficients of any sub-band wi,j = ki,j : i, j.

(λs, Ls) = argλ,LminSURE(wk, λ, L) (3.3.10)

Whereas in denoising application noise level is defined with suitable values but in compres-

sion, we keep the value of noise level as one. Thresholded and quantized (quality¿=0.01)

high-frequency sub-bands have a rich number of zeroes, and unnecessary coding of these

zeroes make the algorithm assy. Therefore, EZSD is used to eliminate blocks of these

zeroes and to store the blocks of non-zero data. It begins with splitting high-frequency

sub-bands into non-overlapped blocks (8X8, 16X16) and searches for non-zero blocks. If

a non-zero block is found, it will be stored in a reduced array and its position is stored

in position array, else it jumps to a next block. The reduced array may contain some

more zeroes because some blocks contain more zeroes as compared to the data in them.

Therefore, the use of EZSD results in a compact form of the reduced array, which helps

in the encoding process.

Arithmetic coding is used to compress a stream of data sequence into one-dimensional

length code word. The run-length encoding helps to avoid coding of repeated coefficients,

which reduces the length of the code word. Hence, the arithmetic coding technique con-

verts code word into bit streams.
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e. Return zero matrix (RZM) algorithm

During reconstruction, this process is used as converse for EZSD method. The reduced

array of decoded high-frequency sub-bands is expanded by searching zeros followed by a

number of them; the repeated zeros in a new array are counted. The data in an array is

replaced by blocks of the matrix and the method applied to all high-frequency sub-bands.

3.3.3 Results and discussions

The proposed method tested with 8-bit gray scale Boat, Lena, Gold-hill, peppers and

artificial images figure 3.13. The table 3.2 shows the PSNR and Structural Similarity

Index Mode (SSIM) and comparison of the proposed method with SPIHT, WDR and

JPEG 2000 at a compression ratio of 80:1.The PSNR and SSIM values of JPEG2000

obtained from [137] and for consistency, same test images are used in the simulation.

The figure 3.14 shows that boat image is compressed by SPIHT, WDR, JPEG2000 and

proposed method at a compression ratio of 80:1.

The results tabulated in table 3.2, shows that PSNR and SSIM value of the proposed

method for boat image are 3.9db and 0.1 are higher than the JPEG2000. But in artificial

images, the PSNR and SSIM are lesser in the proposed method, this due to the rich sig-

nificant edge information in images and are not in standard dimension. The quality factor

is used to obtain the required compression ratio has some limitation (0.005¡Q factor¿0.5)

and it depends on the use of wavelet family (preferred debauchees) and encoded array.

From the results, we observe that the image quality of proposed method is significantly

improved by use of an optimal threshold for the second level high-frequency sub band.
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Table 3.2 Comparison of the proposed method with other methods

Images CR SPIHT WDR JPEG2000 Proposed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Boat 80:1 26.20 0.668 26.96 0.710 26.76 0.740 30.71 0.842

Lena 80:1 29.32 0.803 29.71 0.770 29.62 0.670 31.92 0.902

Goldhill 80:1 27.17 0.660 27.72 0.625 27.69 0.670 27.59 0.672

Peppers 80:1 29.36 0.753 28.93 0.740 29.54 0.783 29.66 0.804

Artificial 80:1 25.25 0.678 23.82 0.620 25.69 0.767 22.02 0.604

Figure 3.13 Input test images (a)boat; (b)Lena; (c)gold hill; (d)pepper

Figure 3.14 (a) Original boat image compressed at compression ratio of 80:1 using (b) SPIHT

(c)WDR; (d)JPEG2000[137]; (e)Proposed method(Q=0.006)
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3.4 Summary

This chapter forms the base for image compression using DWT, from the image basics to

existing progressive image compression technologies. It also includes, proposed, hybrid

image compression method using improved neigh shrink wavelet threshold. Some early

works, which are supportive for wavelet filters are also traced out in this chapter. Descrip-

tion of image fundamentals discussed in section 3.1 included with image resolutions, types

of image and formats of the image, which helps in selection of data sets and compression

techniques.

Wavelet filter bank implementation for wavelet decomposition and reconstruction pro-

cess is discussed in section 3.2.1. The hard and soft thresholding techniques in wavelets

for image compression are explained in section 3.2.2. A review of wavelet-based progres-

sive image compression techniques like EZTW, SPIHT, SPECK, WDR, and ASWDR

are given in section 3.2.3. Compression performance measuring metrics to evaluate the

compression algorithm is explained in the section 3.2.4.

In section 3.3, a hybrid image compression algorithm by using improved neigh shrink in

wavelet and T-matrix coding is discussed. After wavelet decomposition, one-dimensional

discrete cosine transform is applied to decorrelate approximate coefficients and are stored

as T-matrix. The detail coefficients are thresholded using improved neigh shrink’, and

EZSD algorithm is applied to eliminate redundancy in the coefficients and are stored as

a reduced array. The compressed approximate and detailed coefficients are encoded by

arithmetic coding. The simulated results show that proposed algorithm has significant

improvement in image quality in terms of PSNR and SSIM, when compared with existing

wavelet-based compression methods including JPEG 2000 at high compression rate.



Chapter 4

Image compression techniques using
wavelet and fractional transforms

4.1 Introduction

Time-frequency based compression algorithms have property of multi-scale characteriza-

tion, which produce high quality image during reconstruction [138-141]. Wavelet-based

image compression methods, discussed in chapter 3, reveal that there is a possibility of

coding low frequency subbands to increase compression ratio with limited decomposition

levels. It is found that the increase in decomposition level leads to degradation of re-

constructed image quality, due to aliasing effect [142,143]. However, discrete fractional

transform is a simple coding technique which elucidate change in the characteristics of

signals gradually, from a time domain to frequency domain.

4.2 Fractional transform in image compression

Rapid developments of signal compression technology in areas such as quantum mechan-

ics, pattern recognition, image and video processing applications [144-147] attracted to-

wards fractional transforms. Fractional transforms are generally termed as rotational

62
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Fourier transform as they rotate signal in the time-frequency plane. The minimum mean

square error of original image is estimated by using fractional domain filtering in fractional

transform is a key for image compression [148]. The fractional parts in discrete fractional

Fourier transform (DFRFT) and discrete fractional cosine transform (DFRCT) provides

the extra degree of freedom in computations of coefficients. Also, they assist in a compact

coding of information with reduced number of DFT coefficients [149].

This thesis is limited to the discussion of three types of fractional transforms, DFRST,

DFRCT, and DFRFT.

a. Discrete fractional sine transform

The DFRST is related to DFT by operating on real part of the matrix. DFRST is equiv-

alent to twice the length of an imaginary part of DFT, hence it has the close relation with

DFT [150]. For any sequence of numbers x(n), where N are a real numbers is given by,

Y (m) =

√
2

N

N−1∑
n=1

x(n) sin
(mnπ
N

)
for, 1 ≤ n ≤ N − 1 (4.2.1)

whereas, inverse DFRST is given by:

x(n) =

√
2

N

N−1∑
m=1

Y (m) sin
(mnπ
N

)
for 1 ≤ n ≤ N − 1 (4.2.2)

In this section, the ‘N’ point DFRST kernel is generated by using odd DFT Hermits

eigenvector. It V = [0, v1, v2, ...........vN , 0,−vN ,−vN−1, ........− v1] is odd eigenvectors

of DFT kernel matrixM2N+2v = φv(φ = −j, j), then
∧
V = [V1, V2.............VN ]T are the

eigenvectors of N-point DST kernel matrix, and hence DFRST is

SN,α = jφ
∧
V (4.2.3)
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Table 4.1 Eigen values multiplied by DST kernel matrix to get DFRST

N Multiplicity

of ′j′

Multiplicity

of ′ − j′

Odd N+1
2

N−1
2

Even N
2

N
2

For DFRST kernel matrix, the Eigenvector
∧
V
N

given to Eigen values of e−j(n−1)α, where n

is an odd integer. The N-point DFRST kernel is given as

SN,α = V̂ND̂
2α/π
N V̂ t

N (4.2.4)

= V̂N



1 0

e−2jα

.

.

0 ej2(N−1)α


V̂ t
N (4.2.5)

whereVN = [V0, |V2 |.............|V2N−2],
∧
V
N

is N th order DFT Hermite eigen vectors, and α

indicates the rotational angle of fractional transform in time-frequency plane.

b. Discrete fractional cosine transform

The DFRCT is the general version of discrete cosine transform (DCT) with an additional

free parameter as a fractional order. Fractional order modulates the transform into DCT

or conventional DCT. Hence DCT for a sequence x(n)is given in [151] by using equations

4.2.6 and 4.2.7,

F (k) = α(k)
N−1∑
n=0

x[n] cos

[
(2n+ 1)πk

2N

]
, for0 ≤ k ≤ N − 1 (4.2.6)

Where,

α(k) =


1√
N
fork = 0√
2
N
for1 ≤ k ≤ N − 1

(4.2.7)
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for one-dimensional DCT kernel matrix given by equation 4.9.

MDCT (k, n) =


1√
N
, k = 0; 0 ≤ n ≤ N − 1√
2
N

cos
[

(2n+1)πk
2N

]
; 1 ≤ k ≤ N − 1; 0 ≤ n ≤ N − 1

(4.2.8)

Similarly, inverse DCT (IDCT) is given by equation 4.10

S(n) =
N−1∑
k=0

α(k)F (k) cos

[
(2n+ 1)πk

2N

]
, 0 ≤ n ≤ N − 1 (4.2.9)

In DCT, rich number of infinite eigenvectors generated from Hermite-Gauss eigenvectors

of Fourier matrix [152]. For DFRCT kernel matrix the eigenvector
∧
V
k

has the Eigen values

of e−jkα, where k is even (α = π/2).

