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PREFACE



Preface

Differential geometry is a mathematical discipline that uses the techniques of differen-

tial calculus, integral calculus, linear algebra and multilinear algebra to study problems in

geometry. The theory of curves, planes and space formed the basis for initial development

of differential geometry during the 18th and the 19th centuries. Riemann’s revolutionary

ideas generalized the geometry of surfaces which have been studied earlier by Gauss and

Lobachevsky. Later this lead to an exact definition of the modern concept of an abstract

Riemannian manifold. The development of the subject during 20th century has turned

Riemannian geometry into one of the most important parts of modern Mathematics. Levi-

Civitae and Ricci developed the concept of parallel translation in the classical language of

tensors. This approach received a tremendous impetus from Einstein’s work on relativity.

Cartan initiated research and methods that were independent of a particular coordinate

system.

In 1930, Schouten and Van Dantzing tried to transfer the results of Differential Geom-

etry of spaces with Riemannian metric and affine connection to the case of spaces with

complex structure. These spaces were also found independently by Kaehler in 1933 and

are now called as Kaehler spaces which are even dimensional. Also using the complex
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Preface 2

structure and differential 1-form on a manifold, a great deal of work is carried out on

these manifolds from 1960 onwords. These are known as Contact manifolds and are odd

dimensional. Contact geometry has been seen to underly many physical phenomena and

are related to many other mathematical structures. More recently Contact structures

have been seen to have relations with Riemannian geometry, low dimensional topology

and provide an interesting class of subelliptic operators.

A differentiable (2n+ 1)-dimensional manifold M2n+1 is said to be a contact manifold or

to have a contact structure, if it carries a global differential 1-form η such that

η ∧ (dη)n 6= 0

everywhere onM2n+1 where the exponent denotes the nth exterior power and η is a contact

form.

One can obtain different structures like Sasakian,K-Contact, Kenmotsu, trans-Sasakian,

para-Sasakian et al. by providing additional conditions to the contact structure. In 1958,

Boothby and Wang initiated the study of odd dimensional manifolds with contact struc-

ture and almost contact structure. Sasaki and Hatekeyama reinvestigated them using

tensor calculus in 1961. Almost contact metric structures and Sasakian structure, nearly

Sasakian et. al., were proposed by Sasaki in 1960. Later Kenmotsu defined a class of al-

most contact Riemannian manifold called Kenmotsu manifold, in 1985 Oubina introduced

the trans-Sasakian manifolds. The geometry of these manifolds was studied extensively

by many geometers like Blair, Yano, Kon, Sasaki, Kobayashi, Gray, Harada, Hatakeyama,

Okumara, Goldberg, Endo, Chen, Ozgur, Takahashi, Rastogi, Amur, Bagewadi, De, Mar-

alabhavi, Tripati, Shaikh, Venkatesha, Nagaraja, Roy Sengupta, Tanno, Hasan Shahid,

Bhattacharya, Prakasha et al.
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Our thesis deals with semi-symmetric contact manifolds. A Riemannian manifold

(M, g) is called locally symmetric if its curvature tensor R is parallel i.e., ∇R = 0, where

∇ denotes Levi-Civita connection. As a generalization of symmetry, the notion of semi-

symmetry is given by R · R = 0. Every symmetric manifold is semi-symmetric but the

converse is not true. A detail explanation about contact manifolds is given above. The

thesis is partitioned into six chapters.

The first chapter is all about basic concepts, it includes the definitions and prelim-

inaries which are used in following chapters. The first section deals regarding about

almost contact metric manifolds, definitions and notions of Sasakian manifolds, general-

ized Sasakian space forms, Kenmotsu manifolds, para-Kenmotsu manifolds and (LCS)n-

manifolds. The second section carries the definition, notions and example of almost C(α)

manifolds. The section three devotes to S-manifolds. The Ricci soliton, η-Ricci soliton

and conformal Ricci soliton are includes in next section. The last section follows the

notions of semi-symmetric and pseudo-symmetric contact manifolds.

Chapter-2 is devoted to the study of almost C(α) manifolds. Introduction is the first

section of this chapter. In the section-2 we study flat C-Bochner curvature tensor in

almost C(α) manifold and showed that it is an η-Einstein manifold. From section-3 to

section-6 we proved that semi-symmetric and pseudo-symmetric almost C(α) manifolds

with conditions B · S = 0, B · R = 0, B · S = LSQ(g, S), B · R = LRQ(g,R) are Einstein

manifolds, where B is the C-Bochner curvature tensor. From section-7 to section-12

we study Ricci soliton in almost C(α) manifolds for some semi-symmetric and pseudo-

symmetric conditions such as R · R = 0, M̄ · R = 0, R · M̄ = 0, R · R = L1Q(g,R),

M̄ ·R = L2Q(g,R), R ·M̄ = L3Q(g, M̄) and it has shown that, Ricci soliton in above cases
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is shrinking, steady and expanding accordingly as Kenmotsu, co-Kaehler and Sasakian

manifold. Here M̄ is M -projective curvature tensor. In later sections we discuss conformal

Ricci soliton in n-dimensional almost C(α) manifolds for conditions R·W2 = 0, W2 ·R = 0,

R ·W2 = LW2Q(g,W2), W2 ·R = LRQ(g,R), W2 ·S = 0 and W2 ·S = LSQ(g, S), where W2

is the W2-curvature tensor. Finally last section concludes the results which we obtained

for almost C(α) manifolds.

Chapter-3 deals with the study of Ricci solitons in S-manifolds. The first section of

the chapter concerned with introduction of S-manifolds. From section-2 to section-9 we

have worked on S-manifolds admitting semi-symmetric and pseudo-symmetric conditions

such as R ·R = 0, R ·C = 0, C ·R = 0, C ·C = 0, R ·R = L5Q(g,R), R ·C = L6Q(g, C),

C · R = L7Q(g,R) and C · C = L8Q(g, C), where C is the concircular curvature tensor

and L5, L6, L7, L8 are some functions on M and proved that these manifolds are Einstein

and Ricci soliton for these manifolds is shrinking. Section-10 devotes to irrotational τ -

curvature tensor in S-manifolds and it has been shown that, if the τ -curvature tensor is

irrotational then the manifold is η-Einstein. And we discuss about Ricci soliton. Finally

the last section is the conclusion of above results.

Chapter-4 is related to Sasakian manifold and generalized Sasakian space forms.

First section of this chapter includes introduction to Sasakian manifolds and general-

ized Sasakian space forms. Second section contains Ricci-generalized pseudo-symmetric

Sasakian manifold which is Einstein and Ricci soliton for this manifold is shrinking. In

sections third, fourth and fifth we proved that, pseudo-projective Ricci-generalized pseudo-

symmetric Sasakian manifold, quasi-conformal Ricci-generalized pseudo-symmetric Sasakian

manifold, concircular Ricci-generalized pseudo-symmetric Sasakian manifold respectively
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are Einstein and also Ricci soliton of such manifolds is shrinking. In sixth section we con-

sider (0, 6)-tensor R·R = 0 in generalized Sasakian space form and show that it is Einstein

and considering the Ricci soliton (g, V, λ), where V as conformal killing vector field and λ

as a scalar, we have shown that Ricci soliton is shrinking if f1 < f3, steady if f1 = f3 and

expanding f1 > f3. In section-7 to section-10, we worked on pseudo-symmetric, quasi-

conformal semi-symmetric, quasi-conformal pseudo-symmetric generalized Sasakian space

forms by considering (0, 6)-tensors R ·R = LRQ(g,R), R · C̃ = 0, R · C̃ = LC̃Q(g, C̃) and

C̃ · C̃ = 0. Last section is conclusion of this chapter.

Chapter-5 is all about Kenmotsu manifolds admitting semi-symmetric metric connec-

tion and conformal Ricci soliton in para-Kenmotsu manifolds. First section is introductory

about Kenmotsu manifolds, para-Kenmotsu manifolds and semi-symmetric metric con-

nection. Section second is concerned to semi-symmetric metric connection on Kenmotsu

manifolds and it is proved that, Kenmotsu manifold admitting semi-symmetric metric con-

nection is an η-Einstein manifold. Sections third, fourth and fifth are devoted to Ricci soli-

ton in semi-symmetric, pseudo-projective semi-symmetric, pseudo-symmetric Kenmotsu

manifolds with respect to semi-symmetric metric connection and proved that Ricci soli-

tons in these manifolds is expanding with respect to Levi-Civita connection. Later in

sections sixth, seventh, eighth and ninth we worked on Ricci soliton para-Kenmotsu man-

ifold satisfying the conditions R ·C = LCQ(g, C), C ·R = LRQ(g,R), R · P̄ = LP̄Q(g, P̄ )

and P̄ ·R = LRQ(g,R) admitting conformal Ricci soliton.

Chapter-6 deals with (LCS)n-manifolds. Introduction is the first section of this chap-

ter. In second section we proved that, an (LCS)nη-Ricci soliton (M, (g, ξ, λ, µ)) is an
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η-Einstein manifold. Section third deals with η-Ricci soliton on pseudo-projective pseudo-

symmetric (LCS)n-manifolds. Fourth section devotes to η-Ricci soliton on (LCS)n-

manifold admitting the pseudo-symmetric condition P̄ · R = LRQ(g,R). In sections

fifth, sixth, seventh we worked on Ricci soliton in (LCS)n-manifolds for irrotational con-

ditions using pseudo-projective curvature tensor, quasi-conformal curvature tensor and

conformal curvature tensor respectively. Last section concludes the chapter.

Finally, the thesis ends with a list of bibliography and publications.
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Chapter 1

Preliminaries

This chapter is introductory and consists of basic concepts and definitions of almost con-

tact metric manifolds, Ricci solitons, semi-symmetric and pseudo-symmetric manifolds,

which are used in the future chapters.

1.1 Almost contact metric manifolds

Definition 1.1.1. A differentiable manifold (M, g) is said to be an almost contact metric

manifold, if it admits a tensor field φ of type (1, 1), a vector field ξ and a 1-form η on M

such that

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0, (1.1.1)

g(φX, φY ) = g(X,Y ) − η(X)η(Y ), (1.1.2)

g(X, ξ) = η(X), (1.1.3)

where X, Y are vector fields defined on TM .

If on a almost contact metric structure (M, φ, ξ, η, g) the exterior derivative of 1-form η

satisfies

dη(X, Y ) = g(φX, Y ),

7
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then the structure (M, φ, ξ, η, g) is said to define a contact metric structure and the man-

ifold is named as contact metric manifold.

Definition 1.1.2. An almost contact metric manifold (M, g) is said to be a Sasakian

manifold, if and only if

(∇Xφ)(Y ) = g(X, Y )ξ − η(Y )X, (1.1.4)

where ∇ is Levi-Civita connection of the Riemannian metric g. From the above

equation it follows that

∇Xξ = −φX, (1.1.5)

(∇Xη)Y = g(X,φY ). (1.1.6)

For a Sasakian manifold, the Riemannian curvature tensor R, Ricci tensor S satisfy the

following conditions

R(X, Y )ξ = η(Y )X − η(X)Y, (1.1.7)

R(X, ξ)Y = η(Y )X − g(X, Y )ξ, (1.1.8)

R(ξ,X)Y = g(X, Y )ξ − η(Y )X, (1.1.9)

η(R(X,Y )Z) = g(Y, Z)η(X) − g(X,Z)η(Y ), (1.1.10)

S(X, ξ) = 2nη(X), (1.1.11)

S(φX, φY ) = S(X, Y ) − 2nη(X)η(Y ). (1.1.12)

Generalized Sasakian space form: A Sasakian manifold with constant φ-sectional

curvature is a Sasakian space form and it has a specific form of its curvature tensor.

The notion of generalized Sasakian space forms was introduced by Alegre et al. [2] with
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several examples. A generalized Sasakian space form is an almost contact metric manifold

M(φ, ξ, η, g) whose curvature tensor is given by.

R(X, Y )Z = f1{g(Y, Z)X − g(X,Z)Y } + f2{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}

+ f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ}. (1.1.13)

where f1, f2, f3 are differentiable functions and X, Y, Z are vector fields on M. In such case

we will write the manifold as M(f1, f2, f3). This kind of manifold appears as a natural

generalization of the Sasakian space forms: f1 = C+3
4

and f2 = f3 = C−1
4

, where C denotes

constant φ-sectional curvature. The φ-sectional curvature of generalized Sasakian space

form M(f1, f2, f3) is f1 + 3f2. Moreover cosymplectic space forms and Kenmotsu space

forms are also considered as particular types of generalized Sasakian space forms.

Again for a (2n+ 1)-dimensional generalized Sasakian space form, we have [67]

S(X, Y ) = (2nf1 + 3f2 − f3)g(X, Y ) + (3f2 − (2n− 1)f3)η(X)η(Y ), (1.1.14)

R(X, Y )ξ = (f1 − f3)[η(Y )X − η(X)Y ], (1.1.15)

R(ξ,X)Y = (f1 − f3)[g(X, Y )ξ − η(Y )X], (1.1.16)

S(X, ξ) = 2n(f1 − f3)η(X), (1.1.17)

QX = (2nf1 + 3f2 − f3)X + (3f2 − (2n− 1)f3)η(X)ξ. (1.1.18)

Definition 1.1.3. An almost contact metric manifold (M, g) is said to be a Kenmotsu

manifold if the following relations hold on M

(∇Xφ)Y = g(φX, Y )ξ − η(Y )X, (1.1.19)

∇Xξ = X − η(X)ξ. (1.1.20)
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In a Kenmotsu manifold (M, g), besides above relations the following conditions also

hold [50]

R(X,Y )Z = g(X,Z)Y − g(Y, Z)X, (1.1.21)

R(X, Y )ξ = η(X)Y − η(Y )X, (1.1.22)

S(X, ξ) = −(n− 1)η(X). (1.1.23)

Para-Kenmotsu manifold: Let M be an n-dimensional differentiable manifold equipped

with structure (φ, ξ, η, g), where φ is a tensor field of type (1, 1), ξ is a vector field, η is a

1-form and g be the metric satisfying

φ2X = X − η(X)ξ, η(ξ) = 1, φξ = 0, η(φX) = 0, (1.1.24)

g(φX, φY ) = −g(X, Y ) + η(X)η(Y ), (1.1.25)

g(X, ξ) = η(X), (1.1.26)

for all vectors X, Y ∈ TM .

Then the manifold is said to admit an almost paracontact structure and the manifold is

refereed to as almost paracontact metric manifold.

Definition 1.1.4. An almost paracontact metric manifold is said to be an para-Kenmotsu

manifold if the following relations hold on M

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX, (1.1.27)

∇Xξ = X − η(X)ξ. (1.1.28)
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In a para-Kenmotsu manifold, below mentioned conditions also hold

R(X,Y )Z = g(X,Z)Y − g(Y, Z)X, (1.1.29)

R(ξ,X)Y = η(Y )X − g(X,Y )ξ, (1.1.30)

S(X, Y ) = −(n− 1)g(X, Y ), (1.1.31)

S(X, ξ) = −(n− 1)η(X). (1.1.32)

(LCS)n-manifolds: An n-dimensional Lorentzian manifold M is a smooth connected

paracompact Hausdarff manifold with a Lorentzian metric g, that is, M admits a smooth

symmetric tensor field g of type (0, 2), a unit timelike concircular vector field ξ called it

as the characteristic vector field of the manifold, a non-zero 1-form η such that

g(X, ξ) = η(X), g(ξ, ξ) = −1, (1.1.33)

and the equation of the following form holds.

(∇Xη)(Y ) = α{g(X, Y ) + η(X)η(Y )}, α 6= 0, (1.1.34)

that is

(∇Xξ) = α[X + η(X)ξ], (1.1.35)

for all vector fields X,Y where ∇ denotes the operator of covariant differentiation with

respect to the Lorentzian metric g and α is a non-zero scalar function satisfies

(∇Xα) = Xα = dα(X) = ρη(X), (1.1.36)

ρ being a certain scalar function given by ρ = −(ξα). If we put

φX =
1

α
∇Xξ, (1.1.37)
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then from (1.1.34) and (1.1.37) we have

φX = X + η(X)ξ, (1.1.38)

for which it follows that φ is a symmetric (1, 1) tensor and called the structure tensor of the

manifold. Thus the Lorentzian manifold Mn together with the unit timelike concircular

vector field ξ, its associated 1-form η and (1, 1) tensor field φ is said to be a Lorentzian

concircular structure manifold (briefly (LCS)n manifold) [74]. Especially if we take α = 1,

then we can obtain the LP-Sasakian structure of Matsumoto [53]. In a (LCS)n-manifold,

the following relations hold.

η(ξ) = −1, φξ = 0, , g(φX, φY ) = g(X, Y ) + η(X)η(Y ), (1.1.39)

φ2X = X + η(X)ξ, (1.1.40)

(∇Xφ)(Y ) = α{g(X, Y )ξ + 2η(X)η(Y )ξ + η(Y )X}, (1.1.41)

R(X, Y )ξ = (α2 − ρ){n(Y )X − η(X)Y }, (1.1.42)

R(ξ, Y )Z = (α2 − ρ){g(Y, Z)ξ − η(Z)Y }, (1.1.43)

η(R(X, Y )Z) = (α2 − ρ){g(Y, Z)η(X) − g(X,Z)η(Y )}. (1.1.44)

1.2 Almost C(α) manifolds

Definition 1.2.1. An almost contact metric manifold is named as an almost C(α) man-

ifold, if the Riemannian curvature tensor R gratifies the undermentioned relation [6],[7]

R(X, Y )Z = R(φX, φY )Z − α[g(Y, Z)X − g(X,Z)Y

− g(φY, Z)φX + g(φX,Z)φY ], (1.2.1)

where X, Y, Z are vector fields on TM and α is a real number.
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Remark 1.2.1. A C(1)-curvature tensor is a Sasakian curvature tensor, a C(0)-curvature

tensor is a co-Kaehler or CK-curvature tensor and C(−1)-curvature tensor is a Kenmotsu

curvature tensor.

For an almost C(α) manifold the following relations holds,

R(X,Y )ξ = R(φX, φY )ξ − α[η(Y )X − η(X)Y ], (1.2.2)

R(ξ,X)Y = −α[g(X, Y )ξ − η(Y )X], (1.2.3)

R(ξ,X)ξ = −α[η(X)ξ −X], (1.2.4)

(∇Xφ)Y = g(X, Y )ξ − η(Y )X, (1.2.5)

∇Xξ = −φX. (1.2.6)

On an almost C(α) manifold, we also have [4]

QX = AX +Bη(X)ξ, (1.2.7)

where Q is the Ricci operator, i.,e g(QX, Y ) = S(X, Y ) for all vector fields on the tangent

space of M.

η(QX) = (A+B)η(X), (1.2.8)

S(X, Y ) = Ag(X, Y ) +Bη(X)η(Y ), (1.2.9)

r = −4n2α, (1.2.10)

S(X, ξ) = (A+B)η(X), (1.2.11)

S(ξ, ξ) = A+B. (1.2.12)

where A = −α(2n− 1) and B = −α.

Example for 3-dimensional almost C(α) manifold: Consider the 3-dimensional man-

ifold M = {(x, y, z)/(x, y, z) ∈ R3, z 6= 0}. Let {E1, E2, E3} be linearly independent at
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each point of M is given by

E1 = 2( ∂
∂y

− x ∂
∂z

), E2 = 2 ∂
∂x
, E3 = ∂

∂z
.

Let g be the Riemannian metric defined by g(E1, E2) = g(E2, E3) = g(E1, E3) = 0,

g(E1, E1) = g(E2, E2) = g(E3, E3) = 1, where g is given by

g = 1
4
[(1 − 4x2)dx⊗ dx+ dy ⊗ dy + 4dz ⊗ dz].