If V = [0, v1, v2, ...........vN , 0,−vN ,−vN−1, ........− v1], are even eigenvectors of DFT kernel

matrixM2N−2v = φv(φ = 1,−1), then

∧
V = [V0,

√
2V1.............

√
2VN−2, VN−1]T (4.2.10)

are the eigenvectors of N-point DCT kernel matrix, and hence DFRST is

CN,α = φ
∧
V (4.2.11)

φ corresponds to eigen values.

Table 4.2 Eigen value’s multipliable to DCT kernel matrix to get DFRCT

N Multiplicity

of ′j′

Multiplicity

of ′ − j′

Odd N+1
2

N−1
2

Even N
2

N
2

Hence DFRCT kernel for N point is given as,

CN,α = V̂ND̂
2α/π
N V̂ t

N (4.2.12)
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= V̂N



1 0

e−2jα

.

.

0 ej2(N−1)α


V̂ t
N (4.2.13)

where
∧
V
N

= [
∧
V
0
, |
∧
V
2
|.............|

∧
V

2N−2
],
∧
V
N

is an eigenvector of DCT derived from the Nth

order DFT Hermite eigenvectors by equation 4.2.13.

c. Discrete fractional Fourier transform

Development of continuous fractional Fourier transform (CFRFT) for signal analysis made

many researchers develop the discrete contradictory part of it. The rotational property

of DFRFT is quite similar to the CFRFT. There are several methods to compute the

DFRFT matrix, but for time constraint eigenvector based computational method are

preferable. It can be realized by using the fractional power of kernel matrix. The DFRFT

defined in [153] uses a set of eigenvectors of DFT matrix as a counterpart to the ‘Hermits

Gaussian’ function which resembles the CFRFT. The mathematical unitary definition of

DFRFT matrix Sα[m,n]is given by

Sα[m,n] =
N−1∑
K=0

QK [m](λK)αQK [n] (4.2.14)

where, QK [m] are orthonormal eigenvectors set of the N × N DFT matrix and λK are

coupled with Eigen values.Sα matrix is computed by using following steps. First, the

matrix Z decomposes the arbitrary vector x(n) into its even and odd parts. The P

matrix maps even part of N-dimensional vector x[n] into first
[
N/2 + 1

]
components

and odd part to the remaining components [154].Whereas the matrix Zis unitary and

symmetry, that isZ = ZT = Z−1 andW is real symmetric with tri-diagonal structure.
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Hence resultant similarity transform is given by diagonal elements of even and odd matrix

with eigenvectorsek, ok,

ZWZ−1 =

[
Ev 0

0 Od

]
(4.2.15)

even though, an eigenvector of an above-transformed matrix is either even or odd vectors.

The common set of eigenvectors of W and DFT matrix is determined irrespective of the

dimension of W . Order the eigenvectors set by using zero crossing values of discrete

Hermits Gaussians [155]. Where eigenvectors of Ev and Od matrix with highest Eigen

values doesn’t have any zero crossing but second highest has one and so on. An even

eigenvector of Z is calculated by e = Z

[ ∧
eTk |0....0

]T
and e = Z

[
0..0|

∧
oTk

]T
through

∧
ek,

∧
ok,

where kis zero crossing(0 ≤ k ≤ [N/2]) and (0 ≤ k ≤ [(N − 3)/2])respectively. Finally

equation 4.2.14 becomes,

Sα[m,n] =
N−1∑

K=0,k 6=(N−1+N2)

uK [m]e−j
π
2
kαuK [n] (4.2.16)

whereas uk(n) is a discrete Hermits-Gaussian function at the kth order, It is observable

that if N is even or odd, there are no eigenvectors with N-1 or N zero crossings. Hence

peculiar Eigen value multiplicity of DFT matrix to get DFRFT kernel matrix is given as,

Table 4.3 Eigen value’s multipliable to DFT matrix to get DFRFT kernel matrix

N 1 -j -1 J

4m m+1 M M m-1

4m+1 m+1 M M M

4m+2 m+1 M m+1 M

4m+3 m+1 m+1 m+1 M
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4.3 Improved lossy image compression algorithm us-

ing DWT and DFRCT

4.3.1 Previous work

The lossy image compression is a technique which represents an image data with a reduced

number of bits and in turn, reduces the storage space, but reconstructed image is quite

different than original image [156]. The most common fractional transform used in image

processing application is two dimensional DFRFT, which can preserves the rotational

property and helps in analyzing the signal in time-frequency domain [157]. A lossy hybrid

image compression technique using DFRFT-SPIHT proposed in [158,159] uses DFRFT for

compression and SPIHT for encoding process. Based on these references, we developed

a new lossy compression algorithm by coding the decomposed low frequency wavelet

coefficients by using DFRCT. This has increased the compression performance of the

algorithm significantly.

4.3.2 Flow of DWT DFRCT algorithm

The wavelet transforms facilitate to analyze the signal in time-frequency domain by rep-

resenting the source image into clusters of significant coefficients in four frequency spec-

trums. A compact time domain analysis in DFRCT helps us to code the more signifi-

cant subbands with reduced size without reducing the signal quality. This combination

becomes more efficient because it generates more de-correlated coefficients than spatial

based compression algorithms. The following steps are used to explain the proposed

compression algorithm (figure 4.1).
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Figure 4.1 Pipelined view of a proposed lossy compression algorithm

Step 1:The image is subjected to wavelet decomposition with a sufficient number of

levels, which splits the image into LL and non-LL subbands. First level non-LL subbands

are neglected (zeroed).

Step 2: Remaining non LL subbands are segmented into blocks of defined size (8X8).

Store the significant non-zero blocks and its position except these remaining blocks are
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zeroed. Apply quantization by using equations 3.3.2 and 3.3.3 then encode them by

arithmetic coding.

Step 3: Create the quantization matrix, then for each column of LL subband apply one-

dimensional DFRCT and quantization. Specify the optimal fractional order for different

test images for good compression performance and store them as a reduced array followed

by the arithmetic encoder with header tags.

Step 4: This is orthogonal process hence the decompression is quite converse to the

compression method. IDFRCT is applied to decoded LL subband and decoded blocks

of nonzero non-LL subbands are restored to their original position remaining all blocks

are padded by zero. Finally, IDWT is applied for both the sub-bands to reconstruct

high-quality source image.

4.3.3 Results and discussion

The strength of proposed compression algorithm is evaluated by numerical simulations.

The original test images Lena, Barbara, cameraman, rice, and IC dimension 512 × 512

are used to analyze the compression techniques. The table.4.4 evaluates the proposed

compression algorithm at compression ratios 20%, 40, 50, 60, 70, 80 and 85% by varying

the wavelet decomposition levels, optimum quantization factors and fractional orders are

used. Here we observed that the 20% of compression is achieved by wavelet decompo-

sition at level one and remaining process uses level three decomposition, to increase the

compression ratio. At the same time, the quantization factors for non-LL sub-band varies

from 0.001 to 0.2 and for LL subband compression by using optimum fractional order

varies from 0 to 1.
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Table 4.4 MSE, PSNR at optimum wavelet decomposition level, quantization factor and ( αopt)

of proposed method for chosen compression percentage for ‘lena’ image

Compression

percentage

Wavelet de-

composition

level

Quantization

factor for non

LL

αopt for

LL

MSE PSNR

20 1 0.001 0.93 18.745 36.23

40 3 0.002 0.90 20.189 35.29

50 3 0.006 0.84 20.221 35.19

60 3 0.01 0.99 20.175 35.08

70 3 0.03 0.98 21.194 34.86

80 3 0.08 0.97 26.154 33.95

85 3 0.16 0.98 37.956 32.33

The graph used in figure 4.2, analyzes the proposed method by plotting PSNR values

versus compression percentage for different test images. Here the increase in compression

percentage leads to reduced PSNR values.

Figure 4.2 The graph for different test images using DWT-DFRCT
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Figure 4.3 (a)Original lena image(512X512) compressed by using proposed method at (b)20%

with PSNR 36.23db;(c)40% with PSNR 35.29db;(d)60% with PSNR 35.08db;(e)80% with

PSNR 33.29db;(f)85% with PSNR32.33db;

Table 4.5 MSE, PSNR comparison of proposed method with DFRCT and DFRFT

Test im-

ages

CP

(%)

DFRCT[26] DFRFT[26] DWT-DFRCT

(level 3)

αopt MSE PSNR αopt MSE PSNR Q αopt MSE PSNR

Lena 75 0.94 313.8 22.0 0.93 97.8 25.21 0.05 0.94 22.73 34.52

Barbara 75 0.99 543.04 19.6 0.91 339.7 20.91 0.04 0.98 172.8 25.73

Cameramen75 0.99 464.30 20.37 0.97 180.7 24.40 0.02 0.96 14.28 36.54

Rice 75 0.92 161.52 24.95 0.92 122.2 24.57 0.3 0.98 121.4 27.28

IC 75 0.99 512.26 19.94 0.94 44.8 26.11 0.2 0.96 153.6 26.26
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Figure 4.4 PSNR comparison of test images (1.Lena; 2.Barbara; 3.cameraman; 4.rice; 5.IC)

using DFRCT,DFRFT and DWT-DFRCT

Figure 4.3 shows the reconstructed images by using proposed method for Lena image at

fixed compression percentages of 20%,40%,60% and 85% respectively. Table.4.5 compares

the proposed method with DFRFT and DFRCT[160] by tabulating PSNR, MSE values

at fixed compression percentage 75%. Here we observed that the reconstruction quality

of Lena and cameraman is better than the other methods. The images with less edge

information are recovered better by proposed method with reduced error rate. Figure

4.4 shows the graphical PSNR comparison of the proposed method with DFRFT and

DFRCT at compression percentage 75%.The results show that quality of reconstruction

by proposed methods is significantly improved in terms of PSNR and MSE.
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4.4 Lossless Image compression algorithm using DWT

and DFRFT

4.4.1 Previous works

Maintaining quality of reconstruction at high compression rate is very difficult part in

data compression. Several applications like medical imaging, defense and satellite im-

age processing fields, use wavelet based lossless image compression algorithms. A lossy

compression algorithm is proposed in section 4.3, looses quality of reconstruction due to

coarse quantization process and reckless killing of less significant coefficients and igno-

rance of imaginary part in DFRCT during an encoding process. In order to overcome

these limitations and to improve the image quality during reconstruction, an alternative

method, hybrid wavelets with fractional Fourier transform is proposed, which can deliver

high compression percentage.

4.4.2 Flow of DWT DFRFT algorithm.

This algorithm uses advantages of both wavelet and fractional Fourier transforms to en-

hance the compression performance. The wavelet transform is used to extract the spec-

trum of a source image into low frequency (LL) and high frequency (non-LL) sub-bands.

One dimensional DFRFT is applied for LL sub-band for compact encoding into a reduced

array. The steps involved in the proposed method (figure 4.5) are as shown below,
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Figure 4.5 A block view of proposed method

Step 1: First, apply the two-dimensional discrete wavelets transform for decomposition

(mother wavelet debouches of scale 5).The source image is split into LL and non-LL sub-

bands.

Step 2: Apply level1 quantization for decomposed subbands to increase the correlation,
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by multiplying quantization scale with the median value of the sub-bands. Then divide

the sub-band by M1, as explained below

M1 = Quantization Scale×median(sub band A) (4.4.1)

Sub band A = round(sub band/M1) (4.4.2)

Step 3: One dimensional DFRFT with the optimal fractional order(αopt)is applied to

each column of LL sub-band. Further, in level2 quantization transform is applied for the

column by dividing the quantization matrix by using equation 4.20. And store the values

in a reduced array and size of LL sub-band,

M2(m,n) =

{
1, if(m = 1, n = 1)

m+ n+R, if(m 6= 1, n 6= 1)
(4.4.3)

Step 4:Remaining non-LL sub-bands are partitioned into non-overlapped blocks of stan-

dard size8 × 8. Search for the block having nonzero values and then store them in the

reduced array along with its position. Blocks with zeros are neglected and not included

in a reduced array.

Step 5:All reduced arrays are encoded by an arithmetic encoder into a compressed bit

stream. Since reduced array contain both positive and negative values and are encoded

by the arithmetic encoder.

Step 6:The decompression process is the reverse of the compression process, where re-

duced arrays are decoded by the arithmetic decoder. The LL subbands recovered by

inverse DFRFT with fractional order(αopt) and by multiplying level2 Quantization factor

M2.Similarly, non-LL subbands recovered to their original position and remaining blocks

are padded by zero. Again multiply the quantization factor M1for each non-LL sub-bands

then apply an inverse discrete wavelet transform to reconstruct the original image.
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4.4.3 Simulation results and discussions

Original test images Airplane, house, boat, Arial, peppers, Barbara, and mandrill are

chosen to evaluate our compression algorithm.Table.4.6 tabulates percentage root mean

square difference (PRD) and PSNR values of proposed method at a high compression

percentage from 50%, 55,60,70 to 90% with optimal fractional orders(αopt) for Barbara

image. Fig.4.6 shows reconstructed ’barbara’ image from proposed method at different

compression percentage. Table.4.7 gives PRD, PSNR comparative tabulation of the pro-

posed method with other combination of wavelet transform with DFRCT and DFRST at

compression percentage (80%). From Table.4.7, we can observe that the PSNR values and

compression percentage are inverse in relations, as we increase the compression percentage

the PSNR values get decreased and vice-versa. PSNR value of the proposed method for

boat image at 80% is 2db and 0.41db lesser than remaining two methods respectively.

PRD also varied in the same manner, since of the proposed method is less efficient in

reconstructing the images with a large number of edges.

Table 4.6 PRD and PSNR calculation of proposed method at different CP for Barbara image

Compression percentage αopt PRD PSNR

50 0.94 8.56 28.24

60 0.96 10.04 26.03

70 0.98 10.13 25.77

75 0.96 10.13 25.73

80 0.92 10.14 25.70

90 0.98 10.92 25.24
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Figure 4.6 (a) Original Barbara image compressed using by DWT-DFRFT at CP (b)20%

(c)40%;(d)60%;(e)70%;(e)80%;

Table 4.7 PRD and PSNR comparison of proposed method with DWT-DFRST and

DWT-DFRCT

Test Im-

age

CP

(%)

DWT-DFRST DWT-DFRCT DWT-DFRFT

αopt PRD PSNR αopt PRD PSNR αopt PRD PSNR

Airplane 80 0.90 4.12 29.95 0.88 3.47 31.4 0.85 2.70 33.5

House 80 0.98 5.08 31.04 0.98 4.84 31.1 0.94 4.20 32.2

Boat 80 0.97 5.58 30.41 0.92 5.88 32.4 0.86 5.69 30.0

Aerial 80 0.96 8.76 25.65 0.90 8.42 26.3 0.90 7.92 26.7

Peppers 80 0.99 10.12 26.47 0.97 9.82 27.7 0.97 7.84 28.9

Barbara 80 0.94 11.43 24.48 0.92 10.32 25.64 0.91 10.02 25.7

Mandrill 80 0.96 9.21 25.50 0.94 8.86 26.42 0.94 8.64 26.8
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Figure 4.7 Comparison of the proposed method with DFRCT and DFRST for Barbara image

at different CP (50% to 90%)

The Fig.4.7 is the graphical comparison of the proposed method with other methods.

This graph indicates that the proposed method shows some significant improvement in

the reconstruction process.
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4.5 Medical image compression using hybrid DWT

with block based DFRFT

4.5.1 Introduction

From the discussion of lossless compression algorithm proposed in the section 4.4, we

found sensitive frequency components in the wavelet decomposed images are efficiently

coded by using DFRFT. But, organization of two dimensional wavelet coefficients into one

dimensional array during encoding stage creates complexity and image blurrier. Hence,

In this section an improvement has been made by application of block based DFRFT to

resolve the problem of blurring and is applied for specific medical image data.

4.5.2 Flow of proposed method

The proposed method block diagram is as shown in the figure 4.8 and it was described

by fallowing steps

Step 1: The source image is decomposed into LL and non LL sub bands by an application

of Decimated wavelet transform using Debauchees family. Apply the level one quantiza-

tion for all subbands using equation.4.18.

Step 2: Mean value of LL sub band is computed and stored, for each pixel of LL Sub

band is subtracted by obtained mean value. Now a new reduced matrix is generated, seg-

ment it into a sub blocks of 8X8 size, then apply the one dimensional discrete fractional

Fourier transform for each column of sub blocks. Second level quantization is applied for

both real and imaginary part of matrix.
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Figure 4.8 Pipeline view of proposed compression technique

Step 3: The non LL subbands are strictly neglected or made it as zero. Reduced matrix

of LL sub bands are converted into single array and encoded by arithmetic encoder to

obtain the compressed bit stream.

Step 4: Decompression process is converse to the compression. After decoding the

reduced array of LL sub band, apply one dimensional inverse discrete fractional Fourier

transform and level two de-quantization to reconstruct the blocks and then recombined

it into reduced matrix.
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Step 5: The reduced matrix is added with Computed mean value at encoder stage to

reconstruct exact LL sub band.

Step 6: Apply the inverse discrete wavelet transform for both LL and non LL sub band

to reconstruct source image.

4.5.3 Results and discussion

Some samples of medical data like X-ray, MRI, PET and Ultrasound images achieve from

standard data base med-pix, Michigan University medical labs shown in Fig. 4.10 are

chosen to evaluate our compression algorithm.

Figure 4.9 Original test images (a)Lung contusion(XRAY 1);(b)MRSA lungs absess X-Ray(XRAY 2);

(c)Pine bone(MRI 1); (d) knee uni (MRI 2); (e) PET 1; (f) Lung(ULTR 1); (g) Tharoid struc-

ture(ULTR 2); (h) Skull(ULTR 3);
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Table 4.8 PSNR and SSIM of proposed method at different CP for X-Ray images

Images CP

(%)

Q-

factor

αopt PSNR SSIM Encoding

time(Sec)

XRay 1

20 0.10 0.99 32.50 0.837 12.50

40 0.13 0.98 31.31 0.821 10.32

60 0.20 0.97 30.18 0.796 7.41

80 0.40 0.99 26.88 0.754 4.31

XRay 2

20 0.07 0.96 31.47 0.712 16.6

40 0.12 0.97 29.27 0.661 10.64

60 0.2 0.97 28.19 0.612 8.66

80 0.3 0.99 26.12 0.602 5.34

(a) (4.5.1)
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(b)

Figure 4.10 PSNR (a) and SSIM (b) varied along the Q-Factor

(a) (4.5.2)
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(b)

Figure 4.11 PSNR (a) and SSIM (b) varied along the Fractional order

X-ray image are rich in smoothness, so to conserve all significant information is not so

necessary. In Table 4.8 high Q-factor is applied to achieve good PSNR and SSIM.
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Table 4.9 PSNR and SSIM of proposed method at different CP for MRI and PET images

Test images CP(%) Q-

factor

αopt PSNR SSIM Encoding

time(sec)

MRI 1

20 0.01 0.99 35.64 0.901 32.4

40 0.03 0.96 35.34 0.896 24.8

60 0.04 0.96 34.32 0.856 18.3

80 0.10 0.99 31.68 0.839 10.2

MRI 2

20 0.07 0.99 27.78 0.695 28.4

40 0.12 0.98 26.21 0.647 21.8

60 0.20 0.99 23.53 0.533 14.5

80 0.40 0.99 19.92 0.389 9.10

PET 1

20 0.005 0.97 39.89 0.924 36.7

40 0.007 0.98 39.24 0.905 34.0

60 0.01 0.99 38.78 0.890 30.4

80 0.02 0.98 38.46 0.870 25.6

MRI images contain more significant information and hence less Q-factor is used in table