The (φ, ξ, η) is given by η = dz + xdy, ξ = E3 = ∂/∂z, φE1 = E2, φE2 = −E1,

φE3 = 0. The linearity property of φ and g yields that η(E3) = 1, φ2U = −U + η(U)E3,

g(φU, φW ) = g(U,W ) − η(U)η(W ), for any vector fields U , W on M. By the definition

of Lie bracket, we have

[E1, E2] = 2E3, [E1, E3] = 0, [E2, E3] = 0.

Let ∇ be the Levi-Civita connection with respect to the above metric g by the Koszula

formula.

2g(∇XY, Z) = X(g(Y, Z)) + Y (g(Z,X)) − Z(g(X, Y ))

− g(X, [Y, Z]) − g(Y, [X,Z]) + g(Z, [X, Y ]).

Then,

∇E1E1 = 0, ∇E1E2 = E3, ∇E1E3 = −E2,

∇E2E1 = −E3, ∇E2E2 = 0, ∇E2E3 = −E1,

∇E3E1 = −E2, ∇E3E2 = E1, ∇E3E3 = 0.

The tangent vectors X and Y to M are expressed as linear combination of E1, E2, E3,

that is, X =
∑3

i=1 aiEi and Y =
∑3

i=1 biEi, where ai, bi are scalars. Clearly (φ, ξ, η, g)

and X, Y , satisfy (1.1.2), (1.2.1), (1.2.5) and (1.2.6). Thus M is a almost C(α) manifold.
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1.3 S-manifold

Let M be a (2n+ S)-dimensional manifold with an f -structure of rank 2n. If there exists

global vector fields ξα, α = (1, 2, 3 . . . S) on M such that;

f 2 = −I +
∑

ξα ⊗ ηα, ηα(ξβ) = δα
β , (1.3.1)

fξα = 0, ηα ◦ f = 0, (1.3.2)

g(X, ξα) = ηα(X), g(X, fY ) = −g(fX, Y ), (1.3.3)

where ηα are the dual 1-forms of ξα, we say that the f -structure has complemented frames.

For such a manifold there exists a Riemannian metric g such that

g(X, Y ) = g(fX, fY ) +
∑

α

ηα(X)ηα(Y ), (1.3.4)

for any vector fields X and Y on M.

An f -structure f is normal, if it has complemented frames and

[f, f ] + 2
∑

α ξα ⊗ dηα = 0,

where [f, f ] is Nijenhuis torsion of f .

Let F be the fundamental 2-form defined by F (X, Y ) = g(X, fY ), X, Y ∈ TM . A normal

f -structure for which the fundamental form F is closed, η1 ∧ η2 ∧ . . . ηS ∧ (dηα)n 6= 0 for

any α, and dη1 = dη2 = . . . = dηS = F is called to be an S-structure. A smooth manifold

endowed with an S-structure will be called an S-manifold. These manifolds introduced

by Blair [20].

We have to remark that if we take S = 1, S-manifolds are natural generalizations of

Sasakian manifolds. In the case S ≥ 2 some interesting examples are given [20], [39].
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If M is an S-manifold, then the following relations holds true [20];

∇Xξα = −fX, X ∈ T (M), α = 1, 2 . . . S (1.3.5)

(∇Xη)(Y ) = −g(fX, Y ), (1.3.6)

(∇Xf)Y =
∑

α

{g(fX, fY )ξα + ηα(Y )f 2X}, X, Y ∈ T (M), (1.3.7)

where ∇ is the Riemannian connection of g. Let Ω be the distribution determined by the

projection tensor-f 2 and let N be the complementry distribution which is determined by

f 2 + I and spanned by ξ1 . . . ξS. It is clear that if X ∈ Ω, then ηα(X) = 0 for any α,

and if X ∈ N , then fX=0. A plane section π on M is called an invariant f -section if it

is determined by a vector X ∈ Ω(x), x ∈ M, such that {X, fX} is an orthonormal pair

spanning the section. The sectional curvature of π is called the f -sectional curvature. If

M is an S-manifold of constant f -sectional curvature k, then its curvature tensor has the

form

R(X, Y, Z,W ) =
∑
α,β

{g(fX, fW )ηα(Y )ηβ(Z) − g(fX, fZ)ηα(Y )ηβ(W )

+ g(fY, fZ)ηα(X)ηβ(W ) − g(fY, fW )ηα(X)ηβ(Z)}

+
1

4
(k + 3S){g(fX, fW )g(fY, fZ) − g(fX, fZ)g(fY, fW )}

+
1

4
(k − S){F (X,W )F (Y, Z) − F (X,Z)F (Y,W )

− 2F (X, Y )F (Z,W )}, (1.3.8)

where X, Y, Z,W ∈ TM . Such a manifold N(K) will be called an S-space form. The

Euclidean space E2n+S and the hyperbolic space H2n+S are examples of S-space forms.
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Now contracting equation(1.3.8) we get Ricci tensor given by

S(Y, Z) = b1g(Y, Z) + b2ηα(Y )ηα(Z), (1.3.9)

S(Y, ξα) = b3ηα(Y ), (1.3.10)

where b1 =
[

4S+(k+3S)(2n−1)+3(k−S)
4

]
, b2 =

[
(2n+S−2)(4−k−3S)−3(k−S)

4

]
and

b3 =
[

S2(13−6n−k−3S)+2S(7n−5)+k(2−S)+2nk(1−S)
4

]
. The equation (1.3.8) yields the following

conditions

R(X, Y )ξα = S
∑

α

{ηα(Y )X − ηα(X)Y }, (1.3.11)

R(ξα, X)Y = S
∑

α

{g(X, Y )ξα − ηα(Y )Z}, (1.3.12)

ηα(R(X, Y )Z) = S
∑

α

{g(Y, Z)ηα(X) − g(X,Z)ηα(Y )}. (1.3.13)

1.4 Ricci soliton

In differential geometry, the Ricci flow is an intrinsic geometric flow. It is a process that

deforms the metric of a Riemannian manifold in a way formally analogous to the diffusion

of heat, smoothing out irregularities in the metric. The Ricci flow, named after Gregorio

Ricci-Curbastro, was first introduced by Richard S. Hamilton in 1981 and is also referred

to as the Ricci-Hamilton flow. It is given by the following geometric evolution equation.

∂g
∂t

= −2Ric(g).

Here g is a Riemannian metric and Ric(g) is Ricci tensor depending on time t. A Rieman-

nian metric g on a smooth manifold is Einstein if its Ricci tensor is a constant multiple

of g.

The concept of Ricci solitons was introduced by Hamilton [37], [38]. They are natural
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generalizations of Einstein metrics. Ricci solitons also correspond to selfsimilar solutions

of Hamilton’s Ricci flow and often arise as limits of dilations of singularities in the Ricci

flow

Definition 1.4.1. A Ricci soliton is a natural generalization of an Einstein metric and

is defined on a Riemannian manifold (M, g). A Ricci soliton is a triple (g, V, λ) with g a

Riemannian metric, V a vector field and λ a real scalar such that

(LV g)(U, V ) + 2S(U, V ) + 2λg(U, V ) = 0, (1.4.1)

where S is a Ricci tensor of M and LV denotes the Lie derivative operator along with

vector field V .

As a generalization of Ricci solitons, the notion of η-Ricci solitons was introduced by

Cho and Kimura [26]. This notion has also been studied in [23] for Hopf hypersurfaces in

complex space forms.

Definition 1.4.2. An η-Ricci soliton is a tuple (g, V, λ, µ), where λ and µ are real scalars

gratifying the equation

(LV g)(U, V ) + 2S(U, V ) + 2λg(U, V ) + 2µη(U)η(V ) = 0, (1.4.2)

in particular if µ = 0, then (g, V, λ) is Ricci soliton.

The author Fischer introduced [33] a variation of the classical Ricci flow equation that

modifies the unit volume constraint of that equation to a scalar curvature constraint. The

resulting equations are named as the conformal Ricci flow equations.

∂g

∂t
+ 2

(
Ric(g) +

1

n
g

)
= −ρg,

R(g) = −1,
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where R(g) is the scalar curvature of the manifold and ρ is scalar non-dynamical field and

n is the dimension of manifold. The conformal Ricci flow equations are analogous to the

Navier-Stokes equations of fluid mechanics and because of this analogy, the timedependent

scalar field ρ is called a conformal pressure.

Definition 1.4.3. The conformal Ricci soliton equation is given by [30]

(LV g)(U, V ) + 2S(U, V ) =

[
2λ−

(
ρ+

2

n

)]
g(U, V ), (1.4.3)

and is the generalization of the Ricci soliton equation and it also gratifies the conformal

Ricci flow equation, where ρ is scalar non-dynamical field and n is the dimension of

manifold.

1.5 Semi-symmetric manifolds

A Riemannian manifold (M, g) is called locally symmetric if its curvature tensor R is

parallel [24] i.e., ∇R = 0, where ∇ denotes the Levi-Civita connection. As a proper

generalization of locally symmetric manifold the notion of semi-symmetric manifold was

defined by

(R(X, Y ) ·R)(U, V,W ) = 0, X, Y, U, V and W ∈ TM,

and studied by the authors [80], [60]. A complete intrinsic classification of these manifolds

was given by Szabo [78].

The (0, 6)-tensor R · R obtained by the action of the curvature operator R(X, Y ) on the

(0, 4)-curvature tensor R, and is given by [87]

(R ·R)(U, V,W,Z;X, Y ) = −R(R(X,Y )U, V,W,Z) −R(U,R(X, Y )V,W,Z)

− R(U, V,R(X, Y )W,Z) −R(U, V,W,R(X, Y )Z).(1.5.1)
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whereby U, V,W,Z,X, Y ∈ TM .

The tensor R ·R has the following algebraic properties.

• (R ·R)(U, V,W,Z;X, Y ) = −(R ·R)(V, U,W,Z;X,Y ) = −(R ·R)(U, V, Z,W ;X, Y ).

• (R ·R)(U, V,W,Z;X, Y )+ (R ·R)(U,W,Z, V ;X, Y )+ (R ·R)(U,Z, V,W ;X, Y ) = 0.

• (R ·R)(U, V,W,Z;X, Y ) = −(R ·R)(U, V,W,Z;Y,X).

• (R ·R)(U, V,W,Z;X, Y )+ (R ·R)(W,Z,X, Y ;U, V )+ (R ·R)(X, Y, U, V ;W,Z) = 0.

The simplest (0, 6)-tensor having the same symmetry properties as R ·R may well be the

Tachibana tensor Q(g,R) defined by [87]

Q(g,R)(U, V,W,Z;X, Y ) = R((X ∧ Y )U, V,W, )Z +R(U, (X ∧ Y )V,W,Z)

+ R(U, V, (X ∧ Y )W,Z) +R(U, V,W, (X ∧ Y )Z)(1.5.2)

For a (0, k)-tensor field T on M , k ≥ 1, and a symmetric (0, 2) tensor fields g and S

on M, we define the (0, k + 2) tensor fields R · T , Q(g, T ) and Q(S, T ) by

(R · T )(X1, . . . , Xk, X, Y ) = −T (R(X, Y )X1, X2, . . . , Xk) − T (X1, R(X,Y )X2, . . . , Xk)

− , . . . ,−T (X1, X2, . . . , Xk−1, R(X, Y )Xk),

Q(g, T )(X1, . . . , Xk, X, Y ) = −T ((X ∧g Y )X1, X2, . . . , Xk) − T (X1, (X ∧g Y )X2, . . . , Xk)

− , . . . ,−T (X1, X2, . . . , Xk−1, (X ∧g Y )Xk),

Q(S, T )(X1, . . . , Xk, X, Y ) = −T ((X ∧S Y )X1, X2, . . . , Xk) − T (X1, (X ∧S Y )X2, . . . , Xk)

− , . . . ,−T (X1, X2, . . . , Xk−1, (X ∧S Y )Xk),

where (X ∧g Y ) and (X ∧S Y ) are the endomorphism given by

(X ∧g Y )Z = g(Y, Z)X − g(X,Z)Y, (X ∧S Y )Z = S(Y, Z)X − S(X,Z)Y.
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Definition 1.5.1. A Riemannian manifold is said to be pseudo symmetric (in the sense

of Deszcz [63], [31]) if

R ·R = LRQ(g,R)

holds on the set UR = {x ∈M ;R− r
n(n−1)

G 6= 0 at x}, where G is the (0, 4)-tensor defined

by G(X1, X2, X3, X4)=g((X1 ∧X2)X3, X4) and LR is some function on M.

Definition 1.5.2. A Riemannian manifold is said to be Ricci generalized pseudo sym-

metric (in the sense of Deszcz [63], [31]) if

R ·R = LRQ(S,R),

holds on the set UR = {x ∈M ;Q(S,R) 6= 0 at x}, and LR is some function on M.

Definition 1.5.3. In a differentiable manifold M, the Ricci tensor S satisfies the condition

S = ag + bη ⊗ η,

where a and b are some functions on C∞, then the manifold M is coined to be an η-

Einstein manifold. If in particular a = 0, then the manifold becomes a special type of

η-Einstein manifold.

.
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Chapter 2

On Almost C(α) Manifolds

2.1 Introduction

In his study on Betti numbers of Kaehler manifolds, Bochner introduced a tensor which

plays similar role of the Weyl tensor on Riemannian manifolds. Thus a conformally flat

manifold is an extension of a real space form. So a Bochner flat Kaehler manifold has to

be an extension in the same sense of a complex space form. By using additional struc-

tures to Kaehler manifolds one can also study classes of odd dimensional manifolds or

almost contact metric manifolds; in particular Sasakian, co-Kaehlerian/cosymplectic and

Kenmotsu manifolds. Janssens and Vanhecke [48] using decomposition theory defined

Bochner curvature for a class of almost contact metric manifolds known as C-Bochner

curvature tensor. The elements of this class are called as almost C(α) manifolds, where

α is a real number.

Further Olszak and Rosca [62] investigated such manifold. Again Kharitonova [52] stud-

ied conformally flat almost C(α) manifolds. The authors [4], [5], [6] have studied the

geometry of Ricci tensor, quasi conformal curvature tensor of almost C(α) manifolds and

conharmonically flat, ξ-conharmonically flat, concircularly flat and ξ-concircularly flat

22
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almost C(α) manifolds. In [7] the authors studied the flatness of the pseudo-projective,

quasi-conformal curvature tensor, ξ-pseudo-projective, ξ-quasi-conformal curvature ten-

sor in an almost C(α) manifolds. Further Eisenhat problem was applied to study Ricci

solitons in almost C(α) manifolds [16]. Motivated by the above work we study C-Bochner

semi-symmetric and pseudo-symmetric almost C(α) manifolds. Further we study Ricci

solitons, conformal Ricci solitons of these manifolds.

2.2 Flat C-Bochner curvature tensor in almost C(α)-

manifold

The C-Bochner curvature tensor is given by [45]

B(U, V )Z = R(U, V )Z +
1

2n+ 4
[g(U,Z)QV − S(V, Z)U − g(V, Z)QU + S(U,Z)V

+ g(φU,Z)QφV − S(φV, Z)φU − g(φV, Z)QφU + S(φU,Z)φV

+ 2S(φU, V )φZ + 2g(φU, V )QφZ + η(V )η(Z)QU − η(V )S(U,Z)ξ

+ η(U)S(V, Z)ξ − η(U)η(Z)QV ] − D + 2n

2n+ 4
[g(φU,Z)φV − g(φV, Z)φU

+ 2g(φU, V )φZ] +
D

2n+ 4
[η(V )g(U,Z)ξ − η(V )η(Z)U + η(U)η(Z)V

− η(U)g(V, Z)ξ] − D − 4

2n+ 4
[g(U,Z)V − g(V, Z)U ], (2.2.1)
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where D = r+2n
2n+2

and r is the scalar curvature. In view of (1.2.1), (1.2.2), (1.2.3) and

(1.2.4) in (2.2.1) we get the following

B(U, V )ξ = R(φU, φV )ξ +
2(α+ 1)

n+ 2
[η(U)V − η(V )U ], (2.2.2)

B(ξ, V )Z =
2(α+ 1)

n+ 2
[η(Z)V − g(V, Z)ξ], (2.2.3)

B(U, ξ)Z =
2(α+ 1)

n+ 2
[g(U,Z)ξ − η(Z)U ], (2.2.4)

B(ξ, V )ξ =
2(α+ 1)

n+ 2
[V − η(V )ξ]. (2.2.5)

Let us consider an almost C(α) manifold which has flat C-Bochner curvature tensor i.e.,

B(U, V )Z = 0, then from (1.2.1) and (2.2.1) we have

0 = R(φU, φV )Z − α[g(V, Z)U − g(U,Z)V − g(φV, Z)φU + g(φU,Z)φV ]

+
1

2n+ 4
[g(U,Z)QV − S(V, Z)U − g(V, Z)QU + S(U,Z)V

+ g(φU,Z)QφV − S(φV, Z)φU − g(φV, Z)QφU + S(φU,Z)φV + 2S(φU, V )φZ

+ 2g(φU, V )QφZ + η(V )η(Z)QU − η(V )S(U,Z)ξ + η(U)S(V, Z)ξ − η(U)η(Z)QV ]

− D + 2n

2n+ 4
[g(φU,Z)φV − g(φV, Z)φU + 2g(φU, V )φZ] +

D

2n+ 4
[η(V )g(U,Z)ξ

− η(V )η(Z)U + η(U)η(Z)V − η(U)g(V, Z)ξ] − D − 4

2n+ 4
[g(U,Z)V − g(V, Z)U ].(2.2.6)
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Take inner product of (2.2.6) with W , we get

0 = (R(φU, φV )Z,W ) − α[g(V, Z)(U,W ) − g(U,Z)g(V,W ) − g(φV, Z)g(φU,W )

+ g(φU,Z)g(φV,W )] +
1

2n+ 4
[g(U,Z)g(QV,W ) − S(V, Z)g(U,W )

− g(V, Z)g(QU,W ) + S(U,Z)g(V,W ) + g(φU,Z)g(QφV,W ) − S(φV, Z)g(φU,W )

− g(φV, Z)g(QφU,W ) + S(φU,Z)g(φV,W ) + 2S(φU, V )g(φZ,W )

+ 2g(φU, V )g(QφZ,W ) + η(V )η(Z)g(QU,W ) − η(V )η(W )S(U,Z)

+ η(U)η(W )S(V, Z) − η(U)η(Z)g(QV,W )] − D + 2n

2n+ 4
[g(φU,Z)g(φV,W )

− g(φV, Z)g(φU,W ) + 2g(φU, V )g(φZ,W )] +
D

2n+ 4
[η(V )η(W )g(U,Z)

− η(V )η(Z)g(U,W ) + η(U)η(Z)g(V,W ) − η(U)η(W )g(V, Z)]

− D − 4

2n+ 4
[g(U,Z)g(V,W ) − g(V, Z)g(U,W )]. (2.2.7)

Let {e1, e2, . . . , e2n+1} be an orthonormal basis of the tangent space at each point of the

manifold, putting V = Z = ei in (2.2.7) and taking summation over i (1 ≤ i ≤ 2n + 1)

we can get

0 = S(φU,W ) − α[(n− 1)g(U,W ) − g(φU, φW )] +
1

2n+ 4
[−(n− 3)s(U,W )

− rg(U,W ) − 6S(φU, φW ) + (r − 2(A+B))η(U)η(W )] +
3(D + 2n)

2n+ 4
[g(φU, φW )]

+
D

2n+ 4
[−(n− 2)η(U)η(W ) − g(U,W )] − D − 4

2n+ 4
[−(n− 1)g(U,W )]. (2.2.8)

Using (1.1.2), (1.2.9) in (2.2.8) we get

0 = S(φU,W ) − α[(n− 2)g(U,W ) + η(U)η(W )] +
1

2n+ 4
[−(n− 3)S(U,W )

− (r + 6A)g(U,W ) + (6A+ r − 2(A+B))η(U)η(W )] +
3(D + 2n)

2n+ 4
[g(U,W )

− η(U)η(W )] +
D

2n+ 4
[−(n− 2)η(U)η(W ) − g(U,W )]

− D − 4

2n+ 4
[−(n− 1)g(U,W )]. (2.2.9)
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Interchanging X and W in (2.2.9)

0 = S(φW,U) − α[(n− 2)g(U,W ) + η(U)η(W )] +
1

2n+ 4
[−(n− 3)S(U,W )

− (r + 6A)g(U,W ) + (6A+ r − 2(A+B))η(U)η(W )] +
3(D + 2n)

2n+ 4
[g(U,W )

− η(U)η(W )] +
D

2n+ 4
[−(n− 2)η(U)η(W ) − g(U,W )]

− D − 4

2n+ 4
[−(n− 1)g(U,W )]. (2.2.10)

Add (2.2.9) and (2.2.10) we get the value of Ricci tensor

S(U,W ) =
1

n− 3
[−2α(3n2 + 6n− 7) + 2(D + 3n) + (n− 1)(D − 4)]g(U,W )

+
1

n− 3
[−2α(2n2 + 5n− 1) − 3(D + 2n) −D(n− 2)]η(U)η(W ).(2.2.11)

We can state the following:

Theorem 2.2.1. A C-Bochnerly flat almost C(α) manifold is η-Einstein manifold.

2.3 Almost C(α) manifolds satisfying B · S = 0

Let us consider an almost C(α) manifold M with B · S = 0. Then we get

(B(U, V ) · S)(X, Y ) = 0,

S(B(U, V )X, Y ) + S(X,B(U, V )Y ) = 0. (2.3.1)

Putting U = Y = ξ in (2.3.1), using (2.2.2) and (2.2.3) we get

S(B(ξ, V )X, ξ) +
2(α+ 1)

n+ 2
[S(V,X) − (A+B)η(V )η(X)] = 0. (2.3.2)

Using (2.2.3) and (1.2.12) in (2.3.2) we get

2(α+ 1)

n+ 2
[S(V,X) − (A+B)g(V,X)] = 0. (2.3.3)
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Therefore, either α = −1 or S(V,X) = (A+B)g(V,X).

Thus we can state the following:

Theorem 2.3.1. Every almost C(α) manifold satisfying B ·S = 0 is an Einstein manifold

provided α 6= −1.

From definition of almost C(α) manifold and Theorem (2.3.1), we can state

Theorem 2.3.2. Every Sasakian manifold C(1) and co-Kaehler manifold C(0) satisfying

B · S = 0 is an Einstein manifold.

2.4 Almost C(α) manifolds satisfying B ·R = 0

Let us consider an almost C(α) manifold M with B ·R = 0.

(B(U, V ) ·R)(X, Y )Z = 0,

B(U, V )R(X,Y )Z −R(B(U, V )X,Y )Z −R(X,B(U, V )Y )Z −R(X, Y )B(U, V )Z = 0.

(2.4.1)

Putting X = V = ξ in (2.4.1) and using (1.2.3) and (2.2.2) we get

2(α+ 1)

n+ 2
[R(U, Y )Z − α{g(U,Z)Y − g(Y, Z)U}] = 0. (2.4.2)

Either α = −1 or R(U, Y )Z = α[g(U,Z)Y − g(Y, Z)U ]. (2.4.3)

Taking inner product of (2.4.3) with W , we get

R(U, Y, Z,W ) = α[g(U,Z)g(Y,W ) − g(Y, Z)g(U,W )]. (2.4.4)
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Let {e1, e2, . . . , e2n+1} be an orthonormal basis of the tangent space at each point of the

manifold, putting Y = Z = ei in (2.4.4) and taking summation over i (1 ≤ i ≤ 2n + 1)

we can get

S(U,W ) = −2nαg(U,W ). (2.4.5)

Thus we are in a position to state the following:

Theorem 2.4.1. Every almost C(α) manifold satisfying B ·R = 0 is an Einstein manifold

provided α 6= −1.

Also we have

Theorem 2.4.2. Every Sasakian manifold C(1) and co-Kaehler manifold C(0) satisfying

B ·R = 0 is an Einstein manifold.

2.5 Almost C(α) manifolds satisfying B ·S = LSQ(g, S)

Let us consider an almost C(α) manifold M with B · S = LSQ(g, S), then we have

(B(U, V ) · S)(X, Y ) = LS((U ∧ V ) · S)(X, Y ),

S(B(U, V )X, Y ) + S(X,B(U, V )Y ) = LS[(S(U ∧ V )X, Y ) + S(X, (U ∧ V )Y )]. (2.5.1)

Putting Y = ξ in (2.5.1), we get

S(B(U, V )X, ξ) + S(X,B(U, V )ξ) = LS[(S(U ∧ V )X, ξ) + S(X, (U ∧ V )ξ)]. (2.5.2)

Putting U = ξ in (2.5.2) and in view of (1.2.11), (1.2.12) and (2.2.2) we get

[
LS +

2(α+ 1)

n+ 2

]
[S(V,X) − (A+B)g(V,X)] = 0. (2.5.3)
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Therefore either LS = −2(α+1)
n+2

or S(V,X) = (A+B)g(V,X).

Thus we are in a position to state the following:

Theorem 2.5.1. Every almost C(α) manifold satisfying B ·S = LSQ(g, S) is an Einstein

manifold provided LS 6= −2(α+1)
n+2

.

2.6 Almost C(α) manifolds satisfying B ·R = LRQ(g,R)

Let us consider an almost C(α) manifold with B ·R = LRQ(g,R), then we have

(B(U, V ) ·R)(X, Y )Z = LR((U ∧ V ) ·R)(X, Y )Z,

B(U, V )R(X, Y )Z −R(B(U, V )X, Y )Z −R(X,B(U, V )Y )Z

−R(X, Y )B(U, V )Z = LR[(U ∧ V )R(X, Y )Z −R((U ∧ V )X, Y )Z

−R(X, (U ∧ V )Y )Z −R(X, Y )(U ∧ V )Z]. (2.6.1)

Putting X = V = ξ in (2.6.1) and using (1.2.3), (1.2.4) and (2.2.2) we get

[
LR +

2(α+ 1)

n+ 2

]
[R(U, Y )Z − α{g(U,Z)Y − g(Y, Z)U}] = 0. (2.6.2)

Either LR =
−2(α+ 1)

n+ 2
or R(U, Y )Z = α{g(U,Z)Y − g(Y, Z)U}. (2.6.3)

Taking inner product of (2.6.3) with W , we get

R(U, Y, Z,W ) = α{g(U,Z)g(Y,W ) − g(Y, Z)g(U,W )}. (2.6.4)

Let {e1, e2, . . . , e2n+1} be an orthonormal basis of the tangent space at each point of the

manifold, putting Y = Z = ei in (2.6.4) and taking summation over i (1 ≤ i ≤ 2n + 1)
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we can get

S(U,W ) = −2nαg(U,W ). (2.6.5)

Thus we are in a position to state the following

Theorem 2.6.1. Every almost C(α) manifold satisfying B ·R = LRQ(g,R) is an Einstein

manifold provided LR 6= −2(α+1)
n+2

.

2.7 Ricci soliton in semi-symmetric almost C(α)

manifold

An almost C(α) manifold is said to be semi-symmetric if R ·R = 0.

(R(X, Y ) ·R)(U, V )W = 0, (2.7.1)

R(X, Y )R(U, V )W −R(R(X, Y )U, V )W −R(U,R(X, Y )V )W −R(U, V )R(X, Y )W = 0.

(2.7.2)

Putting X = U = ξ in (2.7.2) and using (1.2.3), (1.2.4) one can get.

R(Y, V )W = α{g(Y,W )V − g(V,W )Y }. (2.7.3)

Now, taking inner product of (2.7.3) with Z, we get.

R(Y, V,W,Z) = α{g(Y,W )g(V, Z) − g(V,W )g(Y, Z)}. (2.7.4)

Let {e1, e2, . . . , e2n+1} be an orthonormal basis of the tangent space at each point of the

manifold, putting V = W = ei in (2.7.4) and taking summation over i (1 ≤ i ≤ 2n + 1)
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we can get

S(Y, Z) = −2nαg(Y, Z). (2.7.5)

Thus we state the following lemma:

Lemma 2.7.1. Every semi symmetric almost C(α) manifold is an Einstein manifold.

Now, by using the definition of Ricci soliton i.e., (1.4.1) we can write

g(∇Y V, Z) + g(∇ZV, Y ) + 2S(Y, Z) + 2λg(Y, Z) = 0. (2.7.6)

Put V = ξ in (2.7.6) and using (1.2.6), (2.7.5) we get.

g(−φY, Z) + g(−φZ, Y ) + 4nαg(Y, Z) + 2λg(Y, Z) = 0,

(2λ− 4nα)g(Y, Z) = 0. (2.7.7)

Taking Y = Z = ei in (2.7.7) and summing over i = 1, 2, ....2n + 1 we get the value of λ

i.e.,

λ = 2nα. (2.7.8)

Theorem 2.7.2. A Ricci soliton in semi symmetric almost C(α) manifold is shrinking,

steady and expanding if accordingly it as Kenmotsu, co-Kaehler and Sasakain.

Suppose (M, g) is an almost C(α) manifold and (g, V, λ) is a Ricci soliton in (M, g). If V

is a conformal killing vector field, then

LV g = ψg. (2.7.9)

From (1.4.1) and (2.7.9) we have

S(X, Y ) = −
(
λ+

ψ

2

)
g(X,Y ), (2.7.10)

QX = −
(
λ+

ψ

2

)
X. (2.7.11)
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Now Consider

(R(X, Y ) ·R)(U, V )W = R(X, Y )R(U, V )W −R(R(X, Y )U, V )W −R(U,R(X, Y )V )W

− R(U, V )R(X, Y )W (2.7.12)

Contracting equation (2.7.12) over V and using (2.7.10) we get

(R(X,Y ) ·R)(U, V )W = S(R(X,Y )U,W ) + S(U,R(X, Y )W ),

= −
(
λ+

ψ

2

)
[R(X,Y, U,W ) +R(X, Y,W,U)],

(R(X,Y ) ·R)(U, V )W = 0,

i.e., (M, g) is semi-symmetric. Conversely suppose (R(X, Y ) ·R)(U, V )W = 0.

Using (2.7.5) in (1.4.1) we get

(LV g)(Y, Z) − 4nαg(Y, Z) + 2λg(Y, Z) = 0,

(LV g)(Y, Z) = 2(2nα− λ)g(Y, Z),

LV g = ψg,

where ψ = 2(2nα− λ), then we state

Corollary 2.7.3. Let (g, V, λ) be a Ricci soliton in an almost C(α) manifold. Then (M, g)

is semi-symmetric if and only if V is conformal killing.

2.8 Ricci soliton in almost C(α) manifold satisfying

M̄ ·R = 0

The M-Projective curvature tensor M̄ is defined by

M̄(U, V )Z = R(U, V )Z − 1

4n
[S(V, Z)U − S(U,Z)V + g(V, Z)QU − g(U,Z)QV ]. (2.8.1)
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Using (1.2.1) in (2.8.1) we have the following

M̄(X, Y )ξ = R(φX, φY )ξ − α

4n
[η(Y )X − η(X)Y ], (2.8.2)

M̄(ξ, Y )Z = − α

4n
[g(Y, Z)ξ − η(Z)Y ], (2.8.3)

M̄(ξ, Y )ξ = − α

4n
[η(Y )ξ − Y ], (2.8.4)

M̄(ξ, ξ)Z = 0. (2.8.5)

We assume that (M̄(X, Y ) ·R)(U, V )W = 0; then we have

M̄(X, Y )R(U, V )W−R(M̄(X, Y )U, V )W−R(U, M̄(X, Y )V )W−R(U, V )M̄(X,Y )W = 0.

(2.8.6)

Put X = U = ξ in (2.8.6) and using (1.2.3), (1.2.4), (2.8.3) and (2.8.4) we get.

R(Y, V )W = α{g(Y,W )V − g(V,W )Y }. (2.8.7)

Taking inner product of (2.8.7) with Z, we get.

R(Y, V,W,Z) = α{g(Y,W )g(V, Z) − g(V,W )g(Y, Z)}. (2.8.8)

Let {e1, e2, . . . , e2n+1} be an orthonormal basis of the tangent space at each point of the

manifold, putting V = W = ei in (2.8.8) and taking summation over i (1 ≤ i ≤ 2n + 1)

we can get

S(Y, Z) = −2nαg(Y, Z). (2.8.9)

Thus, we state the following lemma:

Lemma 2.8.1. An almost C(α) manifold satisfies M̄ ·R = 0 is an Einstein manifold.

Put V = ξ in (2.7.6) and using (1.2.6), (2.8.9) we get.

(2λ− 4nα)g(Y, Z) = 0. (2.8.10)
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Taking Y = Z = ei in (2.8.10) and summing over i = 1, 2, . . . , 2n+ 1 we get.

λ = 2nα. (2.8.11)

Then we state the following:

Theorem 2.8.2. A Ricci soliton in almost C(α) manifold satisfying M̄ ·R = 0 shrinking,

steady and expanding if accordingly it as Kenmotsu, co-Kaehler and Sasakian.

2.9 Ricci soliton in almost C(α) manifold satisfying

R · M̄ = 0

We assume that R · M̄ = 0; then we have

(R(X, Y ) · M̄)(U, V )W = 0,

R(X, Y )M̄(U, V )W−M̄(R(X, Y )U, V )W−M̄(U,R(X, Y )V )W−M̄(U, V )R(X, Y )W = 0.

(2.9.1)

Put X = U = ξ in (2.9.1) and using (1.2.3), (1.2.4), (2.8.3) and (2.8.4) we get

M̄(Y, V )W =
α

4n
[g(Y,W )V − g(V,W )Y ]. (2.9.2)

Using (2.9.2) in (2.8.1) and taking inner product of with Z we get

g(R(φY, φV )W,Z) =
α

4n
[g(Y,W )g(V, Z) − g(V,W )g(Y, Z)]

+ α[g(V,W )g(Y, Z) − g(Y,W )g(V, Z) − g(φV,W )g(φY, Z)

+ g(φY,W )g(φV, Z)] +
1

4n
[S(V,W )g(Y, Z) − S(Y,W )g(V, Z)

+ g(V,W )S(Y, Z) − g(Y,W )S(V, Z)]. (2.9.3)
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Let {e1, e2, . . . , e2n+1} be an orthonormal basis of the tangent space at each point of the

manifold, putting V = W = ei in (2.9.3) and taking summation over i (1 ≤ i ≤ 2n + 1),

also using (1.1.1) we can get

S(φY, Z) = −α
2
g(Y, Z) + α[(2n− 1)g(Y, Z) + η(Y )η(Z)]

+
1

4n
[rg(Y, Z) + (2n− 1)S(Y, Z)]. (2.9.4)

Interchanging Y and Z in (2.9.4) we get

− S(φY, Z) = −α
2
g(Y, Z) + α[(2n− 1)g(Y, Z) + η(Y )η(Z)]

+
1

4n
[rg(Y, Z) + (2n− 1)S(Y, Z)]. (2.9.5)

Now, adding equations (2.9.4) and (2.9.5) we get the Ricci tensor

S(Y, Z) =
2nα

2n− 1
[(3 − 2n)g(Y, Z) − 2η(Y )η(Z)]. (2.9.6)

Thus we state the following lemma:

Lemma 2.9.1. An almost C(α) manifold which satisfies R · M̄ = 0 is an η-Einstein

manifold.

Put V = ξ in (2.7.6) and using (1.2.6), (2.9.6) we get.

4nα

2n− 1
[(3 − 2n)g(Y, Z) − 2η(Y )η(Z)] + 2λg(Y, Z) = 0. (2.9.7)

Taking Y = Z = ei in (2.9.7) and summing over i = 1, 2, ....2n+ 1 we get.

λ = − 2nα

4n2 − 1
[4n− 4n2 + 1]. (2.9.8)

Then we state the following:

Theorem 2.9.2. A Ricci soliton in almost C(α) manifold satisfying R · M̄ = 0 is shrink-

ing, steady and expanding if accordingly it as Kenmotsu, co-Kaehler and Sasakian.
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2.10 Ricci soliton in almost C(α) manifold satisfying

R ·R = L1Q(g,R)

An almost C(α) manifold is said to be pseudo symmetric if

(R(X, Y ) ·R)(U, V )W = L1[((X ∧ Y ) ·R)(U, V )W ], (2.10.1)

where L1 is smooth function on M.

R(X, Y )R(U, V )W −R(R(X, Y )U, V )W −R(U,R(X, Y )V )W

−R(U, V )R(X, Y )W = L1[(X ∧ Y )R(U, V )W −R((X ∧ Y )U, V )W

−R(U, (X ∧ Y )V )W −R(U, V )(X ∧ Y )W ]. (2.10.2)

Put X = U = ξ in (2.10.2) and using (1.2.3), (1.2.4) we get

[L1 + α][R(Y, V )W − α{g(Y,W )V − g(V,W )Y }] = 0. (2.10.3)

Therefore

L1 = −α or R(Y, V )W = α{g(Y,W )V − g(V,W )Y }. (2.10.4)

Taking inner product of (2.10.4) with Z, we get

R(Y, V,W,Z) = α{g(Y,W )g(V, Z) − g(V,W )g(Y, Z)}. (2.10.5)

Let {e1, e2, . . . , e2n+1} be an orthonormal basis of the tangent space at each point of the

manifold, putting V = W = ei in (2.10.5) and taking summation over i (1 ≤ i ≤ 2n+ 1)

we can get

S(Y, Z) = −2nαg(Y, Z). (2.10.6)

Thus we state the following lemma:
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Lemma 2.10.1. An almost C(α) manifold which satisfies R ·R = L1Q(g,R) is either an

Einstein manifold or L1 = −α.

Put V = ξ in (2.7.6) and using (1.2.6), (2.10.6), we get

(2λ− 4nα)g(Y, Z) = 0. (2.10.7)

Taking Y = Z = ei in (2.10.7) and summing over i = 1, 2, . . . , 2n+ 1 we get.

λ = 2nα. (2.10.8)

Theorem 2.10.2. A Ricci soliton in almost C(α) manifold satisfying R·R = L1Q(g,R) is

shrinking, steady and expanding if accordingly it as Kenmotsu, co-Kaehler and Sasakian.

2.11 Ricci soliton in almost C(α) manifold satisfying

M̄ ·R = L2Q(g,R)

We assume that M̄ ·R = L2Q(g,R); then we have

(M̄(X,Y ) ·R)(U, V )W = L2[((X ∧ Y ) ·R)(U, V )W ], (2.11.1)

M̄(X,Y )R(U, V )W −R(M̄(X, Y )U, V )W −R(U, M̄(X,Y )V )W

−R(U, V )M̄(X, Y )W = L2[(X ∧ Y )R(U, V )W −R((X ∧ Y )U, V )W

−R(U, (X ∧ Y )V )W −R(U, V )(X ∧ Y )W ]. (2.11.2)

Put X = U = ξ in (2.11.2) and using (2.8.3), (2.8.4), (1.2.3) and (1.2.4) we get

[
L2 +

α

4n

]
[R(Y, V )W − α{g(Y,W )V − g(V,W )Y }] = 0. (2.11.3)
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Therefore

L2 = − α

4n
or R(Y, V )W = α{g(Y,W )V − g(V,W )Y }. (2.11.4)

Taking inner product of (2.11.4) with Z, we get.

R(Y, V,W,Z) = α{g(Y,W )g(V, Z) − g(V,W )g(Y, Z)}. (2.11.5)

Let {e1, e2, . . . , e2n+1} be an orthonormal basis of the tangent space at each point of the

manifold, putting V = W = ei in (2.11.5) and taking summation over i (1 ≤ i ≤ 2n+ 1)

we can get

S(Y, Z) = −2nαg(Y, Z). (2.11.6)

Thus we state the following lemma:

Lemma 2.11.1. An almost C(α) manifold which satisfies M̄ · R = L2Q(g,R) is either

an Einstein manifold or L2 = − α
4n

.