4.9 to achieve compression. Figure 4.10 and 4.11 are the evidence for graphical analysis

for optimization of proposed compression algorithm by selecting suitable Q-factor and

Fractional orders. Here we observe by figure 4.11, the optimal fractional order to maintain

better quality is ranging from 0.98 to 0.99.
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Table 4.10 PSNR and SSIM of proposed method at different CP for ultrasound images

Test images CP(%) Q-factor αopt PSNR SSIM Encoding

time(sec)

ULTR 1

20 0.001 0.98 25.45 0.797 92.3

40 0.005 0.99 25.07 0.750 60.6

60 0.01 0.98 24.87 0.724 54.8

80 0.04 0.98 24.29 0.719 42.0

ULTR 2

20 0.001 0.97 39.45 0.889 120

40 0.002 0.98 35.86 0.807 102

60 0.005 0.95 33.72 0.783 98.6

80 0.01 0.99 32.33 0.724 64.3

ULTR 3

20 0.001 0.69 31.06 0.821 120

40 0.004 0.96 30.45 0.820 98.3

60 0.008 0.90 30.14 0.848 74.2

80 0.03 0.98 30.07 0.843 40.6

Table 4.10 tabulates the PSNR and SSIM values for some ultrasound images at different

compression percentage with optimal Q-factor and fractional order. Ultrasound images

are more sensitive medical images compared to other images, so less quantization factor

is selected in our algorithm for compression.
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Table 4.11 PSNR Comparison of proposed method with JPEG and JPEG2000 at CP 80

Images CP JPEG JPEG2000 Proposed method

(%) PSNR PSNR Q-

Factor

αopt PSNR

XRAY 1 80 23.3 25.9 0.4 0.99 26.8

XRAY 2 80 24.9 25.8 0.3 0.99 26.1

MRI 1 80 28.6 32.0 0.1 0.99 31.6

MRI 2 80 22.7 23.4 0.4 0.99 19.2

PET 1 80 35.5 36.8 0.02 0.98 38.2

ULTR 1 80 23.2 25.1 0.02 0.98 24.2

ULTR 2 80 29.4 30.8 0.01 0.99 32.3

ULTR 3 80 27.2 29.3 0.03 0.98 30.0

Table 4.12 SSIM Comparison of proposed method with JPEG and JPEG2000 at CP 80

Images CP JPEG JPEG2000 Proposed method

(%) SSIM SSIM Q-

Factor

αopt SSIM

XRAY 1 80 0.692 0.786 0.4 0.99 0.754

XRAY 2 80 0.623 0.704 0.3 0.99 0.602

MRI 1 80 0.756 0.824 0.1 0.99 0.839

MRI 2 80 0.542 0.567 0.4 0.99 0.389

PET 1 80 0.724 0.843 0.02 0.98 0.870

ULTR 1 80 0.689 0.726 0.02 0.98 0.719

ULTR 2 80 0.745 0.809 0.01 0.99 0.724

ULTR 3 80 0.757 0.820 0.03 0.98 0.843
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(a)

(b)

Figure 4.12 PSNR(a) and SSIM(b) graphical comparison of proposed method with JPEG and

JPEG2000
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Figure 4.13 XRay 2 image compression using JPEG2000 at compression percentage (a)20%;

(b)40%; (c)60%; (d)80%; compression using JPEG at (e)20%; (f)40%; (g)60%; (h)80%; and

compression by proposed method at (i)20%; (j)40%; (k)60%; (l)80%;

The table 4.11 and table 4.12 illustrate a comparative simulation of proposed method

with JPEG and JPEG2000 for same medical images at fixed compression percentage

80%. Figure 4.12 shows the graphical comparison of proposed method with art of work

evidences that the proposed method can compete with art of work at high compression

percentage. Figure 4.13 shows the simulated images by JPEG2000, JPEG and proposed

method.
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Above all studies includes that proposed method have significant improvement in com-

pressing the medical image. This algorithm operates at high compression percentage with-

out affecting image quality made it several advantages in applications like telemedicine.
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4.6 Summary

In this chapter, fractional Fourier transforms such as DFRST, DFRCT and DFRFT are

described in section 4.2. The DFRST and DFRCT are constructed by using Eigen values

of DFT kernel. The operating capability of DFRCT on real values and compact coding

of DFRFT with respect to fractional orders allows us to compress the signal efficiently.

In section 4.3 an improved lossy compression technique is proposed by using wavelet

and DFRCT to achieve a high quality of reconstruction of an image at high compression

rate. The algorithm uses wavelet transform to decompose an image into the frequency

spectrum of low and high-frequency subbands. Two levels of quantization make this

algorithm lossy but arithmetic coding used to encode the sub-bands overcomes some

losses. In section 4.3.4 experimental results of the proposed method are discussed and

compared with existing compression algorithms and some significant improvements can

be observed in terms of peak signal to noise ratio and self-similarity index mode at high

compression ratio.

A new lossless image compression algorithm is proposed in section 4.4, which uses

both DWT and DFRFT for image compression. Wavelets are the best choice for feature

extraction of the source image at different frequency resolution but the low-frequency sub-

bands of wavelet decomposition are until the untouched part in compression method due

to their sensitive nature. On the other hand, fractional Fourier transform is a convenient

form of generalized Fourier transform, helps in the compact lossless coding of the source

image with optimal fractional orders. Hence discrete fractional Fourier transform is used

to compress those sensitive sub-bands carefully. The experimental results of the proposed

algorithm with a different set of test images are compared with some of the existing image
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compression algorithms. The result shown in section 4.4.3 reflects significant improvement

in image reconstruction quality of the proposed method.

The block based in DFRFT is proposed in the section 4.5 is an improved version of

DWT-DFRFT method explained in section 4.4. The low frequency wavelet coefficients are

coded using block based DFRFT, increases the compression performance. The simulation

results of proposed method using X-ray, MRI and ultrasound medical images presented in

section 4.5.3, reveal that proposed algorithm is best suited for medical image compression.



Chapter 5

Hybrid compression schemes using
modified singular value
decomposition and wavelets

5.1 Background with previous work

Recently, developed compression algorithms like JPEG and JPEG2000, introduced by

joint photographic experts group uses DCT and wavelet transform for image compression

[161-165]. DCT based compression techniques suffered by blocking of an artifact, but

multi-resolution and overlapping nature of wavelet alleviates the blocking artifact and

creates superior energy compaction [166]. From the discussion of section 3.2.3, we found

that, wavelet-based compression EZTW [122] produces unavoidable artifacts during low

bit-rate transmission and is a complex process, which requires more storage space. In-

creasing the number of bits in the encoding bit stream and neglecting of few significant

bits can also reduce the image quality in SPIHT compression. Prior scanning of significant

coefficients before encoding confirms the gradual improvement in the progressive image

compression[167].

94
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Because of its high-quality reconstruction by using SVD made, it can be used as pre-

processing step for many image compression algorithms [168, 169] . A hybrid method

of SVD and EZTW for ECG signal compression is proposed [170] shows significant im-

provement in compression ratio and excellent quality of image reconstruction with fewer

bitrates. But, it has drawback of computational complexity and cost effectiveness and it

is limited for ECG signal only. Another lossy compression algorithm proposed by [137]

using SVD and wavelet difference reduction (WDR) shows some improvement in quality.

These two references signify that, the use of SVD as pre processing step for progressive

image compression possibly improves the compression performance. In this chapter, new

median based SVD is developed and used as a pre processing step for adaptive SPIHT

and binary tree coding algorithm. With small improvement in MSVD by mean value

computation is developed and used as pre processing step for EZTW.

5.2 Median based rank one updated singular value

decomposition for image compression(MSVD)

An image is formed with a two-dimensional matrix of m x n pixels; each pixel represents

its intensity value. The SVD is applied to the matrix representing an image to get U
∑
V T ,

where ’U’ and ’V’ are the orthogonal matrices of m x n and n x n, respectively, Σ is a

nonnegative and diagonal matrix of m x n.. The compression is achieved by selecting a

much smaller number of ranks to approximate the original image during reconstruction.

Here, ranks are reduced in two stages, first by subtracting the image matrix by its

median value before performing the SVD and then add the median value after reconstruc-

tion. Secondly, divide the image into sub-block to exploit the uneven complexity of the

original image. Appropriate ranks have been selected adaptively for each sub-block by
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specifying the percentage of the sum of singular values instead of a fixed value [171, 172].

For image ′I ′, median-based rank one updated SVD process is given by,

Original Image(I):

I −median(I) = UΣV T (5.2.1)

where U is m by n, V is n by m, and Σ = diag(r1, r2, ....rk, 0, ....., 0)

Specifiedpercentage =
(r1 + r2 + r3 + ......+ rk1)

(r1 + r2 + r3 + ......+ rk)
(5.2.2)

where k1 is rank for each sub-blocks of image

Reconstructed Image:

I1 = UΣ1V T +median(A) (5.2.3)

where U is m byk1, V is k1 byn, and Σ1 = diag(r1, r2, r3, ...., rk1)

Table 5.1 Percentage of ranks used for specified singular values for reconstruction of Lena

image (8X8 block)

% sum of singu-

lar values used

Average

ranks used

Average percentage

of ranks used

85 2.110 0.264

70 1.022 0.127

55 1 .000 0.125

40 1 .000 0.125

25 1 .000 0.125
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Figure 5.1 (a) Original lena (512X512) reconstructed with percentages of ranks (b) 85% of

ranks,(c)65% of ranks,(d) 50% of ranks,(e)40%of ranks,(f)25% of ranks

This process condenses the allocation of singular values. When a sub-block has the

complex image, its singular values are scattered than the one that contains a simple image.