Put V = ξ in (2.7.6) and using (1.2.6), (2.11.6) we get

(2λ− 4nα)g(Y, Z) = 0. (2.11.7)

Taking Y = Z = ei in (2.11.7) and summing over i = 1, 2, . . . , 2n+ 1 we get.

λ = 2nα. (2.11.8)

Theorem 2.11.2. A Ricci soliton in almost C(α) manifold satisfying M̄ ·R = L2Q(g,R)

is shrinking, steady and expanding if accordingly it as Kenmotsu, co-Kahler and Sasakian.
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2.12 Ricci soliton in almost C(α) manifold satisfying

R · M̄ = L3Q(g, M̄)

We assume that R · M̄ = L3Q(g, M̄); then we have

(R(X, Y ) · M̄)(U, V )W = L3[((X ∧ Y ) · M̄)(U, V )W ], (2.12.1)

R(X, Y )M̄(U, V )W − M̄(R(X, Y )U, V )W − M̄(U,R(X, Y )V )W

−M̄(U, V )R(X, Y )W = L3[(X ∧ Y )M̄(U, V )W − M̄((X ∧ Y )U, V )W

−M̄(U, (X ∧ Y )V )W − M̄(U, V )(X ∧ Y )W ]. (2.12.2)

Put X = U = ξ in (2.12.2) and using (2.8.3), (2.8.4), (1.2.3) and (1.2.4), we get

[L3 + α][M̄(Y, V )W − α

4n
{g(Y,W )V − g(V,W )Y }] = 0. (2.12.3)

Therefore

L3 = −α or M̄(Y, V )W =
α

4n
{g(Y,W )V − g(V,W )Y }, (2.12.4)

Using (2.12.4) in (2.8.1) and taking inner product of with Z we get

g(R(φY, φV )W,Z) =
α

4n
[g(Y,W )g(V, Z) − g(V,W )g(Y, Z)]

+ α[g(V,W )g(Y, Z) − g(Y,W )g(V, Z) − g(φV,W )g(φY, Z)

+ g(φY,W )g(φV, Z)] +
1

4n
[S(V,W )g(Y, Z) − S(Y,W )g(V, Z)

+ g(V,W )S(Y, Z) − g(Y,W )S(V, Z)]. (2.12.5)

Let {e1, e2, . . . , e2n+1} be an orthonormal basis of the tangent space at each point of the

manifold, putting V = W = ei in (2.12.5) and taking summation over i (1 ≤ i ≤ 2n+ 1),
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also using (1.1.1) we can get

S(φY, Z) =
α

2
g(Y, Z) − α[(2n− 1)g(Y, Z) + η(Y )η(Z)]

+
1

4n
[rg(Y, Z) + (2n− 1)S(Y, Z)]. (2.12.6)

Interchanging Y and Z in (2.12.6), we get

− S(φY, Z) =
α

2
g(Y, Z) − α[(2n− 1)g(Y, Z) + η(Y )η(Z)]

+
1

4n
[rg(Y, Z) + (2n− 1)S(Y, Z)]. (2.12.7)

Now, adding equations (2.12.6) and (2.12.7) we get the Ricci tensor

S(Y, Z) =
2nα

2n− 1
[(3 − 2n)g(Y, Z) − 2η(Y )η(Z)]. (2.12.8)

Thus we state the following lemma:

Lemma 2.12.1. An almost C(α) manifold satisfies R · M̄ = L3Q(g, M̄) is either an

η-Einstein manifold or L3 = −α.

Put V = ξ in (2.7.6) and using (1.2.6), (2.12.8) we get

4nα

2n− 1
[(3 − 2n)g(Y, Z) + 2η(Y )η(Z)] + 2λg(Y, Z) = 0. (2.12.9)

Taking Y = Z = ei in (2.12.9) and summing over i=1, 2,. . . ,n we get

λ = − 2nα

4n2 − 1
[4n− 4n2 + 1]. (2.12.10)

Then we state the following:

Theorem 2.12.2. A Ricci soliton in almost C(α) manifold satisfying R ·M̄ = L3Q(g, M̄)

is shrinking, steady and expanding if accordingly it as Kenmotsu, co-Kaehler and Sasakian.
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2.13 Conformal Ricci soliton in almost C(α) mani-

folds

The conformal Ricci flow equation on M is defined by the equation,

∂g

∂t
+ 2

(
Ric(g) +

g

n

)
= −ρg, (2.13.1)

where R(g) = −1, ρ is a scalar non-dynamical field (time dependent scalar field) and n is

the dimension of manifold.

The notion of conformal Ricci soliton is given by

(LV g)(X, Y ) + 2S(X, Y ) =

[
2λ−

(
ρ+

2

n

)]
g(X, Y ). (2.13.2)

Now by using the definition of Lie derivative we can find the value of Lξg that is given

by

(Lξg)(X, Y ) = g(−φX, Y ) + g(X,−φY ) = 0 (2.13.3)

By virtue of (2.13.3) in (2.13.2) we get

S(X, Y ) = σg(X, Y ), (2.13.4)

where σ = 1
2

[
2λ−

(
ρ+ 2

n

)]
. If we put X = Y = ei in (2.13.4) where {ei} is an orthonor-

mal basis, and summing over i, we get S = σn. But for conformal Ricci flow R(g) = −1,

which yields the value of λ

λ =
ρ

2
. (2.13.5)

We can consequently state the following:

Theorem 2.13.1. An almost C(α) manifolds admitting conformal Ricci soliton is an

Einstein manifold and the scalar λ of the conformal Ricci soliton is equal to ρ
2

.
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2.14 Conformal Ricci soliton in almost C(α) manifold

satisfying R ·W2 = 0

The W2-curvature tensor is given by [42]

W2(U, V )Z = R(U, V )Z +
1

n− 1
[g(U,Z)QV − g(V, Z)QU ]. (2.14.1)

By virtue of (1.2.1), (2.13.4) and (2.14.1) we can get the following

W2(ξ, V )Z =

(
−α− σ

n− 1

)
[g(V, Z)ξ − η(Z)V ], (2.14.2)

W2(ξ, V )ξ =

(
−α− σ

n− 1

)
[η(V )ξ − V ]. (2.14.3)

Let us consider (R(X, Y ) ·W2)(U, V )Z = 0

R(X, Y )W2(U, V )Z−W2(R(X, Y )U, V )Z−W2(U,R(X, Y )V )Z−W2(U, V )R(X, Y )Z = 0.

(2.14.4)

Put X = U = ξ in (2.14.4) and using (1.2.3), (1.2.4) and (2.14.2) we get

W2(Y, V )Z =

(
−α− σ

n− 1

)
[g(V, Z)Y − g(Y, Z)V ]. (2.14.5)

Taking inner product of (2.14.5) with T we can write

W2(Y, V, Z, T ) =

(
−α− σ

n− 1

)
[g(V, Z)g(Y, T ) − g(Y, Z)g(V, T )]. (2.14.6)

Using (1.2.1) and (2.14.1) in (2.14.6) and contracting over Y and T we can get

S(φV, Z) =

[
α(n− 2) +

r

n− 1
+

(
−α− σ

n− 1

)
(n− 1)

]
g(V, Z)

+ αη(V )η(Z) − 1

n− 1
S(V, Z). (2.14.7)

Interchanging V and Z in (2.14.7)

− S(φV, Z) =

[
α(n− 2) +

r

n− 1
+

(
−α− σ

n− 1

)
(n− 1)

]
g(V, Z)

+ αη(V )η(Z) − 1

n− 1
S(V, Z). (2.14.8)
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Now add (2.14.7) and (2.14.8)

S(V, Z) =

(
−α+

r

n− 1
− σ

)
(n− 1)g(V, Z) + α(n− 1)η(V )η(Z). (2.14.9)

We state the following:

Theorem 2.14.1. An almost C(α) manifold satisfying the condition R ·W2 = 0 is an

η-Einstein manifold.

For conformal Ricci flow R(g) = −1, using (2.13.4) in (2.14.9) and on contraction over

V and Z we get the value of λ and it is given by

λ = −α(n− 1)

n
+
ρ

2
. (2.14.10)

Thus we state the following:

Theorem 2.14.2. Ricci soliton in almost C(α) manifolds satisfying the condition

R ·W2 = 0 admitting conformal Ricci soliton is

1. shrinking if ρ < 2α(n−1)
n

.

2. steady if ρ = 2α(n−1)
n

.

3. expanding if ρ > 2α(n−1)
n

.

2.15 Conformal Ricci soliton in almost C(α) manifold

satisfying W2 ·R = 0.

Let us consider (W2(X,Y ) ·R)(U, V )Z = 0

W2(X, Y )R(U, V )Z−R(W2(X, Y )U, V )Z−R(U,W2(X, Y )V )Z−R(U, V )W2(X, Y )Z = 0.

(2.15.1)
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Put X = U = ξ in (2.15.1) and using (2.14.2) and (2.14.3) we get

(
−α− σ

n− 1

)
[R(Y, V )Z + α(g(V, Z)Y − g(Y, Z)V )] = 0. (2.15.2)

Since
(
−α− σ

n−1

)
6= 0 and taking inner product of (2.15.2) with T we can write

R(Y, V, Z, T ) = α[g(Y, Z)g(V, T ) − g(V, Z)g(Y, T )]. (2.15.3)

Putting Y = T = ei in (2.15.3), where {ei} is an orthonormal basis and taking summation

i = 1, 2, . . . , n we get

S(V, Z) = −α(n− 1)g(V, Z). (2.15.4)

We state the following:

Theorem 2.15.1. An almost C(α) manifold satisfying the condition W2 · R = 0 is an

Einstein manifold.

For conformal Ricci flow R(g) = −1, using (2.13.4) in (2.15.4) and on contraction over

V and Z we get the value of λ and it is given by

λ =
1

2

(
ρ+

2

n

)
− α(n− 1). (2.15.5)

We state the following theorem:

Theorem 2.15.2. Ricci soliton in almost C(α) manifolds satisfying the condition

W2 ·R = 0 admitting conformal Ricci soliton is

1. shrinking if ρ < 2α(n− 1) − 2
n
.

2. steady if ρ = 2α(n− 1) − 2
n
.

3. expanding if ρ > 2α(n− 1) − 2
n
.
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2.16 Conformal Ricci soliton in almost C(α) manifold

satisfying R ·W2 = LW2Q(g,W2)

Let us consider R ·W2 = LW2Q(g,W2)

R(X,Y )W2(U, V )Z −W2(R(X, Y )U, V )Z −W2(U,R(X, Y )V )Z

−W2(U, V )R(X, Y )Z = LW2 [(X ∧ Y )W2(U, V )Z −W2((X ∧ Y )U, V )Z

−W2(U, (X ∧ Y )V )Z −W2(U, V )R(X ∧ Y )Z. (2.16.1)

Put X = U = ξ in (2.16.1) using (1.2.3), (1.2.4), (2.14.2) and (2.14.3) also by using the

definition of endomorphism we get

(LW2 − α)[W2(Y, V )Z −
(
−α− σ

n− 1

)
(g(V, Z)Y − g(Y, Z)V )]. (2.16.2)

Since LW2 6= α, taking inner product of (2.16.2) with T one can get

W2(Y, V, Z, T ) =

(
−α− σ

n− 1

)
[g(V, Z)g(Y, T ) − g(Y, Z)g(V, T )]. (2.16.3)

Using (1.2.1) and (2.14.1) in (2.16.3) and contracting over Y and T we can get

S(φV, Z) =

[
α(n− 2) +

r

n− 1
+

(
−α− σ

n− 1

)
(n− 1)

]
g(V, Z) + αη(V )η(Z)

− 1

n− 1
S(V, Z). (2.16.4)

Interchanging V and Z in (2.16.4)

− S(φV, Z) =

[
α(n− 2) +

r

n− 1
+

(
−α− σ

n− 1

)
(n− 1)

]
g(V, Z) + αη(V )η(Z)

− 1

n− 1
S(V, Z). (2.16.5)

Now add (2.16.4) and (2.16.5)

S(V, Z) =

(
−α+

r

n− 1
− σ

)
(n− 1)g(V, Z) + α(n− 1)η(V )η(Z). (2.16.6)
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We state the following:

Theorem 2.16.1. An almost C(α) manifold satisfying the condition R·W2 = LW2Q(g,W2)

is an η-Einstein manifold provided LW2 6= α.

For conformal Ricci flow R(g) = −1, using (2.13.4) in (2.16.6) and on contraction over

V and Z we get the value of λ and it is given by

λ = −α(n− 1)

n
+
ρ

2
. (2.16.7)

Remark 2.16.1. We can state the result similar to Theorem 2.14.2.

2.17 Conformal Ricci soliton in almost C(α) mani-

folds satisfying the condition W2 ·R = LRQ(g,R)

Let us consider W2 ·R = LRQ(g,R)

W2(X, Y )R(U, V )Z −R(W2(X, Y )U, V )Z −R(U,W2(X, Y )V )Z

−R(U, V )W2(X, Y )Z = LR[(X ∧ Y )R(U, V )Z −R((X ∧ Y )U, V )Z

−R(U, (X ∧ Y )V )Z −R(U, V )R(X ∧ Y )Z. (2.17.1)

Put X = U = ξ in (2.17.1) and using (2.14.2) and (2.14.3) also by using the definition of

endomorphism we can write

[
LR −

(
−α− σ

n− 1

)]
[R(Y, V )Z + α(g(V, Z)Y − g(Y, Z)V )] = 0. (2.17.2)

Since LR 6=
(
−α− σ

n−1

)
and taking inner product of (2.17.2) with T we can write

R(Y, V, Z, T ) = α[g(Y, Z)g(V, T ) − g(V, Z)g(Y, T )]. (2.17.3)



On Almost C(α) Manifolds 47

Putting Y = T = ei in (2.17.3), where {ei} is an orthonormal basis and taking summation

i = 1, 2, . . . , n we get

S(V, Z) = −α(n− 1)g(V, Z). (2.17.4)

We state the following:

Theorem 2.17.1. An almost C(α) manifold satisfying the condition W2 ·R = LRQ(g,R)

is an Einstein manifold provided LR 6=
(
−α− σ

n−1

)
.

For conformal Ricci flow R(g) = −1, using (2.13.4) in (2.17.4) and on contraction over

V and Z we get the value of λ and it is given by

λ =
1

2

(
ρ+

2

n

)
− α(n− 1) (2.17.5)

Remark 2.17.1. We can state the result similar to Theorem 2.15.2.

2.18 Conformal Ricci soliton in almost C(α) manifold

satisfying W2 · S = 0

Let us consider (W2(X,Y ) · S)(U, V ) = 0

S(W2(X,Y )U, V ) + S(U,W2(X, Y )V ) = 0. (2.18.1)

Putting V = ξ in (2.18.1), using (2.14.1) we get

S(W2(X, Y )U, ξ) + S(U,R(φX, φY )ξ) + [η(Y )S(X,U) − η(X)S(Y, U)] = 0. (2.18.2)

Again putting X = ξ in (2.18.2) and using (2.14.2) we get(
−α− σ

n− 1

)
[S(Y, U) + σg(Y, U) − 2ση(Y )η(U)] = 0. (2.18.3)
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Since
(
−α− σ

n−1

)
6= 0, so equation (2.18.3) can be written as

S(Y, U) = −σg(Y, U) + 2ση(Y )η(V ). (2.18.4)

We state the following

Theorem 2.18.1. An almost C(α) manifold satisfying the condition W2 · S = 0 is an

η-Einstein manifold.

2.19 Conformal Ricci soliton in almost C(α) manifold

satisfying W2 · S = LSQ(g, S)

Let us consider (W2(X,Y ) · S)(U, V ) = LSQ(g, S)

S(W2(X, Y )U, V )+S(U,W2(X, Y )V ) = LS(S((X∧Y )U, V )+S(U, (X∧Y )V )). (2.19.1)

Putting V = X = ξ in (2.19.1) and using (2.14.1) and (2.14.2) we get from above

[
LS −

(
−α− σ

n− 1

)]
[S(Y, U) + σg(Y, U) − 2ση(Y )η(U)] = 0. (2.19.2)

Since LS 6=
(
−α− σ

n−1

)
, hence equation (2.19.2) can be written as

S(Y, U) = −σg(Y, U) + 2ση(Y )η(V ). (2.19.3)

We state the following:

Theorem 2.19.1. An almost C(α) manifold satisfying the condition W2 ·S = LSQ(g, S)

is an η-Einstein manifold provided LS 6=
(
−α− σ

n−1

)
.
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2.20 Conclusion

The important results finding of this chapter are as follows:

• A C-Bochner flat almost C(α) manifold is η-Einstein manifold.

• Every almost C(α) manifold satisfying B · S = 0 and B · R = 0 is an Einstein

manifold provided α 6= −1.

• Every almost C(α) manifold satisfying B · S = LSQ(g, S) and B · R = LRQ(g,R)

is an Einstein manifold.

• A Ricci soliton in semi symmetric almost C(α) manifold is shrinking, steady and

expanding, if accordingly it is Kenmotsu, co-Kaehler and Sasakian.

• Let (g, V, λ) be a Ricci soliton in an almost C(α) manifold. Then (M, g) is semi-

symmetric if and only if V is conformal killing.

• The Ricci soliton in almost C(α) manifold satisfying M̄ ·R = 0, R · M̄ = 0, R ·R =

L1Q(g,R), M̄ · R = L2Q(g,R) and R · M̄ = L3Q(g, M̄) is shrinking, steady and

expanding, if accordingly it is Kenmotsu, co-Kaehler and Sasakian.

• An almost C(α) manifold admitting conformal Ricci soliton is an Einstein manifold

and the scalar λ of the conformal Ricci soliton is equal to ρ
2

.

• Ricci soliton in almost C(α) manifold satisfying the condition R ·W2 = 0 admitting

conformal Ricci soliton is

1. shrinking, if ρ < 2α(n−1)
n

.

2. steady, if ρ = 2α(n−1)
n

.
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3. expanding, if ρ > 2α(n−1)
n

.

• Ricci soliton in almost C(α) manifold satisfying the condition W2 ·R = 0 admitting

conformal Ricci soliton is

1. shrinking, if ρ < 2α(n− 1) − 2
n
.

2. steady, if ρ = 2α(n− 1) − 2
n
.

3. expanding, if ρ > 2α(n− 1) − 2
n
.
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Chapter 3

On S-Manifolds

3.1 Introduction

The notion of f -structure on a (2n+S)-dimensional manifold M, i.e., a tensor field of type

(1, 1) on M of rank 2n satisfying f 3+f = 0, was firstly introduced in 1963 by Yano [84] as

a generalization of both (almost) contact (for s = 1) and (almost) complex structures (for

s = 0). During the Posterior years, this notion has been furtherly developed by several

authors [20], [21], [35], [36], [47], [57], [58]. The author Nagagawa in [57] [58] introduced

the notion of framed f -manifold,

f-manifolds:[58] Let M be an n-dimensional connected differentiable manifold of class

C∞ on which there is a non-null tensor field f of type (1, 1) and of class C∞ satisfying

the equation

f 3 + f = 0, (3.1.1)

we call such a structure as f -structure of rank r, when the rank of f is constant everywhere

and is equal to r, where r is necessarily even [84]. Then the manifold is called an f -

manifold when it admits an f -structure.

Later Goldberg and Yano [35], [36] and others developed and studied these manifolds

51
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with the denomination of globally framed f -manifolds. Blair [20] introduced the concept

of an S-manifold equipped with an f -structure, as analogous to the Kaehler structure

in almost Hermitian case and to the Sasakian structure in the almost contact case. In

the present chapter we show that, S-manifold which allows semi-symmetric and pseudo-

symmetric conditions is an Einstein manifold and Ricci soliton for these manifolds is

shrinking, later we obtain interesting result of Ricci soliton for irrotational τ -curvature

tensor in S-manifolds.

3.2 Ricci soliton in semi-symmetric S-manifolds

An S-manifold is said to be semi-symmetric if R ·R = 0.

(R(ξα, Y ) ·R)(U, V )W = 0, (3.2.1)

R(ξα, Y )R(U, V )W −R(R(ξα, Y )U, V )W −R(U,R(ξα, Y )V )W

−R(U, V )R(ξα, Y )W = 0. (3.2.2)

Using (1.3.12) in (3.2.2), we get

S
∑

α

{g(Y,R(U, V )W )ξα − ηα(R(U, V )W )Y − g(Y, U)R(ξα, V )W

+ηα(U)R(Y, V )W − g(Y, V )R(U, ξα)W + ηα(V )R(U, Y )W

−g(Y,W )R(U, V )ξα + ηα(W )R(U, V )Y } = 0. (3.2.3)

By taking an inner product of (3.2.3) with ξα then we get

∑
α

{SR(U, V,W, Y ) − ηα(R(U, V )W )ηα(Y ) − g(Y, U)ηα(R(ξα, V )W )

+ηα(U)ηα(R(Y, V )W ) − g(Y, V )ηα(R(U, ξα)W ) + ηα(V )ηα(R(U, Y )W )

−g(Y,W )ηα(R(U, V )ξα) + ηα(W )ηα(R(U, V )Y )} = 0. (3.2.4)
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By using (1.3.11), (1.3.13) in (3.2.4) we have

SR(U, V,W, Y ) + S2g(Y, V )g(U,W ) − S2g(Y, U)g(V,W ) = 0. (3.2.5)

Taking U = Y = ei in (3.2.5) and summing over i = 1, 2, . . . , 2n+ S we get

S(V,W ) = S(2n+ S − 1)g(V,W ). (3.2.6)

Thus we state the following:

Theorem 3.2.1. Semi symmetric S-manifold is an Einstein manifold.

If V is collinear with ξ, then Ricci soliton along ξ is given by

(Lξg)(X, Y ) + 2S(X, Y ) + 2λg(X, Y ) = 0.

Definition 3.2.1. Let (f, ξ1, ξ2, . . . , ξs, η1, η2, . . . , ηs, g) is the contact S-frame manifold, if

V is in the linear span (combination) of ξ1, ξ2, . . . , ξs then V = c1ξ1 + c2ξ2 + . . .+ csξs and

the Ricci soliton is a triple (g, ξα, λ) with g is a Riemannian metric, ξα, (α = 1, 2, ....s) is

a vector field and λ is a real scalar such that(
s∑

i=1

ciLξi
g

)
(X, Y ) + 2S(X, Y ) + 2λg(X, Y ) = 0. (3.2.7)

Equation (3.2.7) can be written

cig(∇Xξα, Y ) + cig(∇Y ξα, X) + 2S(X, Y ) + 2λg(X, Y ) = 0. (3.2.8)

Using (1.3.5) in (3.2.8) we get

cig(−fX, Y ) + cig(−fY,X) + 2S(X, Y ) + 2λg(X, Y ) = 0. (3.2.9)

From (3.2.6) and (3.2.9) we have

(S(2n+ S − 1) + λ)g(X,Y ) = 0. (3.2.10)
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Taking X = Y = ei in (3.2.10) and summing over i = 1, 2, . . . , 2n+ S, we get the value of

λ given by

λ = −S(2n+ S − 1)(< 0).

Thus we state the following:

Theorem 3.2.2. Ricci soliton in semi-symmetric S-manifold is shrinking.

Corollary 3.2.3. Ricci soliton in semi-symmetric S-manifold is steady if S = 0 (Kaehler

manifold) and is shrinking if S = 1 (Sasakian manifold).

3.3 Ricci soliton in S-manifolds satisfying R · C = 0

The concircular curvature tensor C is given by

C(U, V )Z = R(U, V )Z − r

2n(2n+ 1)
{g(V, Z)U − g(U,Z)V }, (3.3.1)

Using (1.3.11), (1.3.12) and (1.3.13) in (3.3.1) we get

C(U, V )ξα =

[
S − r

2n(2n+ 1)

]∑
α

{Uηα(V ) − ηα(U)V }, (3.3.2)

C(ξα, Y )Z =

[
S − r

2n(2n+ 1)

]∑
α

{g(V, Z)ξα − V ηα(Z)}, (3.3.3)

ηα(C(X, Y )Z) =

[
S − r

2n(2n+ 1)

]∑
α

{g(V, Z)ηα(U) − g(U,Z)ηα(V )}. (3.3.4)

Let us assume that the condition R((ξα, Y ) · C)(U, V )W = 0 holds on M, then

R(ξα, Y )C(U, V )W −C(R(ξα, Y )U, V )W −C(U,R(ξα, Y )V )W −C(U, V )R(ξα, Y )W = 0.

(3.3.5)
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Using (1.3.12) in (3.3.5), we get

S
∑

α

{g(Y,C(U, V )W )ξα − ηα(C(U, V )W )Y − g(Y, U)C(ξα, V )W

+ηα(U)C(Y, V )W − g(Y, V )C(U, ξα)W + ηα(V )C(U, Y )W

−g(Y,W )C(U, V )ξα + ηα(W )C(U, V )Y } = 0. (3.3.6)

By taking an inner product of (3.3.6) with ξα then we get

∑
α

{SC(U, V,W, Y ) − ηα(C(U, V )W )ηα(Y ) − g(Y, U)ηα(C(ξα, V )W )

+ηα(U)ηα(C(Y, V )W ) − g(Y, V )ηα(C(U, ξα)W ) + ηα(V )ηα(C(U, Y )W )

−g(Y,W )ηα(C(U, V )ξα) + ηα(W )ηα(C(U, V )Y )} = 0. (3.3.7)

By using (3.3.2), (3.3.4) in (3.3.7) we have

C(U, V,W, Y ) =

[
S − r

2n(2n+ 1)

]
{g(Y, U)g(V,W ) − g(Y, V )g(U,W )}. (3.3.8)

Taking U = Y = ei in (3.3.8) and summing over i = 1, 2, . . . , 2n+ S and using (3.3.1)

we get

S(V,W ) = S(2n+ S − 1)g(V,W ). (3.3.9)

Thus we state the following:

Theorem 3.3.1. S-manifold satisfying the condition R · C = 0 is an Einstein manifold.

Substituting (3.3.9) in (3.2.9) we have

(S(2n+ S − 1) + λ)g(X,Y ) = 0. (3.3.10)

Taking X = Y = ei in (3.3.10) and summing over i = 1, 2, . . . , 2n+ S, we get the value of

λ given by
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λ = −S(2n+ S − 1)(< 0).

Thus we state the following;

Theorem 3.3.2. Ricci soliton in S-manifold satisfying the condition R · C = 0 is

shrinking.

Corollary 3.3.3. Ricci soliton in S-manifold satisfying R · C = 0 is steady if S = 0

(Kaehler manifold) and is shrinking if S = 1 (Sasakian manifold).

3.4 Ricci soliton in S-manifolds satisfying C ·R = 0

Let us assume that the condition C((ξα, Y ) ·R)(U, V )W = 0 holds on M, then

C(ξα, Y )R(U, V )W −R(C(ξα, Y )U, V )W −R(U,C(ξα, Y )V )W −R(U, V )C(ξα, Y )W = 0.

(3.4.1)

Using (3.3.3) in (3.4.1), we get

[
S − r

2n(2n+ 1)

]∑
α

{g(Y,R(U, V )W )ξα − ηα(R(U, V )W )Y

−g(Y, U)R(ξα, V )W + ηα(U)R(Y, V )W − g(Y, V )R(U, ξα)W

+ηα(V )R(U, Y )W − g(Y,W )R(U, V )ξα + ηα(W )R(U, V )Y } = 0. (3.4.2)

Since
[
S − r

2n(2n+1)

]
6= 0, by taking an inner product of (3.4.2) with ξα then we get

∑
α

{SR(U, V,W, Y ) − ηα(R(U, V )W )ηα(Y ) − g(Y, U)ηα(R(ξα, V )W )

+ηα(U)ηα(R(Y, V )W ) − g(Y, V )ηα(R(U, ξα)W ) + ηα(V )ηα(R(U, Y )W )

−g(Y,W )ηα(R(U, V )ξα) + ηα(W )ηα(R(U, V )Y )} = 0. (3.4.3)
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By using (3.3.2), (3.3.4) in (3.4.3) we have

R(U, V,W, Y ) = S{g(Y, U)g(V,W ) − g(Y, V )g(U,W )}. (3.4.4)

Taking U = Y = ei in (3.4.4) and summing over i = 1, 2, . . . , 2n+ S we get

S(V,W ) = S(2n+ S − 1)g(V,W ). (3.4.5)

Thus we state the following:

Theorem 3.4.1. S-manifold satisfying the condition C ·R = 0 is an Einstein manifold.

Substituting (3.4.5) in (3.2.9) we have

(S(2n+ S − 1) + λ)g(X,Y ) = 0. (3.4.6)

Taking X = Y = ei in (3.4.6) and summing over i = 1, 2, . . . , 2n+ S, we get the value of

λ given by

λ = −S(2n+ S − 1)(< 0).

Thus we state the following;

Theorem 3.4.2. Ricci soliton in S-manifold satisfying the condition C ·R = 0 is

shrinking.

Corollary 3.4.3. Ricci soliton in S-manifold satisfying C · R = 0 is steady if S = 0

(Kaehler manifold) and is shrinking if S = 1 (Sasakian manifold).
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3.5 Ricci soliton in S-manifolds satisfying C · C = 0

Let us assume that the condition C((ξα, Y ) · C)(U, V )W = 0 holds on M, then

C(ξα, Y )C(U, V )W −C(C(ξα, Y )U, V )W −C(U,C(ξα, Y )V )W −C(U, V )C(ξα, Y )W = 0.

(3.5.1)

Using (3.3.3) in (3.5.1), we get

[
S − r

2n(2n+ 1)

]∑
α

{g(Y,C(U, V )W )ξα − ηα(C(U, V )W )Y

−g(Y, U)C(ξα, V )W + ηα(U)C(Y, V )W − g(Y, V )C(U, ξα)W

+ηα(V )C(U, Y )W − g(Y,W )C(U, V )ξα + ηα(W )C(U, V )Y } = 0. (3.5.2)

Since
[
S − r

2n(2n+1)

]
6= 0, by taking an inner product of (3.5.2) with ξα then we get

∑
α

{SC(U, V,W, Y ) − ηα(C(U, V )W )ηα(Y ) − g(Y, U)ηα(C(ξα, V )W )

+ηα(U)ηα(C(Y, V )W ) − g(Y, V )ηα(C(U, ξα)W ) + ηα(V )ηα(C(U, Y )W )

−g(Y,W )ηα(C(U, V )ξα) + ηα(W )ηα(C(U, V )Y )} = 0. (3.5.3)

By using (3.3.2), (3.3.4) in (3.5.3) we have

C(U, V,W, Y ) =

[
S − r

2n(2n+ 1)

]
{g(Y, U)g(V,W ) − g(Y, V )g(U,W )}. (3.5.4)

Taking U = Y = ei in (3.5.4) and summing over i = 1, 2, . . . , 2n+ S and using (3.3.1)

we get

S(V,W ) = S(2n+ S − 1)g(V,W ). (3.5.5)

Thus we state the following:

Theorem 3.5.1. S-manifold satisfying the condition C · C = 0 is an Einstein manifold.
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Substituting (3.5.5) in (3.2.9) we have

(S(2n+ S − 1) + λ)g(X,Y ) = 0. (3.5.6)

Taking X = Y = ei in (3.5.6) and summing over i = 1, 2, . . . , 2n+ S, we get the value of

λ given by

λ = −S(2n+ S − 1)(< 0).

Thus we state the following:

Theorem 3.5.2. Ricci soliton in S-manifold satisfying the condition C · C = 0 is

shrinking.

Corollary 3.5.3. Ricci soliton in S-manifold satisfying C · C = 0 is steady if S = 0

(Kaehler manifold) and is shrinking if S = 1 (Sasakian manifold).

3.6 Ricci soliton in pseudo-symmetric S-manifolds

An S-manifold is said to be Pseudo-symmetric if R ·R = L5Q(g,R).

(R(ξα, Y ) ·R)(U, V )W = L5[((ξα ∧ Y ) ·R)(U, V )W ], (3.6.1)

R(ξα, Y )R(U, V )W −R(R(ξα, Y )U, V )W −R(U,R(ξα, Y )V )W

−R(U, V )R(ξα, Y )W = L5[(ξα ∧ Y )R(U, V )W −R((ξα ∧ Y )U, V )W

−R(U, (ξα ∧ Y )V )W −R(U, V )(ξα ∧ Y )W ]. (3.6.2)
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Using (1.3.12) L.H.S of (3.6.2) becomes

S
∑

α

{g(Y,R(U, V )W )ξα − ηα(R(U, V )W )Y − g(Y, U)R(ξα, V )W

+ηα(U)R(Y, V )W − g(Y, V )R(U, ξα)W + ηα(V )R(U, Y )W

−g(Y,W )R(U, V )ξα + ηα(W )R(U, V )Y }. (3.6.3)

By taking an inner product of above equation with ξα then we get

S
∑

α

{SR(U, V,W, Y ) − ηα(R(U, V )W )ηα(Y ) − g(Y, U)ηα(R(ξα, V )W )

+ηα(U)ηα(R(Y, V )W ) − g(Y, V )ηα(R(U, ξα)W ) + ηα(V )ηα(R(U, Y )W )

−g(Y,W )ηα(R(U, V )ξα) + ηα(W )ηα(R(U, V )Y )}. (3.6.4)

By using (1.3.11), (1.3.13) in (3.6.4) we have

S{SR(U, V,W, Y ) + S2g(Y, V )g(U,W ) − S2g(Y, U)g(V,W )}. (3.6.5)

Again using (1.3.12), R.H.S of (3.6.2) becomes

L5[
∑

α

{g(Y,R(U, V )W )ξα − ηα(R(U, V )W )Y − g(Y, U)R(ξα, V )W

+ηα(U)R(Y, V )W − g(Y, V )R(U, ξα)W + ηα(V )R(U, Y )W

−g(Y,W )R(U, V )ξα + ηα(W )R(U, V )Y }]. (3.6.6)

By taking an inner product of above equation with ξα then we get

L5[
∑

α

{SR(U, V,W, Y ) − ηα(R(U, V )W )ηα(Y ) − g(Y, U)ηα(R(ξα, V )W )

+ηα(U)ηα(R(Y, V )W ) − g(Y, V )ηα(R(U, ξα)W ) + ηα(V )ηα(R(U, Y )W )

−g(Y,W )ηα(R(U, V )ξα) + ηα(W )ηα(R(U, V )Y )}]. (3.6.7)

By using (1.3.11), (1.3.13) in (3.6.7) we have

L5[SR(U, V,W, Y ) + S2g(Y, V )g(U,W ) − S2g(Y, U)g(V,W )]. (3.6.8)
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Combining equations (3.6.5) and (3.6.8) we get

[L5 − S][SR(U, V,W, Y ) + S2g(Y, V )g(U,W ) − S2g(Y, U)g(V,W )] = 0. (3.6.9)

Therefore, either L5 = S or

R(U, V,W, Y ) = S{g(Y, U)g(V,W ) − g(Y, V )g(U,W )}. (3.6.10)

Taking U = Y = ei in (3.6.10) and summing over i = 1, 2, . . . , 2n+ S we get

S(V,W ) = S(2n+ S − 1)g(V,W ). (3.6.11)

Thus we state the following;

Theorem 3.6.1. Pseudo-symmetric S-manifold is an Einstein manifold provided L5 6= S.

Substituting (3.6.11) in (3.2.9) we have

(S(2n+ S − 1) + λ)g(X,Y ) = 0. (3.6.12)

Taking X = Y = ei in (3.6.12) and summing over i = 1, 2, . . . , 2n+ S, we get the value of

λ given by

λ = −S(2n+ S − 1)(< 0).

Thus we state the following:

Theorem 3.6.2. Ricci soliton in pseudo-symmetric S-manifold is shrinking.

Corollary 3.6.3. Ricci soliton in pseudo-symmetric S-manifold is steady if S = 0 (Kaehler

manifold) and is shrinking if S = 1 (Sasakian manifold).
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3.7 Ricci soliton in S-manifolds satisfying

R · C = L6Q(g, C)

Let us assume that the condition R((ξα, Y ) ·C)(U, V )W = L6[(ξα ∧ Y ) ·C](U, V )W holds

on M, then

R(ξα, Y )C(U, V )W − C(R(ξα, Y )U, V )W − C(U,R(ξα, Y )V )W

−C(U, V )R(ξα, Y )W = L6[(ξα ∧ Y )C(U, V )W − C((ξα ∧ Y )U, V )W

−C(U, (ξα ∧ Y )V )W − C(U, V )(ξα ∧ Y )W ]. (3.7.1)

Using (1.3.12) L.H.S of (3.7.1) is

S
∑

α

{g(Y,C(U, V )W )ξα − ηα(C(U, V )W )Y − g(Y, U)C(ξα, V )W

+ηα(U)C(Y, V )W − g(Y, V )C(U, ξα)W + ηα(V )C(U, Y )W

−g(Y,W )C(U, V )ξα + ηα(W )C(U, V )Y }. (3.7.2)

By taking an inner product of above equation with ξα then we get

S
∑

α

{SC(U, V,W, Y ) − ηα(C(U, V )W )ηα(Y ) − g(Y, U)ηα(C(ξα, V )W )

+ηα(U)ηα(C(Y, V )W ) − g(Y, V )ηα(C(U, ξα)W ) + ηα(V )ηα(C(U, Y )W )

−g(Y,W )ηα(C(U, V )ξα) + ηα(W )ηα(C(U, V )Y )}. (3.7.3)

By using (3.3.2), (3.3.4) in (3.7.3) we have

S2

{
C(U, V,W, Y ) −

[
S − r

2n(2n+ 1)

]
[g(Y, U)g(V,W ) − g(Y, V )g(U,W )]

}
. (3.7.4)
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Again using (1.3.12), R.H.S of (3.7.1) becomes

L6

∑
α

{g(Y,C(U, V )W )ξα − ηα(C(U, V )W )Y − g(Y, U)C(ξα, V )W

+ηα(U)C(Y, V )W − g(Y, V )C(U, ξα)W + ηα(V )C(U, Y )W

−g(Y,W )C(U, V )ξα + ηα(W )C(U, V )Y }. (3.7.5)

By taking an inner product of above equation with ξα then we get

L6

∑
α

{SC(U, V,W, Y ) − ηα(C(U, V )W )ηα(Y ) − g(Y, U)ηα(C(ξα, V )W )

+ηα(U)ηα(C(Y, V )W ) − g(Y, V )ηα(C(U, ξα)W ) + ηα(V )ηα(C(U, Y )W )

−g(Y,W )ηα(C(U, V )ξα) + ηα(W )ηα(C(U, V )Y )}. (3.7.6)

By using (3.3.2), (3.3.4) in (3.7.6) we have

SL6

{
C(U, V,W, Y ) −

[
S − r

2n(2n+ 1)

]
[g(Y, U)g(V,W ) − g(Y, V )g(U,W )]

}
. (3.7.7)

Combining equations (3.7.4) and (3.7.7) we get

[SL6 − S2]

{
C(U, V,W, Y ) −

[
S − r

2n(2n+ 1)

]
[g(Y, U)g(V,W ) − g(Y, V )g(U,W )]

}
= 0.

(3.7.8)

Therefore, either L6 = S or

C(U, V,W, Y ) =

[
S − r

2n(2n+ 1)

]
[g(Y, U)g(V,W ) − g(Y, V )g(U,W )]. (3.7.9)

Taking U = Y = ei in (3.7.9) and summing over i = 1, 2, . . . , 2n+ S we get

S(V,W ) = S(2n+ S − 1)g(V,W ). (3.7.10)

Thus we state the following:
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Theorem 3.7.1. An S-manifold satisfying the condition R ·C = L6Q(g, C) is an Einstein

manifold provided L6 6= S.