Table 5.1 show, the average ranks and the percentage of ranks used for the 8x8 block-size

compression with the rank-one update from 25 to 85 percent of singular value sum. Notice

that, from 25 to 70 percentages, only one rank is assigned to all sub-blocks and it achieves

high compression without affecting the psycho-visual quality as shown in a figure.5.1
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5.3 Hybrid gray scale image compression using MSVD

and adaptive set partition hierarchical tree

5.3.1 SPIHT with adaptive coding order (ASPIHT)

ASPIHT algorithm is similar to conventional SPIHT algorithm except prior coding or-

der during the initialization process of its insignificant lists. The wavelet coefficients on

the edges are often more significant due to larger magnitudes and hence scanning the

neighborhood of these significant coefficients is necessary [173, 174]. During the scanning

process, the more priorities are given to the previously scanned significant neighborhoods

than other regions and are encoded by SPIHT to achieve efficiency in the reconstruction

of edges. In this method, the original image is decomposed and reconstructed by us-

ing cohen-daubechies-feauveau (CDF) 9/7-tap wavelet filter to improve the compression

performance of SPIHT [175]. ASPIHT algorithm is applied to an image that follows a

bit-plane encoding as shown in the figure 5.2. It is a three-step process; Initialization,

sorting pass and refinement pass. It uses three lists: list of insignificant pixel (LIP), list of

insignificant set (LIS) and list significant pixel (LSP) to perform the above three-step pro-

cess. Initialization process begins with finding the maximum value in wavelet coefficient

and calculates the initial threshold by equation 5.4 as follows,

T = log2(max(max(Im))) (5.3.1)

where,as the Initial threshold and Imis the two-dimensional array (decomposed wavelet

coefficients). The LIP is initialized with the list of nodes from low-frequency sub-bands

of wavelet coefficients by Morton scanning order [176]. The LIS is initialized with lists of

all offspring and descendants of nodes stored in LIP. Initially, the LSP is an empty list,
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and during the sorting pass, it holds the list of significant coefficients along with the sign

bit. In sorting pass, each coefficient in the LIP and LIS is compared with the defined

threshold by performing significance test using formula as fallows,

ST (τ) =

 1, max
(i,j)∈τ

{|Ci,j| ≥ 2T

0, otherwise
(5.3.2)

If the coefficient identified as significant, then it is moved to LSP along with sign bit,

otherwise to LIP. Similarly in LIS, if the set becomes significant it is partitioned the set

into its offspring and descendants. Here each offspring undergo the significance test and

if its coefficients are significant are moved to LSP otherwise to LIP. If these significant

offspring have any descendants, the LIS is reloaded with a new set of offspring and check

for significance test, under the same pass. Otherwise, a set is removed from the list.

Adaptive coding is performed by scanning the neighbor coefficients of the previously

scanned significant coefficient, which are moved first to LSP. The scan then proceeds to

the next coefficient and their offspring of LIS as shown in example 1. Finally, at refinement

pass, the threshold is divided into half of its initial value and repeats the process for same

prior nodes by using the above passes. The whole process is repeated till the required bit

rate is achieved.
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Figure 5.2(a) a block of wavelet coefficients processed by adaptive scanning ordered encode by

SPIHT (b) Adaptive scanning order of the tree, where gray nodes are a significant node from

the previous scanning

Example.1: Consider a simple block of wavelet coefficients shown in the figure 5.2 (a).

For first pass the thresholdT0 = log2 = 3, 23 = 8, hence LSP is encoded by only 9 as a

significant bit; For the second pass T1 = 8
2

= 4then two offspring with their descendants

are significant hence, LSP encoded by9, 5, 5, 4, 7, 5, 6. Now the parent and child relation

is as shown in the figure 5.2(b). In the last pass, threshold becomesT2 = 4
2

= 2, and here,

the neighbor pixels of the significant parents and brothers need to be encoded. i.e. 3, 3

are encoded first then encode3, 2, 2.

5.3.2 Realization of MSVD-ASPIHT

In this proposed method median based rank one updated SVD, described in section 5.2 is

used as a pre-processing step for ASPIHT. The median value of its original image matrix

is calculated and subtracts the original image matrix from that median value yields good

image quality.
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Figure 5.3 Generic representation of proposed MSVD-ASPIHT algorithm

Hence, by cascading of modified rank one updated SVD and ASPIHT, the proposed

algorithm (figure 5.3) derive more benefits in achieving high PSNR at high compression

ratio for specified bitrates.

1. First, the median value of original image matrix is extracted and the original image

matrix is subtracted from that median value. Divide the complete image into 8 ×

8blocks and apply SVD for each block by using the equation 5.2.1.

2. Calculate the ranks of each sub-block by using its singular values. Then the average

ranks and an average percentage of ranks is computed to reconstruct the image with

specified percentage sum of singular values using equation 5.2.2.

3. Finally, an image is reconstructed using equation 5.2.3 and is added to the median

value.

4. The resultant image is used as an input to the ASPIHT part of the proposed tech-

nique.



Chapter-5: Hybrid compression schemes using modified singular value decomposition and wavelets · · · 102

5. ASPIHT uses CDF 9/7-tap wavelet filter for decomposition and more significant

wavelet coefficients are priority encoded into bit streams.

6. The decoder decodes bit stream and reconstructed by using CDF 9/7-tap wavelet

reconstruction filters.

5.3.3 Results and discussions

The proposed compression algorithm was tested on 8-bit grayscale (512 × 512) Airfield,

Artificial, Big-building, Boats, bridge, Deer, Fireworks, Goldhill, Lena, peppers images.

Tables 5.2, 5.3 and 5.4 show the comparison between SPIHT, ASPIHT and JPEG2000 in

terms of PSNR for 20:1, 40:1 and 80:1 compression ratios respectively.

Table 5.2 PSNR comparison for fixed compression ratio 20:1

Images SPIHT ASPIHT JPEG2000 MSVD-ASPIHT

Artificial 31.64 31.96 32.36 33.34

Big Building 28.24 28.51 29.01 31.71

Boats 31.57 31.68 33.18 35.52

Bridge 27.79 28.03 28.24 30.97

Deer 41.43 42.31 41.05 43.86

Fireworks 36.05 36.06 36.38 36.99

Goldhill 31.46 31.68 32.18 34.51

Lena 35.49 35.87 35.99 39.16

Peppers 33.39 33.65 35.07 36.36
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Table 5.3 PSNR comparison for fixed compression ratio 40:1

Images SPIHT ASPIHT JPEG2000 MSVD-ASPIHT

Artificial 28.04 28.34 28.54 30.16

Big Building 25.85 26.08 26.54 29.38

Boats 28.50 28.65 29.75 32.82

Bridge 24.89 25.14 25.21 28.41

Deer 36.72 36.88 36.34 39.08

Fireworks 30.92 30.93 30.97 32.32

Goldhill 29.59 29.44 29.72 32.58

Lena 32.25 32.75 32.75 36.05

Peppers 31.79 32.06 32.40 34.87

Table 5.4 PSNR comparison for fixed compression ratio 80:1

Images SPIHT ASPIHT JPEG2000 MSVD-ASPIHT

Artificial 25.25 25.55 25.69 27.83

Big Building 23.74 23.95 24.33 27.95

Boats 26.20 26.42 26.76 30.52

Bridge 22.93 23.09 23.03 26.69

Deer 32.91 33.06 31.96 35.68

Fireworks 27.63 27.77 27.30 29.12

Goldhill 27.17 27.59 27.69 31.33

Lena 29.32 29.85 29.62 33.26

Peppers 29.36 29.79 29.54 32.57

Table 5.5 SSIM values for fixed compression ratio 20:1

Images SPIHT ASPIHT JPEG2000 MSVD-ASPIHT

Artificial 0.890 0.903 0.897 0.917

Big Building 0.769 0.776 0.786 0.772

Boats 0.832 0.835 0.898 0.835

Bridge 0.868 0.873 0.877 0.878

Deer 0.970 0.972 0.969 0.971

Fireworks 0.926 0.927 0.897 0.958

Goldhill 0.822 0.828 0.839 0.828

Lena 0.906 0.910 0.910 0.910

Peppers 0.832 0.834 0.875 0.834
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Table 5.6 SSIM values for fixed compression ratio 40:1

Images SPIHT ASPIHT JPEG2000 MSVD-ASPIHT

Artificial 0.791 0.825 0.737 0.848

Big Building 0.668 0.674 0.707 0.676

Boats 0.750 0.755 0.828 0.756

Bridge 0.784 0.789 0.792 0.799

Deer 0.950 0.951 0.948 0.950

Fireworks 0.854 0.856 0.850 0.917

Goldhill 0.740 0.747 0.752 0.748

Lena 0.861 0.867 0.868 0.868

Peppers 0.799 0.803 0.832 0.804

Table 5.7 SSIM values for fixed compression ratio 80:1

Images SPIHT ASPIHT JPEG2000 MSVD-ASPIHT

Artificial 0.678 0.724 0.767 0.769

Big Building 0.572 0.576 0.596 0.580

Boats 0.668 0.670 0.740 0.671

Bridge 0.692 0.698 0.692 0.713

Deer 0.922 0.924 0.912 0.925

Fireworks 0.778 0.790 0.606 0.877

Goldhill 0.660 0.674 0.670 0.674

Lena 0.803 0.814 0.808 0.815

Peppers 0.757 0.759 0.783 0.761

Similarly, Structural Similarity Index Mode (SSIM) for the compression ratio of 20:1, 40:1

and 80:1 shown in tables 5.5, 5.6 and 5.7 respectively. From the tables 5.2, 5.3 and 5.4

we can observe that the PSNR quality of proposed technique for ‘lena’ is 3.12dB, 3.26dB,

and 3.64dB higher than JPEG2000 for 20:1, 40:1 and 80:1 compression ratios. However,

from tables 5.5, 5.6 and 5.7, SSIM are comparatively lesser than JPEG2000 compression

method for artificial, boats, goldhill and peppers images.
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Figure 5.4 Compression performance of proposed method with other compression technique

with respect to PSNR and compression ratio

Figure 5.4 illustrates compression performance of proposed method superior to other

state-of-the-art techniques. It is shown in figure 5.5 the deer image is compressed by using