Substituting (3.7.10) in (3.2.9) we have

(S(2n+ S − 1) + λ)g(X,Y ) = 0. (3.7.11)

Taking X = Y = ei in (3.7.11) and summing over i = 1, 2, . . . , 2n+ S, we get the value of

λ given by

λ = −S(2n+ S − 1)(< 0).

Thus we state the following:

Theorem 3.7.2. Ricci soliton in S-manifold satisfying the condition R · C = L6Q(g, C)

is shrinking.

Corollary 3.7.3. Ricci soliton in S-manifold satisfying R · C = L6Q(g, C) is steady if

S = 0 (Kaehler manifold) and is shrinking if S = 1 (Sasakian manifold).

3.8 Ricci soliton in S-manifolds satisfying

C ·R = L7Q(g,R)

Let us assume that the condition C((ξα, Y ) ·R)(U, V )W = L7[(ξα ∧ Y ) ·R](U, V )W holds

on M, then

C(ξα, Y )R(U, V )W −R(C(ξα, Y )U, V )W −R(U,C(ξα, Y )V )W

−R(U, V )C(ξα, Y )W = L7[(ξα ∧ Y )R(U, V )W −R((ξα ∧ Y )U, V )W

−R(U, (ξα ∧ Y )V )W −R(U, V )(ξα ∧ Y )W ]. (3.8.1)
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Using (3.4.2), (3.4.3), (3.6.6) and (3.6.7) in (3.8.1) we get{
SL7 −

[
S − r

2n(2n+ 1)

]}
{R(U, V,W, Y ) − S[g(Y, U)g(V,W ) − g(Y, V )g(U,W )]} = 0.

(3.8.2)

Therefore, either L7 = S − r
2n(2n+1)

or

R(U, V,W, Y ) = S{g(Y, U)g(V,W ) − g(Y, V )g(U,W )}. (3.8.3)

Taking U = Y = ei in (3.8.3) and summing over i = 1, 2, . . . , 2n+ S we get

S(V,W ) = S(2n+ S − 1)g(V,W ). (3.8.4)

Thus we state the following:

Theorem 3.8.1. S-manifold satisfying the condition C · R = L7Q(g,R) is an Einstein

manifold provided L7 6= S − r
2n(2n+1)

.

Substituting (3.8.4) in (3.2.9) we have

(S(2n+ S − 1) + λ)g(X,Y ) = 0. (3.8.5)

Taking X = Y = ei in (3.8.5) and summing over i = 1, 2, . . . , 2n+ S, we get the value of

λ given by

λ = −S(2n+ S − 1)(< 0).

Thus we state the following:

Theorem 3.8.2. Ricci soliton in S-manifold satisfying the condition C · R = L7Q(g,R)

is shrinking.

Corollary 3.8.3. Ricci soliton in S-manifold satisfying C · R = L7Q(g,R) is steady if

S = 0 (Kaehler manifold) and is shrinking if S = 1 (Sasakian manifold).
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3.9 Ricci soliton in S-manifolds satisfying

C · C = L8Q(g, C)

Let us assume that the condition C((ξα, Y ) ·C)(U, V )W = L8[(ξα ∧ Y ) ·C](U, V )W holds

on M, then

C(ξα, Y )C(U, V )W − C(C(ξα, Y )U, V )W − C(U,C(ξα, Y )V )W

−C(U, V )C(ξα, Y )W = L8[(ξα ∧ Y )C(U, V )W − C((ξα ∧ Y )U, V )W

−C(U, (ξα ∧ Y )V )W − C(U, V )(ξα ∧ Y )W ]. (3.9.1)

Using (3.5.2), (3.5.3), (3.7.5) and (3.7.6) in (3.9.1) we get either L8 = s− r
2n(2n+1)

or

C(U, V,W, Y ) −
[
S − r

2n(2n+ 1)

]
[g(Y, U)g(V,W ) − g(Y, V )g(U,W )] = 0. (3.9.2)

Taking U = Y = ei in (3.9.2) and summing over i = 1, 2, . . . , 2n+ S, using (3.3.1) we get

S(V,W ) = S(2n+ S − 1)g(V,W ). (3.9.3)

Thus we state the following:

Theorem 3.9.1. S-manifold satisfying the condition C · C = L8Q(g, C) is an Einstein

manifold provided L8 6= S − r
2n(2n+1)

.

Substituting (3.9.3) in (3.2.9) we have

(S(2n+ S − 1) + λ)g(X, Y ) = 0 (3.9.4)

Taking X = Y = ei in (3.9.4) and summing over i = 1, 2, . . . , 2n+ S, we get the value of

λ given by
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λ = −S(2n+ S − 1)(< 0).

Thus we state the following:

Theorem 3.9.2. Ricci soliton in S-manifold satisfying the condition C · C = L8Q(g, C)

is shrinking.

Corollary 3.9.3. Ricci soliton in S-manifold satisfying C · C = L8Q(g, C) is steady if

S = 0 (Kaehler manifold) and is shrinking if S = 1 (Sasakian manifold).

3.10 Irrotational τ-curvature tensor in S-manifolds

In a (2n+1)-dimensional Riemannian manifold M, the τ -curvature tensor [83] is given by

τ(X,Y )Z = a0R(X, Y )Z + a1S(Y, Z)X + a2S(X,Z)Y + a3S(X, Y )Z

+ a4g(Y, Z)QX + a5g(X,Z)QY + a6g(X, Y )QZ

+ a7r[g(Y, Z)X − g(X,Z)Y ]. (3.10.1)

where R, S, Q and r are the curvature tensor, the Ricci tensor, the Ricci operator and

the scalar curvature, respectively.

In particular, the τ -curvature tensor is reduced to be [83]

1. The quasi-conformal curvature tensor C̃ if

a1 = −a2 = a4 = −a5; a3 = a6 = 0; a7 = − 1
2n+1

(
a0

2n
+ 2a1

)
;

2. the conformal curvature tensor V if

a0 = 1; a1 = −a2 = a4 = −a5 = − 1
2n−1

; a3 = a6 = 0; a7 = 1
2n(2n−1)

;

3. The conharmonic curvature tensor L if

a0 = 1; a1 = −a2 = a4 = −a5 = − 1
2n−1

; a3 = a6 = 0; a7 = 0;
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4. The concircular curvature tensor C if

a0 = 1; a1 = a2 = a3 = a4 = a5 = a6 = 0; a7 = −1
2n(2n+1)

;

5. The pseudo-projective curvature tensor P if

a1 = −a2; a3 = a4 = a5 = a6 = 0; a7 = − 1
2n+1

(
a0

2n
+ a1

)
;

6. The projective curvature tensor P∗ if

a0 = 1; a1 = −a2 = − 1
2n

; a3 = a4 = a5 = a6 = 0 = a7 = 0;

7. The M -projective curvature tensor if

a0 = 1; a1 = −a2 = a4 = −a5 = − 1
4n

; a3 = a6 = a7 = 0;

8. The W0-curvature tensor if

a0 = 1; a1 = −a5 = − 1
2n

; a2 = a3 = a4 = a6 = a7 = 0;

9. The W ∗
0 -curvature tensor if

a0 = 1; a1 = −a5 = 1
2n

; a2 = a3 = a4 = a6 = a7 = 0;

10. The W1-curvature tensor if

a0 = 1; a1 = −a2 = 1
2n

; a3 = a4 = a5 = a6 = a7 = 0;

11. The W ∗
1 -curvature tensor if

a0 = 1; a1 = −a2 = − 1
2n

; a3 = a4 = a5 = a6 = a7 = 0;

12. The W2-curvature tensor if

a0 = 1; a4 = −a5 = − 1
2n

; a1 = a2 = a3 = a6 = a7 = 0;

13. The W3-curvature tensor if

a0 = 1; a2 = −a4 = − 1
2n

; a1 = a3 = a5 = a6 = a7 = 0;
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14. The W4-curvature tensor if

a0 = 1; a5 = −a6 = 1
2n

; a1 = a2 = a3 = a4 = a7 = 0;

15. The W5-curvature tensor if

a0 = 1; a2 = −a5 = − 1
2n

; a1 = a3 = a4 = a6 = a7 = 0;

16. The W6-curvature tensor if

a0 = 1; a1 = −a6 = − 1
2n

; a2 = a3 = a4 = a5 = a7 = 0;

17. The W7-curvature tensor if

a0 = 1; a1 = −a4 = − 1
2n

; a2 = a3 = a5 = a6 = a7 = 0;

18. The W8-curvature tensor if

a0 = 1; a1 = −a3 = − 1
2n

; a2 = a4 = a5 = a6 = a7 = 0;

19. The W9-curvature tensor if

a0 = 1; a3 = −a4 = 1
2n

; a1 = a2 = a5 = a6 = a7 = 0;

Put Z = ξ in (3.10.1) and using (1.3.9), (1.3.10) and (1.3.11) we get,

τ(X, Y )ξ = k1η(Y )X + k2η(X)Y + k3g(X, Y )ξ + k4η(X)η(Y )ξ, (3.10.2)

where

k1 = a0S + a1b3 + a4b3 + a7r, k2 = −a0s+ a2b3 + a5b3 − a7r,

k3 = a3b1 + a6b3, k4 = a3b2

Definition 3.10.1. The rotation (curl) of τ -curvature tensor on a Riemannian manifold

is given by

Rotτ = (∇Uτ)(X, Y, Z) + (∇Xτ)(U, Y, Z) + (∇Y τ)(U,X,Z) − (∇Zτ)(X, Y, U). (3.10.3)
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By virtue of second Bianchi identity

(∇Uτ)(X, Y, Z) + (∇Xτ)(U, Y, Z) + (∇Y τ)(U,X,Z) = 0. (3.10.4)

Using (3.10.4), equation (3.10.3) reduces to

curlτ = −(∇Zτ)(X, Y, U). (3.10.5)

If the τ -curvature tensor is irrotational then curlτ = 0 and by (3.10.5) we have

(∇Zτ)(X, Y )U = 0. (3.10.6)

Which implies,

∇Z{τ(X, Y )U} = τ(∇ZX, Y )U + τ(X,∇ZY )U + τ(X, Y )∇ZU. (3.10.7)

Put U = ξα in the above equation, we have

∇Z{τ(X, Y )ξα} = τ(∇ZX, Y )ξα + τ(X,∇ZY )ξα + τ(X, Y )∇Zξα. (3.10.8)

Theorem 3.10.1. If the τ -curvature tensor in S-manifold is irrotational, then the man-

ifold is η-Einstein.

Proof. Using equation (3.10.2) in (3.10.8) we get

−τ(X,Y )fZ = k1(∇Zη)(Y )X + k2(∇Zη)(X)Y + k3g(X, Y )(−fX)

+k4{(∇Zη)(X)η(Y )ξα + (∇Zη)(Y )η(X)ξα − η(X)η(Y )ξα}. (3.10.9)

By virtue of (1.3.5) in (3.10.9) we have

−τ(X, Y )fZ = −k1g(fZ, Y )X − k2g(fZ,X)Y − k3g(X, Y )fZ

+k4{−g(fZ,X)η(Y )ξα − g(fZ, Y )η(X)ξα − η(X)η(Y )fZ}. (3.10.10)
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Replace Z by fZ in (3.10.10) and using (1.3.1) we have

τ(X, Y )Z = k1g(Y, Z)X + k2g(X,Z)Y + k3g(X, Y )Z

+ k4{g(X,Z)η(Y )ξα + g(Y, Z)η(X)ξα + η(X)η(Y )Z} (3.10.11)

Using (3.10.1) and (3.10.11) we can write

a0R(X, Y, Z,W ) = k1g(Y, Z)g(X,W ) + k2g(X,Z)g(Y,W ) + k3g(X, Y )g(Z,W )

+ k4{g(X,Z)η(Y )η(W ) + g(Y, Z)η(X)η(W ) + η(X)η(Y )g(Z,W )}

− a1S(Y, Z)g(X,W ) − a2S(X,Z)g(Y,W ) − a3S(X, Y )g(Z,W )

− a4g(Y, Z)g(QX,W ) − a5g(X,Z)g(QY,W ) − a6g(X, Y )g(QZ,W )

+ a7r[g(Y, Z)g(X,W ) − g(X,Z)g(Y,W )]. (3.10.12)

Let {ei}, i = 1, 2, . . . , (2n + S) be an orthonormal basis of the tangent space. Then

summing for 1 ≤ i ≤ (2n+ S) of the relation (3.10.12) with X = W = ei yields the Ricci

tensor S is given by

S(Y, Z) = νg(X, Y ) + ωηα(X)ηα(Y ). (3.10.13)

where,

ν =
(2n+ S)k1 + k2 + k3 + k4 − (2n+ S − 1)ra7 − ra4

a0 + (2n+ S)a1 + a2 + a3 + a5 + a6

,

ω =
2k4

a0 + (2n+ S)a1 + a2 + a3 + a5 + a6

.

From (3.10.13), M is an η-Einstein manifold.

The above theorem (3.10.1) is shown in tabular form for different curvatures which

can be obtained independently for S manifold.
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Curvature tensor Manifold Ricci tensor S

Quasi conformal Einstein S =
{

(2n+s−1)(a0s+2a1b3)−a1r
a0+(2n+s−1)a1

}
g

Conformal Einstein S =
(

2n−1
1−s

){
(2n+ s− 1)

(
s− 2b3

2n−1
+ r

2n(2n−1)

)
+ r

2n(2n−1)

}
g

Conharmonic Einstein S =
(

2n−1
1−s

) {
(2n+ s− 1)

(
s− 2b3

2n−1

)
+ r

2n−1

}
g

Concircular Einstein S = s(2n+ s− 1)g

Projective Einstein S =
{

2n(2n+s−1)
(1−s)

}(
s− b3

2n

)
g

Pseudo projective Einstein S =
{

(2n+s−1)(a0s+a1b3)
a0+(2n+s−1)a1

}
g

M -projective Einstein S =
(

4n
2n−s+2

) {
(2n+ s− 1)

(
s− b3

2n

)
+ r

4n

}
g

W0 Einstein S =
(

2n(2n+s−1)
(1−s)

) (
s− b3

2n

)
g

W ∗
0 Einstein S =

(
2n(2n+s−1)
(4n+s−1)

) (
s+ b3

2n

)
g

W1 Einstein S =
(

2n(2n+s−1)
(4n+s−1)

) (
s+ b3

2n

)
g

W ∗
1 Einstein S =

(
2n(2n+s−1)

(1−s)

) (
s− b3

2n

)
g

W2 Einstein S =
(

2n(2n+s−1)
(2n+1)

) (
s− b3

2n

)
g

W3 Einstein S =
(

2n
2n−1

) {
(2n+ s− 1)

(
s+ b3

2n

)
− r

2n

}
g

W4 Einstein S = s(2n+ s− 1)g

W5 Einstein S = s(2n+ s− 1)g

W6 Einstein S =
{

2n(2n+s−1)
1−s

}(
s− b3

2n

)
g

W7 Einstein S = −
(

2n
s

) {
(2n+ s)

(
s− b3

2n

)
− s− r

2n

}
g

W8 η-Einstein S =
(

2n
1−s

) {
(2n+ s)

(
s− b3

2n

)
− s+ b1

2n
− b2

2n

}
g

+
∑

α

(
2b2
1−s

)
ηα ⊗ ηα

W9 η-Einstein S =
(

2n
2n+1

) {
(2n+ s)

(
s− b3

2n

)
− s+ b1

2n
+ b2

2n
+ r

2n

}
g

+
∑

α

(
2b2

2n+1

)
ηα ⊗ ηα

From (3.10.13) and (3.2.9) we have

(ν + λ)g(X, Y ) + ωηα(X)ηα(Y ) = 0 (3.10.14)

Taking X = Y = ei in (3.10.14) and summing over i = 1, 2, .......2n+ S, we get the value

of λ

λ = −
(
ν +

ω

2n+ S

)
. (3.10.15)

Thus we state the following theorem:
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Theorem 3.10.2. The Ricci soliton in irrotational τ -curvature tensor in S manifolds is

1. shrinking if ν, ω > 0.

2. steady if if ν, ω = 0.

3. expanding if if ν, ω < 0.

3.11 Conclusion

The influential results finding of this chapter are as follows:

• An S-manifold with semi-symmetric conditions such as R·R = 0, R·C = 0, C ·R = 0

and C · C = 0 is an Einstein manifold.

• An S-manifold with pseudo-symmetric conditions such as R ·R = L5Q(g,R), R ·C =

L6Q(g, C), C·R = L7Q(g,R) and C·C = L8Q(g, C) is an Einstein manifold provided

L5 6= S, L6 6= S, L7 6= S − r
2n(2n+1)

and L8 6= S − r
2n(2n+1)

respectively.

• Ricci soliton for S-manifold with above mentioned semi-symmetric and pseudo-

symmetric conditions is shrinking.

• If (g, ξα, λ) is a Ricci soliton in semi-symmetric S-manifold and pseudo-symmetric

S-manifold, then it is steady if S = 0 (Kaehler manifold) and is shrinking if S = 1

(Sasakian manifold).

• If the τ -curvature tensor in S-manifold is irrotational, then the manifold is η-

Einstein.

• If the τ -curvature tensor is irrotational, then the Ricci soliton in S manifolds is
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1. shrinking if ν, ω > 0

2. steady if if ν, ω = 0

3. expanding if if ν, ω < 0.

where,

ν =
(2n+ S)k1 + k2 + k3 + k4 − (2n+ S − 1)ra7 − ra4

a0 + (2n+ S)a1 + a2 + a3 + a5 + a6

,

ω =
2k4

a0 + (2n+ S)a1 + a2 + a3 + a5 + a6

.
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Chapter 4

On Sasakian Manifolds

4.1 Introduction

If a contact metric structure (φ, ξ, η, g) is normal, then the structure will referred as

normal contact metric structure or Sasakian structure. A Sasakian structure is in same

sense an analogue of a Kaehler structure on an almost Hermitian manifold, i.e., the almost

complex structure J is parallel with respect to the Hermitian metric. The Blair states

that, if M is a Riemannian manifold admitting a unit Killing Vector field ξ, such that

equation (1.1.7) holds on M is a Sasakian manifold. In particular, the usual contact metric

structure on an odd dimensional sphere is a Sasakian structure. In 2008, De, Jun and

Gazi studied Sasakian manifolds with quasi-conformal curvature tensor [27]. In 2009, the

authors obtained the results on φ-quasi conformally symmetric Sasakian manifolds [29].

In 2011, He and Zhu showed that a Sasakian metric which also satisfies the gradient Ricci

soliton is necessarily Einstein [41].

The nature of a Riemannian manifold mostly depends on the curvature tensor R of the

manifold. It is well known that the sectional curvatures of a manifold determine curvature

tensor completely. A Riemannian manifold with constant sectional curvature c is known

75
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as real-space-form and its curvature tensor is given by

R(X, Y)Z=c{g(Y, Z)X-g(X, Z)Y}.

A Sasakian manifold with constant φ-sectional curvature is a Sasakian-spaceform and it

has a specific form of its curvature tensor. Similar notion also holds for Kenmotsu and

cosymplectic space-forms. In order to generalize such spaceforms in a common frame

Alegre, Blair and Carriazo introduced the notion of generalized Sasakian-space-forms in

2004. In the context of generalized Sasakian-space-forms, Kim [51] studied locally sym-

metric properties of generalized Sasakian-space-forms. In [28] De and Sarkar have studied

some symmetry properties of generalized Sasakian-space-forms regarding the projective

curvature tensor. In [67] Prakasha studied some pseudosymmetric properties of general-

ized Sasakian-space-forms with Weyl conformal curvature tensor. In [15] Bagewadi and

Ingalahalli studied some results of C-Bochner curvature tensor and τ -curvature tensor of

a generalized Sasakian space forms. In this chapter we study the Ricci soliton for Ricci-

generalized pseudo-symmetric Sasakian manifold with different curvature tensors. also we

close attention to generalized Sasakian space forms satisfying certain curvature conditions

on quasi conformal curvature tensor.