JPEG2000, SPIHT, ASPIHT and proposed technique at the fixed compression ratio of

40:1.
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Figure 5.5 (a) Uncompressed ’deer’ image (512X512) (b) compressed by ASPIHT (c)

compressed by JPEG2000 [184], (D) compressed by proposed method at 40:1
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Figure 5.6 (a) Original lena image (512X512) is compressed by compression ratios of (b) 20:1 ;

(c) 40:1; (d) 60:1 (e) 80:1 (f) 120:1using proposed MSVD-ASPIHT method
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Figure 5.7 Performance evaluation of the proposed method for fixed compression (20:1) with

respect to PSNR and percentage of SVD ranks for deer image

Figure 5.6 shows ’len’ image, compressed at the different compression ratios using a pro-

posed technique. Figure 5.7 illustrate the PSNR variation along the different percentage

of SVD ranks used for reconstruction of ’lena’ image (512 × 512)with fixed compression

ratio at 20:1.
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5.4 Improved binary tree coding for grey scale image

compression by using MSVD

5.4.1 Binary tree coding

The wavelet decomposition distributes the energy of subband into clusters, hence coding

of wavelet information becomes more important in image compression. In binary tree

coding, the wavelet coefficients are divided into significant and insignificant sub-blocks

(i.e code block) based on the threshold and assign them a binary bit for representations

[177]. In binary tree coding algorithm, we consider a code block S of wavelet image with

the size of 2N ×2N and is converted into the one-dimensional indexed array using Morton

scanning order [178]. Then the binary tree is constructed from bottom to top with node

λ(k) where 1 ≤ k ≤ 2 × S. The bottom level of the binary tree consists all wavelet

coefficients of Morton scanning order. Upper levels of the tree are defined as follows.

λ(k) = max {λ(2k), λ(2k + 1)} for1 ≤ k ≤ S (5.4.1)

λ(2k) and λ(2k + 1) are the offspring of λ(k) and tree depth is P=N+N+1. After con-

struction of binary tree for each code blocks, span the tree by depth, from top to bottom

of the subtree in a bit plane. If tree node is insignificant it is coded with ’0’ otherwise

with ’1’, and process is repeated for its two offspring. If the process reaches the bot-

tom level and then corresponding coefficient become significant, then its sign is coded.

It allows us to concentrate on areas of high energy even also codes the zero pixels com-

pactly. The wavelet coefficients of edges are the treasure of significant coefficients with

high magnitude, but they gradually change in natural images. Hence adaptive scanning

of this significant coefficient along with it’s a neighbors are effectively encodes edges and
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improves the image quality [179].

5.4.2 Realization of MSVD-BTC

In this proposed algorithm entropy coding for encoded bit stream is avoided to speed up

the execution process. The detailed steps of the proposed method (figure. 5.8) described

in two parts with functions Span MSV D, Span depth and Span level, where ′I ′ is 8-bit

grayscale image matrix. PR is the specified percentage of ranks used for reconstruction.

Figure 5.8 Pipelined view of proposed SVD-BTC image compression method

Part-1.The original image is pre-processed by Modified rank one updated SVD.

1. FunctionCode = span−MSVD(L,Ep,Block, size)

• Calculate the median m of Iand Im = I −m

• Divide the Iminto sub-blocks for defined block size8× 8.

• Apply SVD for each block and calculate the average percentage of ranks (PR).

– if PR ≤ EP
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∗ Ranks used for reconstruction.

– else

∗ Neglect the ranks.

• Recombine the blocks intoIm.

• Im = I +m

Part-2. After MSVD process reconstructed image Subjected to wavelet decomposition

by CDF 9/7 tap wavelet filter. The wavelet coefficients are under Morton scanning order

gives the indexed array for the binary tree. Where k is the index of the node of a binary

tree, and Tb is the threshold, T0 = 2[log2max(I)] and Tb = T0
2

1. FunctionCode = span depth(λ, k, Tb)

• if λ(k) coded with significant with the large threshold value, λ(k) ≥ Tk−1

• if k ≤ S

– Jl = Span depth(λ, 2k, Tb)

– Jr = Span depth(λ, 2k + 1, Tb)

– code = Jl
⋃
Jr

• else

– code = {sign(V (k − s))}

• Else if λ(k) has a significant parent and the neighbors of λ(k)has just been

coded with insignificant, namely,k < 1 and tmod2 = 1λ(k − 1) < Tb,

– if k < S,
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∗ Jl = Span depth(λ, 2k, Tb)

∗ Jr = Span depth(λ, 2k + 1, Tb)

∗ code = Jl
⋃
Jr

• else

– code = {sign(V (k − s))}

• Else if λ(k) ≥ Tb

– if k < S,

∗ Jl = Span depth(λ, 2k, Tb)

∗ Jr = Span depth(λ, 2k + 1, Tb)

∗ code = {1}
⋃
Jl
⋃
Jr

– else

∗ code = {1}
⋃
{sign(v(k − S)}

∗ else

∗ code = {0}.

2. For Adaptive scanning, after Spanning the tree by depth with Span depth(λ, 1, T0)the

function we obtain the previously scanned significant nodes with the threshold{TZ |Z ≥

0}. From bottom to top of the tree, find the brother of previously significant nodes.

For depthn = N , repeat up to n > 1

• Functioncode = Span level(TZ)

– ForK =
∑n−1

i=1 2i + 1to
∑n

i=0 2i
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• ck = {.}.ifλ(k) ≥ Tk−1,

– if kmod2 = 0and λ(k + 1) < TZ−1,

– thenck = Span depth(λ, k + 1, TZ);

• else if kmod2 = 1and λ(k − 1) < TZ−1,

• then ck = Span depth(λ, k − 1, TZ−1);

• code = {code, ck}

• n = n− 1.

The above function of Binary tree coding is the recursive function but for adaptive scan-

ning order, we used the non recursive function to accelerate the process for each bit plane.

5.4.3 Results and discussions

The proposed compression algorithm was tested on 8-bit grayscale (512 X512) Barbara,

Lena, Goldhill, Cameraman, Jet-plane, Peppers images. Tables 5.8-5.13 show the com-

parison of the proposed technique (decomposed at level 5) with SPIHT, BTC (without

entropy coding), JPEG and JPEG2000 in terms of PSNR for the different bit per pixel

(BPP) respectively. The PSNR values of SPIHT, JPEG, and JPEG2000 compression were

obtained from [180] and same tested images are used for consistency check. For maximum

compression in MSVD, we use 70 to 75 percentage ranks for reconstruction which boosts

the image quality for binary tree coding. Hence the PSNR values of MSVD+BTC in

tables are comparatively higher than BTC. Figure 5.9 shows the Lena image compressed

by proposed technique at different bit rates.
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Table 5.8 PSNR comparison for Barbara image at different BPP

BPP SPIHT BTC JPEG JPEG2000 MSVD-BTC

0.125 24.84 19.20 23.69 24.87 28.20

0.250 27.57 25.63 26.42 28.17 28.20

0.500 31.39 30.54 30.53 31.82 32.42

1.000 36.41 36.58 35.60 36.68 37.76

1.250 39.80 36.58 39.03 39.40 41.56

Table 5.9 PSNR comparison for Lena image at different BPP

BPP SPIHT BTC JPEG JPEG2000 MSVD-BTC

0.125 31.10 26.14 28.45 30.93 29.70

0.250 34.13 29.56 31.90 34.03 33.10

0.500 37.27 35.14 35.51 37.16 38.48

1.000 40.45 40.85 38.78 40.36 43.34

1.250 42.00 42.13 41.45 42.00 43.34

Table 5.10 PSNR comparison for Goldhill image at different BPP

BPP SPIHT BTC JPEG JPEG2000 MSVD-BTC

0.125 28.47 23.50 27.25 28.48 26.76

0.250 30.55 28.50 29.47 30.58 31.83

0.500 33.12 32.90 32.12 33.27 36.87

1.000 36.54 32.94 35.57 36.81 36.87

1.250 39.60 39.10 40.12 40.45 43.00

Table 5.11 PSNR comparison for Cameramen image at different BPP

BPP SPIHT BTC JPEG JPEG2000 MSVD-BTC

0.125 25.82 28.23 24.88 25.57 32.34

0.250 29.12 31.16 28.20 29.30 35.27

0.500 33.00 32.89 32.11 33.28 37.71

1.000 37.96 33.82 36.29 38.08 38.82

1.250 39.85 33.82 39.42 39.75 39.72
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Table 5.12 PSNR comparison for Jet plan image at different BPP

BPP SPIHT BTC JPEG JPEG2000 MSVD-BTC

0.125 27.27 27.37 26.05 27.23 32.67

0.250 29.89 30.57 28.83 29.79 36.08

0.500 33.54 33.80 32.47 33.54 39.42

1.000 38.24 37.66 37.11 38.30 44.02

1.250 38.96 37.59 39.02 40.42 44.04

Table 5. 13 PSNR comparison for pepper image at different BPP

BPP SPIHT BTC JPEG JPEG2000 MSVD-BTC

0.125 34.24 28.06 29.45 33.83 31.26

0.250 35.44 31.35 31.58 36.03 34.95

0.500 38.86 35.57 35.83 39.96 39.33

1.000 41.45 40.78 38.75 42.36 43.90

1.250 42.15 40.98 39.95 42.87 43.91

Figure 5.9 (a) Original Lena uncompressed image (b) Compressed at 0.125 BPP ; (c)

Compressed at 0.250 BPP; (d) Compressed at 0.500 BPP; (e) Compressed at 1.00BPP; (f)

Compressed at1.250 BPP using proposed method



Chapter-5: Hybrid compression schemes using modified singular value decomposition and wavelets · · · 116

5.5 Improved EZTW compression algorithm using

mean based rank one updated SVD

5.5.1 Mean based rank one updated SVD(MNSVD)

Here we modify formal SVD proposed in section 5.2 by using two additional steps: In

the first stage, complete image matrix is subtracted from its mean value before SVD

decomposition and then add the mean value after SVD reconstruction. At second stage

divide the mean extracted image matrix into sub-block to use the irregular density of

the original image. Before SVD decomposition select the Suitable percentage of a sum

of singular values instead of predetermined value. Consider for an imageJ, segmentation

based rank one SVD process is given by,

1. A matrix S’ is obtained by subtracting original image matrix ’J’ from its mean

value.

S(m,n) = J(m,n)−mean(J) (5.5.1)

2. Define the block size (32 x 32,64 x64. . . . . . ..) for segmentation.

3. Apply the forward SVD for each sub-blocks of matrix ’S’ by using,

[Tu, Tα, Tv] = svd[B(m,n)] (5.5.2)

Where Tu is m byn , Tv isn byn, and α = diag(r1, r2, ....rk, 0, ....., 0)

4. The specific percentage of ranks is computed by using the equation 5.6

Specifiedpercentage =
(r1 + r2 + r3 + ......+ rk1)

(r1 + r2 + r3 + ......+ rk)
(5.5.3)

Where k1 is rank for each sub-blocks of an image.
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5. Apply the Inverse SVD for reconstruction

B(m,n) = svd(Tu, Tαk1, T v) (5.5.4)

Where Tuis m byn , Tv is K1 byn, and α1 = diag(r1, r2, r3, ...., rk1)

6. Recombine all sub-blocks to get S(m,n), then add the mean value to reconstruct the

original image.

J−1(m,n) = S(m,n) +mean(J) (5.5.5)

Block based rank one updated SVD is a lossy compression method, is used to compress

the grayscale image at high PSNR with low compression ratio. Pre-processing of modified

SVD to EZTW possibly improve compression performance in terms of PSNR and SSIM

at specific bit rates.

5.5.2 Embedded zero tree wavelet (EZTW)

The wavelet transforms make easy to decompose and reconstruct the image by exercising

on different mother wavelets. But low bit rate coding is still challenging part of wavelet-

based progressive image compression somehow it is possible by designing of optimized

encoders. Scalar quantization in lossy compression generates a sequence of zero and non

zero symbols [180]. But the probability of zero’s in overall symbols is high and so, low bit

rate transmission is quite difficult. A new compression algorithm introduced in[122] shows

the possible solution for progressive image compression. It uses parent-child relations in

decomposed wavelet coefficients and creates a new data structure zero trees to encode

the symbols. The source image is decomposed by using pyramid decomposition with
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debauche’s wavelet filters [112] at defined levels as shown in figure 5.10 (a). Scan the

complete image by using Morton scanning order then classify the coefficients as

1. Parent: Coefficients at crude decomposed scale. (Each parent have four offspring)

2. Child: Coefficients corresponds to a same spatial location at the next bigger scale

of parallel direction.

3. Descendent: Coefficients Childs offspring.

The initial threshold of EZTW is calculated by using the formula for decomposed wavelet

coefficients I(m,n),

T0 = [log2(max(I))]2 (5.5.6)

Significance mapping: If a wavelet coefficient ‘z’ is said to be significant if|z| > T0,

otherwise coefficient considered as insignificant. And also symbols are classified as shown

in figure 5.2(b) based on its status as follows,

1. Zero tree roots: Coefficient and child are zero.

2. Isolated Zero: Coefficient is insignificant but has significant descendants.

3. Positive Significant: Coefficient values with positive sign greater than a threshold

value.

4. Negative Significant: Coefficient values with negative sign greater than a threshold

value.



Chapter-5: Hybrid compression schemes using modified singular value decomposition and wavelets · · · 119

Figure 5.10 (a)Wavelet pyramid decomposition of sub band with parent child relation,(b) flow

of Significant mapping for wavelet coefficients

For a First iteration rough structure of the original image is reconstructed. For further

iterations, the threshold will becomeT1 = T0\2 and carry out the significance test and

repeat the process until required bit rate is achieved. These symbols are encoded by

Huffman encoder, finally, a lengthy compressed bit stream is obtained [181].

5.5.3 Realization of MNSVD-EZTW

This method uses MNSVD to pre-process source image, then it is bypassed through

EZTW encoder to get compressed bit stream. Hence, use of modified rank one updated

SVD in EZTW (figure 5.11) gain more advantage in achieving high PSNR and SSIM at

high compression ratio for defined bitrates.
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Figure 5.11 Channelized view of an MNSVD-EZTW method

It takes following steps,

1. Resize the original image for fixed standard size (256 x 256 or 512 x512).

2. Extract the mean value from the resized image and subtract obtained mean value

from the resized matrix itself to generate the high correlated matrix by using equa-

tion 5.5.1.

3. Apply segmentation with fixed block size and each block is subjected to SVD using

equation 5.5.2.

4. A specific percentage of ranks is calculated by using sum singular values of each

sub-blocks using equation 5.5.3.

5. Use inverse SVD for all sub-blocks using the equation 5.5.4 and add extracted mean

value using equation 5.5.5.

6. Compute the signal to noise ratio and PSNR and bypass the resultant image as an

input to EZTW part of a proposed method.



Chapter-5: Hybrid compression schemes using modified singular value decomposition and wavelets · · · 121

7. EZTW uses ‘Debauchees’ four tap wavelet filter for decomposition and applies spe-

cific threshold levels for compression then encode by using Huffman encoder.

8. Finally, a compressed bit stream is decoded by Huffman decoder followed by De-

bouches 4-tap wavelet reconstruction filters.

5.5.4 Results and discussions

Standard 8-bit grayscale test images are used to test the proposed compression algorithm.

Tables 5.14, 5.15 and 5.16 illustrates the comparative study of MNSVD-EZTW method

with EZTW, SPIHT, and JPEG in terms of PSNR at compression ratio 30:1,70:1,90:1

respectively. Likewise, SSIM at the compression ratio of 30:1, 70:1 and 90:1 are tabulated

in Tables 5.17, 5.18 and 5.19 respectively.

From the tables 5.14, 5.15 and 5.16 observations, the PSNR values of the MNSVD-

EZTW method are improved from basic EZTW method. The PSNR value of the proposed

technique for boat image is 0.8dB, 0.2dB and 2dB higher than JPEG compression tech-

nique at compression ratio 30:1, 70:1, and 90:1 respectively. Similarly from table 5.17,5.18

and 5.19 shows SSIM values of proposed compression scheme at compression rate 30:1 is

much higher than JPEG technique except deer and Lena images.
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Table 5.14 PSNR comparison for fixed compression ratio 30:1

Images EZTW SPIHT JPEG MNSVD-EZTW

Artificial 27.54 29.34 28.43 28.60

Big-Building 25.95 26.85 27.94 28.86

Boats 28.39 29.27 30.43 31.30

Bridge 27.33 26.35 27.79 28.13

Deer 31.78 38.32 39.45 32.07

Fireworks 34.02 33.29 34.24 35.09

Goldhill 28.88 30.20 31.09 32.13

Lena 29.26 33.24 34.77 32.38

Peppers 30.38 31.28 30.87 32.59

Table 5.15 PSNR comparison for fixed compression raio 70:1

Images EZTW SPIHT JPEG MNSVD-EZTW

Artificial 22.51 25.61 26.42 24.22

Big-Building 21.84 24.02 25.06 24.41

Boats 23.21 26.44 26.59 26.70

Bridge 21.85 23.35 23.54 23.45

Deer 28.48 33.06 34.73 29.20

Fireworks 23.25 28.06 27.69 23.60

Goldhill 24.08 27.42 27.51 27.21

Lena 24.29 29.61 28.32 27.45

Peppers 24.28 29.66 28.99 27.34

Table 5.16 PSNR comparison for fixed compression ratio 90:1

Images EZTW SPIHT JPEG MNSVD-EZTW

Artificial 20.34 21.94 23.78 22.03

Big-Building 18.34 20.96 20.75 21.23

Boats 21.16 23.07 22.12 24.69

Bridge 19.14 20.45 20.34 21.23

Deer 24.18 27.46 25.09 25.13

Fireworks 19.44 24.39 22.14 19.61

Goldhill 21.85 24.24 24.32 24.99

Lena 21.24 24.94 24.98 24.75

Peppers 20.87 24.74 24.66 24.08
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Table 5.17 SSIM values for fixed compression ratio 30:1

Images EZTW SPIHT JPEG MNSVD-EZTW

Artificial 0.845 0.818 0.819 0.846

Big-Building 0.768 0.712 0.733 0.767

Boats 0.802 0.789 0.763 0.806

Bridge 0.862 0.828 0.852 0.841

Deer 0.907 0.957 0.942 0.908

Fireworks 0.924 0.892 0.904 0.932

Goldhill 0.820 0.776 0.791 0.821

Lena 0.867 0.881 0.868 0.858

Peppers 0.893 0.785 0.799 0.880

Table 5.18 SSIM values for fixed compression ratio 70:1

Images EZTW SPIHT JPEG MNSVD-EZTW

Artificial 0.519 0.690 0.664 0.621

Big-Building 0.522 0.577 0.594 0.525

Boats 0.573 0.676 0.655 0.576

Bridge 0.616 0.711 0.705 0.619

Deer 0.786 0.920 0.912 0.787

Fireworks 0.620 0.772 0.694 0.778

Goldhill 0.537 0.668 0.523 0.537

Lena 0.656 0.804 0.798 0.646

Peppers 0.695 0.753 0.656 0.695

Table 5.19 SSIM values for fixed compression ratio 90:1

Images EZTW SPIHT JPEG MNSVD-EZTW

Artificial 0.371 0.512 0.440 0.498

Big-Building 0.372 0.421 0.463 0.380

Boats 0.478 0.540 0.490 0.483

Bridge 0.491 0.548 0.498 0.510

Deer 0.734 0.842 0.759 0.745

Fireworks 0.545 0.671 0.643 0.742

Goldhill 0.447 0.544 0.581 0.450

Lena 0.565 0.682 0.564 0.568

Peppers 0.580 0.638 0.632 0.590
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(a)