4.2 Ricci-generalized pseudo-symmetric Sasakian

manifold

If the tensors R ·R and Q(S,R) are linearly dependent then M is called Ricci-generalized

pseudo-symmetric. This is equivalent to;

R ·R = L1Q(S,R) (4.2.1)
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holding on the set U1 = {X ∈ M ;Q(S,R) 6= 0 at X}, where L1 is some function on U1.

The tensors R ·R, Q(S,R) and X ∧S Y are defined by;

(R ·R)(U, V,W ;X, Y ) = R(X, Y )R(U, V )W −R(R(X, Y )U, V )W

− R(U,R(X,Y )V )W −R(U, V )R(X, Y )W, (4.2.2)

Q(S,R)(U, V,W ;X, Y ) = (X ∧S Y )R(U, V )W −R((X ∧S Y )U, V )W

− R(U, (X ∧S Y )V )W −R(U, V )(X ∧S Y )W, (4.2.3)

respectively, where X ∧S Y is an endomorphism given by

(X ∧S Y )Z = S(Y, Z)X − S(X,Z)Y .

Assume that M is Ricci-generalized pseudo-symmetric Sasakian manifold

(R ·R)(U, V,W ; ξ, Y ) = L1Q(S,R)(U, V,W ; ξ, Y ). (4.2.4)

Now using (4.2.2), L.H.S of (4.2.4) yields

(R(ξ, Y ) ·R)(U, V,W ) = R(ξ, Y )R(U, V )W −R(R(ξ, Y )U, V )W

− R(U,R(ξ, Y )V )W −R(U, V )R(ξ, Y )W. (4.2.5)

Taking inner product of (4.2.5) with ξ and by virtue of (1.1.9) and (1.1.10) we get

g((R(ξ, Y ) ·R)(U, V,W ), ξ) = R(U, V,W, Y )− g(Y, U)g(V,W ) + g(U,W )g(V, Y ). (4.2.6)

Again by using (4.2.3), we can write R.H.S of (4.2.4) as

Q(S,R)(U, V,W ; ξ, Y ) = (ξ ∧S Y )R(U, V )W −R((ξ ∧S Y )U, V )W

− R(U, (ξ ∧S Y )V )W −R(U, V )(ξ ∧S Y )W. (4.2.7)
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Taking inner product of (4.2.7) with ξ and by virtue of (1.1.9), (1.1.11) we get

g(Q(S,R)(U, V,W ; ξ, Y ), ξ) = S(Y,R(U, V )W ) − η(Y )S(ξ, R(U, V )W )

− S(Y, U)η(R(ξ, V )W ) + 2nη(U)η(R(Y, V )W )

− S(Y, V )η(R(U, ξ)W ) + 2nη(V )η(R(U, Y )W )

+ 2nη(W )η(R(U, V )Y ). (4.2.8)

Using equations (4.2.6), (4.2.8) in (4.2.4) we obtain the following

[2nL1 − 1][R(U, V,W, Y ) − g(Y, U)g(V,W ) + g(U,W )g(Y, V )] = 0. (4.2.9)

Therefore either L1 = 1
2n

or

R(U, V,W, Y ) = g(Y, U)g(V,W ) − g(U,W )g(Y, V ). (4.2.10)

Let {e1, . . . , en, en+1 = φ(e1), en+2 = φ(e2), . . . , e2n = φ(en), ξ} be an orthonormal basis

of the tangent space at each point of the manifold. Putting Y = U = ei in (4.2.10) and

taking summation over i, (1 ≤ i ≤ (2n+ 1)), we get

R(e1, V,W, e1) + . . .+R(en, V,W, en) +R(φe1, V,W, φe1) + . . .+R(φen, V,W, φen)

+R(ξ, V,W, ξ) = [g(e1, e1) + . . .+ g(en, en)]g(V,W )

+[g(φe1, φe1) + . . .+ g(φen, φen)]g(V,W )

+g(ξ, ξ)g(V,W ) − [g(e1,W )g(e1, V ) + . . .+ g(en,W )g(en, V )]

−[g(φe1,W )g(φe1, V ) + . . .+ g(φen,W )g(φen, V )] − g(ξ,W )g(ξ, V ) (4.2.11)

Set,

V =
n∑

i=1

viei +
n∑

j=1

vjφej + v2n+1ξ, W =
n∑

i=1

wiei +
n∑

j=1

wjφej + w2n+1ξ (4.2.12)
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Now using g(R(φX, φ, Y )φZ, φW ) = g(R(X, Y )Z,W ) and by virtue of (1.1.2) and (4.2.12)

in (4.2.11) we have

S(V,W ) = 2ng(V,W ). (4.2.13)

We can state the following:

Theorem 4.2.1. A (2n + 1)-dimensional Ricci-generalized pseudo-symmetric Sasakian

manifold is Einstein provided L1 6= 1
2n

.

Now from the Ricci soliton equation (1.4.1) we have

g(∇XV, Y ) + g(∇Y V,X) + 2S(X,Y ) + 2λg(X, Y ) = 0. (4.2.14)

Substituting V = ξ in (4.2.14) and by virtue of (1.1.5) we have

S(X, Y ) = −2λg(X,Y ). (4.2.15)

Compare equations (4.2.13) and (4.2.15)

(λ+ 2n)g(V,W ) = 0. (4.2.16)

Taking V = W = ei in (4.2.16), summing over i = 1, 2, . . . , 2n+ 1 we get

λ = −2n.

Thus we have the following:

Corollary 4.2.2. A Ricci soliton in Ricci-generalized pseudo-symmetric Sasakian mani-

fold is shrinking.
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4.3 Pseudo-projective Ricci-generalized pseudo

-symmetric Sasakian manifold

The pseudo-projective curvature tensor P is defined by

P̄ (U, V )Z = aR(U, V )Z + b[S(V, Z)U − S(U,Z)V ]

− r

2n+ 1

( a
2n

+ b
)

[g(V, Z)U − g(U,Z)V ], (4.3.1)

where a, b 6= 0 are constants. Taking Z = ξ in (4.3.1), using (1.1.7) and (1.1.11) we get

P̄ (U, V )ξ = γ[η(V )U − η(U)V ]. (4.3.2)

Similarly using (1.1.10) and (1.1.11) in (4.3.1) we get,

η(P̄ (U, V )Z) = γ[g(V, Z)η(U) − g(U,Z)η(V )]. (4.3.3)

where γ = (a+2nb)− r
2n+1

(
a
2n

+ b
)

Assume that M is pseudo-projective Ricci-generalized

pseudo symmetric Sasakian manifold, then

(R · P̄ )(U, V,W ; ξ, Y ) = L2Q(S, P̄ )(U, V,W ; ξ, Y ) (4.3.4)

holds on M.

L.H.S. of equation (4.3.4) takes the form

(R(ξ, Y ) · P̄ )(U, V,W ) = R(ξ, Y )P̄ (U, V )W − P̄ (R(ξ, Y )U, V )W

− P̄ (U,R(ξ, Y )V )W − P̄ (U, V )R(ξ, Y )W. (4.3.5)

Taking inner product of (4.3.5) with ξ and by virtue of (1.1.9), (1.1.10), (4.3.2) and (4.3.3)

we get

g((R(ξ, Y ) · P̄ )(U, V,W ), ξ) = P̄ (U, V,W, Y )

− γ[g(Y, U)g(V,W ) + g(U,W )g(V, Y )]. (4.3.6)
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R.H.S. of equation (4.3.4) takes the form

Q(S, P̄ )(U, V,W ; ξ, Y ) = (ξ ∧S Y )P̄ (U, V )W − P̄ ((ξ ∧S Y )U, V )W

− P̄ (U, (ξ ∧S Y )V )W − P̄ (U, V )(ξ ∧S Y )W. (4.3.7)

Taking inner product of (4.3.7) with ξ and by virtue of (1.1.9), (1.1.11), (4.3.2) and (4.3.3)

we get

g(Q(S, P̄ )(U, V,W ; ξ, Y ), ξ) = S(Y, P̄ (U, V )W ) − η(Y )S(ξ, P̄ (U, V )W )

− S(Y, U)η(P̄ (ξ, V )W ) + 2nη(U)η(P̄ (Y, V )W )

− S(Y, V )η(P̄ (U, ξ)W ) + 2nη(V )η(P̄ (U, Y )W )

+ 2nη(W )η(P̄ (U, V )Y ). (4.3.8)

Using the equations (4.3.6), (4.3.8) in (4.3.4) we obtain

[2nL2 − 1][P̄ (U, V,W, Y ) − γ[g(Y, U)g(V,W ) + g(U,W )g(Y, V )] = 0. (4.3.9)

Therefore, either L2 = 1
2n

or

P̄ (U, V,W, Y ) = γ[g(Y, U)g(V,W ) − g(U,W )g(Y, V )] (4.3.10)

Let {e1, . . . , en, en+1 = φ(e1), en+2 = φ(e2), . . . , e2n = φ(en), ξ} be an orthonormal basis

of the tangent space at each point of the manifold. Putting Y = U = ei in (4.3.10) and

using (4.3.1), taking summation over i,(1 ≤ i ≤ (2n+ 1)), we get

P̄ (e1, V,W, e1) + . . .+ P̄ (en, V,W, en) + P̄ (φe1, V,W, φe1) + . . .+ P̄ (φen, V,W, φen)

+P̄ (ξ, V,W, ξ) = γ{[g(e1, e1) + . . .+ g(en, en)]g(V,W )

+[g(φe1, φe1) + . . .+ g(φen, φen)]g(V,W ) + g(ξ, ξ)g(V,W )

−[g(e1,W )g(e1, V ) + ....+ g(en,W )g(en, V )]

−[g(φe1,W )g(φe1, V ) + ....+ g(φen,W )g(φen, V )] − g(ξ,W )g(ξ, V )}. (4.3.11)
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Now using g(R(φX, φ, Y )φZ, φW ) = g(R(X, Y )Z,W ) and by virtue of (1.1.2) and (4.2.12)

in (4.3.11) we have

S(V,W ) = 2ng(V,W ). (4.3.12)

We can state the following:

Theorem 4.3.1. A (2n+1) dimensional pseudo-projective Ricci-generalized pseudo sym-

metric Sasakian manifold is Einstein provided L2 6= 1
2n

.

Comparing (4.2.15) and (4.3.12) we get

(λ+ 2n)g(V,W ) = 0. (4.3.13)

Taking V = W = ei in (4.3.13), summing over i = 1, 2, . . . , 2n+ 1 we get

λ = −2n

Thus we have the following:

Corollary 4.3.2. A Ricci soliton in pseudo-projective Ricci-generalized pseudo-symmetric

Sasakian manifold is shrinking.

4.4 Quasi-conformal Ricci-generalized pseudo

-symmetric Sasakian manifold

The quasi-conformal curvature tensor C̃ is given by

C̃(U, V )Z = aR(U, V )Z + b[S(V, Z)U − S(U,Z)V + g(V, Z)QU − g(U,Z)QV ]

− r

2n+ 1

( a
2n

+ 2b
)

[g(V, Z)U − g(U,Z)V ], (4.4.1)
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where a, b 6= 0 are constants. Taking Z = ξ in (4.4.1), using (1.1.7) and (1.1.11) we get

C̃(U, V )ξ = γ
′
[η(V )U − η(U)V ]. (4.4.2)

Similarly using (1.1.10) and (1.1.11) in (4.4.1) we get,

η(C̃(U, V )Z) = γ
′
[g(V, Z)η(U) − g(U,Z)η(V )], (4.4.3)

where γ
′
= (a+4nb)− r

2n+1

(
a
2n

+ 2b
)
. Assume that M is quasi-conformal Ricci-generalized

pseudo symmetric Sasakian manifold, then

(R · C̃)(U, V,W ; ξ, Y ) = L3Q(S, C̃)(U, V,W ; ξ, Y ) (4.4.4)

holds on M.

L.H.S of (4.4.4) takes the form

(R(ξ, Y ) · C̃)(U, V,W ) = R(ξ, Y )C̃(U, V )W − C̃(R(ξ, Y )U, V )W

− C̃(U,R(ξ, Y )V )W − C̃(U, V )R(ξ, Y )W. (4.4.5)

Taking inner product of (4.4.5) with ξ and by virtue of (1.1.9), (1.1.10), (4.4.2) and (4.4.3)

we get

g((R(ξ, Y ) · C̃)(U, V,W ), ξ) = C̃(U, V,W, Y )

− γ
′
[g(Y, U)g(V,W ) + g(U,W )g(V, Y )]. (4.4.6)

R.H.S of (4.4.4) takes the form

Q(S, C̃)(U, V,W ; ξ, Y ) = (ξ ∧S Y )C̃(U, V )W − C̃((ξ ∧S Y )U, V )W

− C̃(U, (ξ ∧S Y )V )W − C̃(U, V )(ξ ∧S Y )W. (4.4.7)
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Taking inner product of (4.4.7) with ξ and by virtue of (1.1.9), (1.1.11) we get

g(Q(S, C̃)(U, V,W ; ξ, Y ), ξ) = S(Y, C̃(U, V )W ) − η(Y )S(ξ, C̃(U, V )W )

− S(Y, U)η(C̃(ξ, V )W ) + 2nη(U)η(C̃(Y, V )W )

− S(Y, V )η(C̃(U, ξ)W ) + 2nη(V )η(C̃(U, Y )W )

+ 2nη(W )η(C̃(U, V )Y ). (4.4.8)

Using equations (4.4.6) and (4.4.8) in (4.4.4) we get

[2nL3 − 1][C̃(U, V,W, Y ) − γ
′
[g(Y, U)g(V,W ) + g(U,W )g(Y, V )] = 0. (4.4.9)

Therefore, either L3 = 1
2n

or

C̃(U, V,W, Y ) = γ
′
[g(Y, U)g(V,W ) − g(U,W )g(Y, V )]. (4.4.10)

Let {e1, . . . , en, en+1 = φ(e1), en+2 = φ(e2), . . . , e2n = φ(en), ξ} be an orthonormal basis

of the tangent space at each point of the manifold. Putting Y = U = ei in (4.4.10) and

using (4.4.1), taking summation over i,(1 ≤ i ≤ (2n+ 1)), we get

C̃(e1, V,W, e1) + . . . . . .+ C̃(en, V,W, en) + C̃(φe1, V,W, φe1) + . . .+ C̃(φen, V,W, φen)

+C̃(ξ, V,W, ξ) = γ
′{[g(e1, e1) + ....+ g(en, en)]g(V,W )

+[g(φe1, φe1) + ....+ g(φen, φen)]g(V,W ) + g(ξ, ξ)g(V,W )

−[g(e1,W )g(e1, V ) + ....+ g(en,W )g(en, V )]

−[g(φe1,W )g(φe1, V ) + ....+ g(φen,W )g(φen, V )] − g(ξ,W )g(ξ, V )}. (4.4.11)

Now using g(R(φX, φ, Y )φZ, φW ) = g(R(X, Y )Z,W ) and by virtue of (1.1.2) and (4.2.12)

in (4.4.11) we have

S(V,W ) =

[
2n(a+ 4nb) − br

a+ (2n− 1)b

]
g(V,W ). (4.4.12)
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We can state the following:

Theorem 4.4.1. A (2n+ 1) dimensional quasi-conformal Ricci-generalized pseudo sym-

metric Sasakian manifold is Einstein provided L3 6= 1
2n

.

Comparing (4.2.15) and (4.4.12) we get(
λ+

[
2n(a+ 4nb) − br

a+ (2n− 1)b

])
g(V,W ) = 0 (4.4.13)

Taking V = W = ei in (4.4.13), summing over i = 1, 2, . . . , 2n+ 1 we get

λ = −
[

2n(a+4nb)−br
a+(2n−1)b

]
.

Thus we have the following:

Corollary 4.4.2. A Ricci soliton in quasi-conformal Ricci-generalized pseudo-symmetric

Sasakian manifold is shrinking.

4.5 Concircular Ricci-generalized pseudo-symmetric

Sasakian manifold

The concircular curvature tensor C is defined by equation (3.3.1), taking Z = ξ in (3.3.1)

and using (1.1.7), (1.1.10) and (1.1.11) we get

C(U, V )ξ =

[
1 − r

2n(2n+ 1)

]
[η(V )U − η(U)V ], (4.5.1)

η(C(U, V )Z) =

[
1 − r

2n(2n+ 1)

]
[g(V, Z)η(U) − g(U,Z)η(V )]. (4.5.2)

Assume that M is concircular Ricci-generalized pseudo symmetric Sasakian manifold, then

(R · C)(U, V,W ; ξ, Y ) = L4Q(S,C)(U, V,W ; ξ, Y ), (4.5.3)
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holds on M.

L.H.S of (4.5.3) takes the form

(R(ξ, Y ) · C)(U, V,W ) = R(ξ, Y )C(U, V )W − C(R(ξ, Y )U, V )W

− C(U,R(ξ, Y )V )W − C(U, V )R(ξ, Y )W. (4.5.4)

Taking inner product of (4.5.4) with ξ and by virtue of (1.1.9), (1.1.10), (4.5.1) and (4.5.2)

we get

g((R(ξ, Y ) · C)(U, V,W ), ξ) = C(U, V,W, Y )

−
[
1 − r

2n(2n+ 1)

]
[g(Y, U)g(V,W ) + g(U,W )g(V, Y )]. (4.5.5)

R.H.S of (4.5.3) takes the form

Q(S,C)(U, V,W ; ξ, Y ) = (ξ ∧S Y )C(U, V )W − C((ξ ∧S Y )U, V )W − C(U, (ξ ∧S Y )V )W

−C(U, V )(ξ ∧S Y )W. (4.5.6)

Taking inner product of (4.5.6) with ξ and by virtue of (1.1.9) and (1.1.11) we get:

g(Q(S,C)(U, V,W ; ξ, Y ), ξ) = S(Y,C(U, V )W ) − η(Y )S(ξ, C(U, V )W )

− S(Y, U)η(C(ξ, V )W ) + 2nη(U)η(C(Y, V )W )

− S(Y, V )η(C(U, ξ)W ) + 2nη(V )η(C(U, Y )W )

+ 2nη(W )η(C(U, V )Y ). (4.5.7)

Using (4.5.5) and (4.5.7) in (4.5.3) we obtain

Either L4 = 1
2n

or

C(U, V,W, Y ) =

[
1 − r

2n(2n+ 1)

]
[g(Y, U)g(V,W ) − g(U,W )g(Y, V )]. (4.5.8)
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Let {e1, ....., en, en+1 = φ(e1), en+2 = φ(e2), ......, e2n = φ(en), ξ} be an orthonormal basis

of the tangent space at each point of the manifold. Putting Y = U = ei in (4.5.8) and

using (3.3.1), taking summation over i,(1 ≤ i ≤ (2n+ 1)), we get

C(e1, V,W, e1) + .....+ C(en, V,W, en) + C(φe1, V,W, φe1) + ....+ C(φen, V,W, φen)

+C(ξ, V,W, ξ) =

[
1 − r

2n(2n+ 1)

]
{[g(e1, e1) + ....+ g(en, en)]g(V,W )

+[g(φe1, φe1) + ....+ g(φen, φen)]g(V,W ) + g(ξ, ξ)g(V,W )

−[g(e1,W )g(e1, V ) + ....+ g(en,W )g(en, V )]

−[g(φe1,W )g(φe1, V ) + ....+ g(φen,W )g(φen, V )] − g(ξ,W )g(ξ, V )}. (4.5.9)

Now using g(R(φX, φ, Y )φZ, φW ) = g(R(X, Y )Z,W ) and by virtue of (1.1.2) and (4.2.12)

in (4.5.9) we have

S(V,W ) = 2ng(V,W ). (4.5.10)

We can state the following:

Theorem 4.5.1. A (2n+1) dimensional concircular Ricci-generalized pseudo symmetric

Sasakian manifold is Einstein provided L4 6= 1
2n

.