(b)

Figure 5.12 Performance evaluation graph of the proposed technique with another compression

method with respect to PSNR(a),SSIM(b) v/s compression ratio
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Figure 5.13 (a) Uncompressed fireworks image is compressed by compression ratios of (b) 30:1,

(c) 70:1, (d) 90:1 using segmentation based rank one updated SVD-EZTW method

In figure 5.12(a) & 5.12(b), shows a graphical comparison by PSNR versus compression

rate and SSIM versus compression rate of the proposed technique with another method for

Boat image. From figure 5.12(a), we observe that the PSNR of the proposed technique

is superior to another method, However, in figure 5.12(b), the SSIM of the proposed

technique is enhanced little bit higher than EZTW and compete with the art of work.
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Figure 5.14 Original noisy-Boat image compressed by (a)EZTW (b) Basic SPIHT (c)JPEG (d)

MSVD at compression rate 50:1

It is shown in figure 5.13 the fireworks image is compressed by EZTW and JPEG and

MNSVD-EZTW at fixed compression ratio 70:1. In figure 5.14, the noisy boat image is

compressed using proposed technique at compression ratio 30:1, 70:1, and 90:1respectively
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5.6 Summary

In this chapter three compression algorithms implementation are described in section 5.3,

5.4 and 5.5 respectively. In section 5.3 the selection of optimized percentage of ranks in

SVD and low bit rate coding in EZTW enhances the PSNR value of compression algo-

rithm. SSIM values of some test images are degraded compared to JPEG and JPEG2000

at high compression ratio. Since in achieving high compression ratio compression al-

gorithms neglects some significant information necessary for reconstruction. Similarly,

selection of maximum percentage sum of singular values for reconstruction in SVD and

adaptive encoding of prior significant pixels during reconstruction in ASPIHT and BTC

process increases the PSNR value of compression algorithms described in section 5.4 and

5.5 respectively. However, in SVD-BTC compression algorithm, PSNR value for some

test images are reduced since those test images have more number of edges leads to use

of more number of significant bits. Apart from some small compromise in the processing

of test images with rich edge information these compression algorithms are kept sustain

and compete with another state of the art. From simulation results and discussions, the

SVD-EZTW and SVD-ASPIHT are efficiently operated at high compression ratio and the

significant improvement from its primitive EZTW and ASPIHT methods. However, SVD-

BTC also has the high quality of reconstruction even at low BPP and shows significant

improvement from BTC compression algorithm.



Chapter 6

Conclusion and Future scope of
research work

This thesis begins with preface discussions of problems in representation of digital signals

in time-frequency plane and then is extended to signal compression. This discussion iden-

tifies that, a significant progress has been made in representing signals in time-frequency

domain and signal compression still have some room for development. This research

work put effort in representing signal in time frequency plane and to develop compression

techniques using wavelet

6.1 Time-frequency representation of signal in wavelet

domain

Representation of signal in time-frequency plane encapsulate the signals into its subclasses

of different frequencies existed in different time slots. This study notices that the definition

of suitable mother wavelet and scales of wavelet filters are played a significant role in the

representation of the signal in the time-frequency plane. The wavelet decomposition

process splits the signal into most significant and least significant frequency sub-bands.

This characterization of the signal in wavelet domain helps us to point out the internal

redundancy of signal and in efficient encoding of signal.

128
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6.2 Selection of wavelets for image compression

The wavelet decomposition process has a wide choice in selecting mother wavelet and

decomposition levels required. No single basis function and particular levels fit for all

types of image data, it may vary from image to image. As levels increase, source image

gets decomposed into many subbands. Increase in levels leads to aliasing’ effect during

reconstruction of image and causes the reduction in image quality. Coarse quantization

during compression process is also responsible for a loss of quality. Discussion on lossy

and lossless image compression algorithms found that both has their own significance in

the specific field of wide applications. Wavelet based signal analysis with wavelet filters,

basis functions, and wavelet decomposition process reveal the use of QMF in extraction of

wavelet coefficients for defined scale. The concept of wavelet threshold is a key feature of

wavelet based image compression, which is effective in reducing the internal redundancy

that exists inside the signal. Two major classes of thresholding techniques are discussed in

this thesis and implementation of a soft threshold by calculating optimal threshold using

improved neigh shrink to code detail coefficients is discussed and the developed algorithm

shows significant improvement in the compression performance.

6.3 Image compression using hybrid wavelet trans-

form

The thesis presents two category of compression schemes with focus on hybridization of

wavelet algorithm, one catogory, uses combination of either of DCT, DFRCT, DFRFT

with wavelet transform.Another one uses MSVD with wavelet transform.
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6.3.1 Wavelets with fractional transforms

The first algorithm uses DWT and DCT with improved neigh shrink as wavelet threshold

for grey scale image compression. In this algorithm, three level wavelet decomposition

and reconstruction method is used with Debouches filters. The approximate subbands are

coded by T-matrix coding and second and third level detailed subbands are tresholded

with improved neigh shrink and then coded. This algorithm explores the redundancy in

first level detail subbands and neglects them. The method uses arithmetic encoder along

with run length coding in coding the compressed approximate and detail coefficients. The

evaluated results show that the proposed algorithm show better compression performance

in terms of PSNR and SSIM with small loss in image quality.

Secondly, a lossy compression algorithm using DWT and DFRCT was discussed. The

two-level quantization and compact coding of DFRCT for low-frequency subband made

this algorithm efficient in compression. This work is compared with basic DFrST and

DFRCT compression.

The third one is a lossless compression algorithm, that uses DWT and DFRFT. This

algorithm attempts to increase the compression performance without loss of image quality

even at high compression percentage. Simulation results show that, the proposed DWT-

DFRFT algorithm is significantly better than DWT-DFRCT algorithm. The extended

version of this algorithm called, block based DFRFT is proposed for medical image com-

pression. The method create blocks, and code the decomposed wavelet coefficients by one

dimensional DFRFT, which makes this algorithm work as lossless compression algorithm.
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6.3.2 Modified SVD in wavelet based progressive image com-

pression

A lossy hybrid compression scheme, that uses a modified rank one updated SVD as the

pre-processing operation for progressive image compression is proposed. Here SVD it-

self a lossy compression scheme, but a modification is made by subtracting image by

its mean or median value and then apply the segmentation to that image matrix. This

modified SVD increases the image quality and by passing this compressed image as input

for wavelet-based progressive image compression methods, enhance the image quality. A

hybrid compression of MSVD-ASPIHT is proposed and it shows improvement in per-

formance over ASPIHT and is comparatively higher than JPEG2000 in terms of PSNR

and SSIM. Similarly, another the proposed, MSVD-BTC compression algorithm is also

better than BTC compression. Finally, another proposed,MNSVD-EZTW compression

algorithm better than EZTW and also compete with JPEG at high compression ratio.

The results show that, each hybrid wavelet compression algorithm proposed, show a

significant improvement from its conventional wavelet-based compression method.

6.4 Contribution

Some of the major contribution of the work involves in developing

• An optimal wavelet threshold in hybrid DWT-DCT was developed and explained

with the help of experimental results. (chapter 3)

• An improved lossy and lossless compression algorithms using DWT-DFRCT and

DFRFT are proposed and tested. (chapter 4)
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• A hybrid compression method using MSVD and wavelet-based progressive image

compressions like EZTW, ASPIHT and BTC is designed and simulated. (chapter

5)

Some minor contributions in the form of algorithms are listed as

• One dimensional coding of DCT as T- Matrix coding for grey scale image com-

pression (section 3.3.2.3)

• One dimensional compression scheme of fractional transforms DFRST, DFRCT

and DFRFT for grey scale image(section 4.2)

• New lossy image compression scheme by using median based rank one updated

SVD(section 5.1).

6.5 Future work

On the basis of research work reported in this thesis, the hybrid wavelet-based image

compression schemes have some limitations and there is a scope for improving these

algorithms.

In case of threshold-based compression the performance of the algorithm can be im-

proved, by using of different optimal threshold calculating methods like the visual shrink,

sure shrink, buyers shrink in place of neigh shrink. The use of efficient encoder and header

tags implementation can also enhance the bit rate of the algorithm. The algorithm can

also be extended in compressing the color images with some modifications.

Another significant improvement in hybrid DWT and fractional transform is possible,

by designing efficient quantization and encoding methods. The coding of an LL subband
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before quantization process increases the number of zeroes and its encoding leads to the

reduction in the size of compressed bit stream. Implementation of automatic optimal frac-

tional order selection algorithm can add some improvement in the conventional method.

These implementations possibly increase the compression ratio and bit rate.

The SVD based image compression algorithm has, its choices in selection of the opti-

mal percentage of ranks for every set of image. Hence an algorithm that can select the

optimal percentage of ranks automatically, will increase the efficiency of the compression

algorithm. This work, has limited combination of SVD with EZTW, ASPIHT and BTC

methods, however, the combination of SVD with remaining progressive image compres-

sion methods can also improve the compression performance. In this work compression

algorithms are limited only for gray scale images. However, they can be extended for

color images.

Finally, one more potential route intended for future work is to consider a hardware

execution of proposed hybrid wavelet-based image compression system by using very large

scale integrated (VLSI) chip. This hardware implementation can reveal the stability and

suitability of algorithm for deferent applications.

The overall study concludes that, this thesis demonstrates signal analysis in time

frequency plane and different approaches for signal compression in wavelet domain with

significant improvements.
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