Comparing (4.2.15) and (4.5.10) we get

(λ+ 2n)g(V,W ) = 0. (4.5.11)

Taking V = W = ei in (4.5.11), summing over i = 1, 2, . . . , 2n+ 1 we get

λ = −2n.

Thus we have the following:

Corollary 4.5.2. A Ricci soliton in concircular Ricci-generalized pseudo symmetric Sasakian

manifold is shrinking.
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4.6 Semi-symmetric generalized Sasakian space forms

Let M(f1, f2, f3) be an (2n + 1) dimensional semi symmetric generalized Sasakian space

forms

(R ·R)(U, V,W,Z;X, Y ) = 0. (4.6.1)

Then from (1.5.1) we have

R(R(X, Y )U, V,W,Z) +R(U,R(X, Y )V,W,Z) +R(U, V,R(X, Y )W,Z)

+R(U, V,W,R(X, Y )Z) = 0. (4.6.2)

In view of (1.1.16), for X = U = ξ, (4.6.2) yields

(f1 − f3)[R(Y, V,W,Z)+ (f1 − f3)g(Y,W )g(V, Z)− (f1 − f3)g(Y, Z)g(V,W )] = 0. (4.6.3)

Since (f1 − f3) 6= 0, we have

R(Y, V,W,Z) = (f1 − f3)g(Y, Z)g(V,W ) − (f1 − f3)g(Y,W )g(V, Z). (4.6.4)

Let {e1, e2, . . . , e2n+1} be an orthonormal basis of the tangent space at each point of the

manifold. Putting Y = Z = ei in (4.6.4) and taking summation over i,(1 ≤ i ≤ (2n+ 1))

we get

S(V,W ) = 2n(f1 − f3)g(V,W ). (4.6.5)

Therefore, M(f1, f2, f3) is an Einstein manifold. Hence we state the following:

Theorem 4.6.1. Let M(f1, f2, f3) be an (2n+ 1) dimensional generalized Sasakian space

forms. If M(f1, f2, f3) is semi symmetric then M(f1, f2, f3) is an Einstein manifold.

Corollary 4.6.2. If (g, V, λ) is Ricci soliton in semi-symmetric generalized Sasakian space

forms, whereas V is conformal killing vector field, then the Ricci soliton is shrinking if

f1 < f3, steady if f1 = f3 and expanding if f1 > f3.
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Proof. From Theorem (4.6.1) and by using Ricci soliton equation (1.4.1) we have

(LV g)(V,W ) + 4n(f1 − f3)g(V,W ) + 2λg(V,W ) = 0. (4.6.6)

Let {e1, e2, . . . , e2n+1} be an orthonormal basis of the tangent space at each point of the

manifold. Putting V = W = ei in (4.6.6) and taking summation over i,(1 ≤ i ≤ (2n+ 1))

we get,

(LV g)(ei, ei) + 4n(2n+ 1)(f1 − f3) + 2(2n+ 1)λ = 0.

Since [ei, ej] = 0, for all 1 ≤ i, j ≤ (2n+ 1), then we get,

λ = −2n(f1 − f3).

4.7 Pseudo-symmetric generalized Sasakian space

forms

Let M(f1, f2, f3) be an (2n+ 1) dimensional generalized Sasakian space forms

(R ·R)(U, V,W,Z;X, Y ) = LRQ(g,R)(U, V,W,Z;X, Y ). (4.7.1)

Then from (1.5.1) and (1.5.2) we have

−R(R(X, Y )U, V,W,Z) −R(U,R(X, Y )V,W,Z) −R(U, V,R(X, Y )W,Z)

−R(U, V,W,R(X, Y )Z) = LR[R((X ∧ Y )U, V,W,Z) +R(U, (X ∧ Y )V,W,Z)

+R(U, V, (X ∧ Y )W,Z) +R(U, V,W, (X ∧ Y )Z)]. (4.7.2)
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In view of (1.1.16), for X = U = ξ, (4.7.2) yields

(f1 − f3)[R(Y, V,W,Z) + (f1 − f3)g(Y,W )g(V, Z) − (f1 − f3)g(Y, Z)g(V,W )]

= −LR[R(Y, V,W,Z) + (f1 − f3)g(Y,W )g(V, Z) − (f1 − f3)g(Y, Z)g(V,W )],

[LR + (f1 − f3)][R(Y, V,W,Z) + (f1 − f3)g(Y,W )g(V, Z) − (f1 − f3)g(Y, Z)g(V,W )] = 0.

Therefore, either LR = −(f1 − f3) or

R(Y, V,W,Z) = (f1 − f3)[g(Y, Z)g(V,W ) − g(Y,W )g(V, Z)]. (4.7.3)

Let {e1, e2, . . . , e2n+1} be an orthonormal basis of the tangent space at each point of the

manifold. Putting Y = Z = ei in (4.7.3) and taking summation over i,(1 ≤ i ≤ (2n+ 1))

we get

S(V,W ) = 2n(f1 − f3)g(V,W ). (4.7.4)

Therefore, M(f1, f2, f3) is an Einstein manifold. Hence we state the following:

Theorem 4.7.1. Let M(f1, f2, f3) be an (2n+ 1) dimensional generalized Sasakian space

forms. If M(f1, f2, f3) is pseudo-symmetric then M(f1, f2, f3) is an Einstein manifold

provided LR 6= −(f1 − f3).

Corollary 4.7.2. If (g, V, λ) is Ricci soliton in pseudo-symmetric generalized Sasakian

space forms, whereas V is conformal killing vector field, then the Ricci soliton is shrinking

if f1 < f3, steady if f1 = f3 and expanding if f1 > f3.
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4.8 Quasi-conformal semi-symmetric generalized

Sasakian space forms

The quasi-conformal curvature tensor is given by equation (4.4.1), by virtue of (1.1.13),

(1.1.15) and (1.1.16) we obtain the following

C̃(U, V )ξ = D[η(V )U − η(U)V ], (4.8.1)

C̃(ξ, U)V = D[g(U, V )ξ − η(U)V ], (4.8.2)

C̃(ξ, U)ξ = D[η(U)ξ − U ]. (4.8.3)

Where D = a(f1 − f3) + 2nb(f1 − f3) + b(2nf1 + 3f2 − f3) − r
2n+1

[
a
2n

+ 2b
]
.

Let M(f1, f2, f3) be an (2n+ 1)-dimensional quasi-conformal semi-symmetric generalized

Sasakian space forms

(R(X, Y ) · C̃)(U, V,W,Z) = 0. (4.8.4)

Then from (1.5.1) we have

−C̃(R(X, Y )U, V,W,Z) − C̃(U,R(X, Y )V,W,Z) − C̃(U, V,R(X, Y )W,Z)

−C̃(U, V,W,R(X, Y )Z) = 0. (4.8.5)

In view of (1.1.16) and (4.8.2) for X = U = ξ, (4.8.5) yields

(f1 − f3){C̃(Y, V,W,Z) +D[g(Y,W )g(V, Z) − g(Y, Z)g(V,W )]} = 0.

Since (f1 − f3) 6= 0, we have

C̃(Y, V,W,Z) = D[g(Y, Z)g(V,W ) − g(Y,W )g(V, Z)]. (4.8.6)

Let {e1, e2, . . . , e2n+1} be an orthonormal basis of the tangent space at each point of the

manifold. Putting Y = Z = ei in (4.8.6) and taking summation over i,(1 ≤ i ≤ (2n+ 1)),
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using equation (4.4.1) we get

S(V,W ) = D
′
g(V,W ). (4.8.7)

Where D
′
= 2n[(a+2nb)(f1−f3)+b(2nf1+3f2−f3)]−br

a+b(2n+1)

Theorem 4.8.1. Let M(f1, f2, f3) be an (2n+ 1)-dimensional generalized Sasakian space

forms. If M(f1, f2, f3) is quasi-conformal semi-symmetric then M(f1, f2, f3) is an Einstein

manifold.

4.9 Quasi-conformal pseudo-symmetric generalized

Sasakian space forms

Let M(f1, f2, f3) be an (2n+1)-dimensional quasi-conformal pseudo-symmetric generalized

Sasakian space forms

(R · C̃)(U, V,W,Z;X,Y ) = LC̃Q(g, C̃)(U, V,W,Z;X, Y ). (4.9.1)

Then from (1.5.1) we have

−C̃(R(X, Y )U, V,W,Z) − C̃(U,R(X, Y )V,W,Z) − C̃(U, V,R(X, Y )W,Z)

−C̃(U, V,W,R(X, Y )Z) = LC̃ [C̃((X ∧ Y )U, V,W,Z) + C̃(U, (X ∧ Y )V,W,Z)

+C̃(U, V, (X ∧ Y )W,Z) + C̃(U, V,W, (X ∧ Y )Z). (4.9.2)

In view of (1.1.6) and (4.8.2), for X = U = ξ, (4.9.2) yields

[LC̃ + (f1 − f3)]{C̃(Y, V,W,Z) +D[g(Y,W )g(V, Z) − g(Y, Z)g(V,W )]} = 0.

Therefore either LC̃ = −(f1 − f3) or

C̃(Y, V,W,Z) = D[g(Y, Z)g(V,W ) − g(Y,W )g(V, Z)]. (4.9.3)
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Let {e1, e2, , e2n+1} be an orthonormal basis of the tangent space at each point of the

manifold. Putting Y = Z = ei in (4.9.3) and taking summation over i, (1 ≤ i ≤ (2n+1)),

using equation (4.4.1) we get

S(V,W ) = D
′
g(V,W ), (4.9.4)

where D
′
= 2n[(a+2nb)(f1−f3)+b(2nf1+3f2−f3)]−br

a+b(2n+1)

Theorem 4.9.1. Let M(f1, f2, f3) be an (2n+ 1)-dimensional generalized Sasakian space

forms. If M(f1, f2, f3) is quasi-conformal pseudo-symmetric then M(f1, f2, f3) is an Ein-

stein manifold provided LC̃ 6= −(f1 − f3).

4.10 Generalized Sasakian space forms satisfies the

condition C̃ · C̃ = 0

Let M(f1, f2, f3) be an (2n+ 1)-dimensional generalized Sasakian space forms. Let C̃ · C̃

be a (0, 6)-tensor and C̃ · C̃ = 0.

−C̃(C̃(X, Y )U, V,W,Z) − C̃(U, C̃(X,Y )V,W,Z) − C̃(U, V, C̃(X,Y )W,Z)

−C̃(U, V,W, C̃(X, Y )Z) = 0. (4.10.1)

In view of (4.8.2), for X = U = ξ, (4.10.1) yields

−D[C̃(Y, V,W,Z) +D{g(Y,W )g(V, Z) − g(Y, Z)g(V,W )}] = 0

Since D 6= 0, where D = a(f1 − f3) + 2nb(f1 − f3) + b(2nf1 + 3f2 − f3) − r
2n+1

[
a
2n

+ 2b
]
.

Then we have

C̃(Y, V,W,Z) = D[g(Y, Z)g(V,W ) − g(Y,W )g(V, Z)] (4.10.2)
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Let {e1, e2, . . . , e2n+1} be an orthonormal basis of the tangent space at each point of the

manifold. Putting Y = Z = ei in (4.10.2) and taking summation over i, (1 ≤ i ≤ (2n+1)),

using equation (4.4.1) we get

S(V,W ) = D
′
g(V,W ), (4.10.3)

where D
′
= 2n[(a+2nb)(f1−f3)+b(2nf1+3f2−f3)]−br

a+b(2n+1)

Theorem 4.10.1. Let M(f1, f2, f3) be an (2n+1)-dimensional generalized Sasakian space

forms. If (0, 6)-tensor C̃ · C̃ = 0 holds on M(f1, f2, f3), then M(f1, f2, f3) is an Einstein

manifold.

4.11 Conclusion

The important results finding Sasakian manifold and generalized Sasakian space forms

are as follows:

• A (2n+1)-dimensional Ricci- generalized pseudo-symmetric Sasakian manifold, pseudo-

projective Ricci-generalized pseudo-symmetric Sasakian manifold, quasi-conformal

Ricci-generalized pseudo-symmetric Sasakian manifold, concircular Ricci-genaralized

pseudo-symmetric Sasakian manifold are Einstein manifolds. And Ricci soliton for

these manifolds is shrinking.

• Let M(f1, f2, f3) be an (2n + 1)-dimensional generalized Sasakian space form. If

M(f1, f2, f3) is semi-symmetric then M(f1, f2, f3) is an Einstein manifold.

• The triple (g, V, λ) is Ricci soliton in semi symmetric generalized Sasakian space

form, iff V is conformal killing vector field.
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• Let M(f1, f2, f3) be a (2n + 1)-dimensional generalized Sasakian space form. If

M(f1, f2, f3) is pseudo-symmetric then M(f1, f2, f3) is an Einstein manifold provided

LR 6= −(f1 − f3).

• The triple (g, V, λ) is Ricci soliton in pseudo-symmetric generalized Sasakian space

form, iff V is conformal killing vector field provided LR 6= −(f1 − f3).

• Let M(f1, f2, f3) be an (2n + 1)-dimensional generalized Sasakian-space-form. If

M(f1, f2, f3) is quasi-conformal semi-symmetric then M(f1, f2, f3) is an Einstein

manifold.

• Let M(f1, f2, f3) be an (2n + 1)-dimensional generalized Sasakian space form. If

M(f1, f2, f3) is quasi-conformal pseudo-symmetric then M(f1, f2, f3) is an Einstein

manifold provided LC 6= −(f1 − f3).

• Let M(f1, f2, f3) be an (2n+ 1)-dimensional generalized Sasakian space form. If

(0, 6)-tensor C · C = 0 holds on M(f1, f2, f3), then M(f1, f2, f3) is an Einstein

manifold.
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Chapter 5

On Kenmotsu Manifolds

5.1 Introduction

In 1972 Kenmotsu introduced and studied the notion of Kenmotsu manifolds [50]. They

set up one of the three classes of almost contact metric manifolds M whose automorphism

group attains the maximum dimension [81]. For such a manifold, the sectional curvature

of plane sections containing ξ is a constant, say c. (1) If c > 0, M is a homogeneous

Sasakian manifold of constant φ-sectional curvature. (2) If c = 0, M is global Riemannian

product of a line or a circle with a Kahler manifold of constant holomorphic sectional cur-

vature. (3) If c < 0, M is a warped product space R×f C
n. Kenmotsu [50] characterized

the differential geometric properties of manifolds of class (3); the structure so obtained is

now known as Kenmotsu structure. A Kenmotsu structure is not Sasakian [50].

Kenmotsu showed that a locally Kenmotsu manifold is a warped product I ×f N of an

interval I and a Kaehler manifold N with warping function f(t) = set, where s is a non-

zero constant and Kenmotsu proved that if the manifold is locally symmetric, that is, if

∇R = 0, then it has constant curvature −1 so it is locally isometric to the Hyperbolic

space H2m+1(−1). Kenmotsu manifolds have been studied by various

96



On Kenmotsu Manifolds 97

authors [12], [17], [45].

The author Sato [70] introduced the notion of almost para-contact manifolds. Before

Sato, Takahashi [79], defined almost contact manifolds (in particular, Sasakian manifolds)

equipped with an associated pseudo-Riemannian metric. Kaneyuki et al. [49] defined

the notion of almost paracontact structure on pseudo-Riemannian manifold of dimension

n = (2m+1). Later Zamkovoy [86] showed that any almost paracontact structure admits

a pseudo-Riemannian metric with signature (n+ 1, n). Later, Adati and Matsumoto de-

fined and studied p-Sasakian and sp-Sasakian manifolds which are regarded as a special

kind of an almost contact Riemannian manifolds. Before Sato, Kenmotsu defined a class

of almost contact Riemannian manifolds. In 1995, Sinha and Sai Prasad [71] have defined

a class of almost para contact metric manifolds namely para-Kenmotsu (p-Kenmotsu)

and special para-Kenmotsu (sp-Kenmotsu) manifolds as analogues of p-Sasakian and sp-

Sasakian manifolds.

In 1924, Friedman and Schouten [34] introduced the idea of a semi-symmetric linear

connection in a differentiable manifold. Then in 1932, Hayden [40] introduced a metric

connection ∇̃ with a non-zero torsion on a Riemannian manifold. Such a connection

is called Hayden connection. A systematic study of semi-symmetric metric connection

on a Riemannian manifold has been given by Yano [85] in 1970. Semi-symmetric met-

ric connection on Riemannian manifolds is also studied by various authors such as [11],

[13], [55], [66], [69], [77]. In this chapter we study semi-symmetric, pseudo-symmetric,

pseudo-projective semi-symmetric Kenmotsu manifolds admitting semi-symmetric met-

ric connection and obtain Ricci soliton for these manifolds with respect to Levi-Civita

connection. Also we study Ricci soliton in para-Kenmotsu manifold admitting conformal
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Ricci soliton.

5.2 Semi-symmetric metric connection on Kenmotsu

manifolds

The torsion tensor T̃ for n-dimensional differentiable manifold with linear connection ∇̃

is given by

T̃ (X, Y ) = ∇̃XY − ∇̃YX − [X, Y ]. (5.2.1)

If the torsion tensor vanishes, then the connection ∇̃ is symmetric, otherwise it is non-

symmetric. The connection ∇̃ is said to be a metric connection, if there is a Riemannian

metric g in M such that ∇̃g = 0, then the connection ∇̃ is a metric connection, otherwise

it is non-metric.

A linear connection is said to be a semi-symmetric connection in a Riemannian manifold

if its torsion tensor T̃ is of the form

T̃ (X, Y ) = ϕ(Y )X − ϕ(X)Y, (5.2.2)

where the 1-form ϕ is defined by ϕ(X) = g(X, ρ), and ρ is vector field.

In an almost contact metric manifold, a semi-symmetric metric connection is defined by

T̃ (X, Y ) = η(Y )X − η(X)Y .

A relation between the semi-symmetric metric connection ∇̃ and the Levi-Civita connec-

tion ∇ of M has been obtained by Yano [85] and it is given by

∇̃XY = ∇XY + η(Y )X − g(X, Y )ξ, (5.2.3)
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put Y = ξ in (5.2.3) and using (1.1.20) we get,

∇̃Xξ = 2[X − η(X)ξ]. (5.2.4)

Furthermore, a relation between the curvature tensor R̃ and R of type (1, 3) of the con-

nections ∇̃ and ∇ respectively is given by

R̃(X, Y )Z = R(X, Y )Z − α(Y, Z)X + α(X,Z)Y − g(Y, Z)FX + g(X,Z)FY, (5.2.5)

where α is a tensor field of type (0, 2) given by

α(Y, Z) = (∇Y η)(Z) − η(Y )η(Z) + 1
2
η(ξ)g(Y, Z),

α(Y, Z) = (∇̃Y η)(Z) − 1

2
g(Y, Z), (5.2.6)

and F is a tensor field of type (1, 1) given by g(FY, Z) = α(Y, Z) for any vector fields

Y, Z.

From (5.2.5), it follows that

S̃(Y, Z) = S(Y, Z) − (n− 2)α(Y, Z) − ag(Y, Z), (5.2.7)

where S̃ denotes the Ricci tensor with respect to ∇̃, a=Trace of α. For a Kenmotsu

manifold, in view of (5.2.6) and (1.1.19), we get from (5.2.5) that

R̃(X, Y )Z = R(X, Y )Z − 3[g(Y, Z)X − g(X,Z)Y ] + 2[η(Y )X − η(X)Y ]η(Z)

− 2[g(X,Z)η(Y ) − g(Y, Z)η(X)]. (5.2.8)

So from (5.2.8) and (1.1.22) we have

R̃(X, Y )ξ = 2[η(X)Y − η(Y )X], (5.2.9)

R̃(ξ, Y )Z = 2[η(Z)Y − g(Y, Z)ξ], (5.2.10)

R̃(ξ, Y )ξ = 2[Y − η(Y )ξ]. (5.2.11)
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On contracting (5.2.8), we get

S̃(Y, Z) = S(Y, Z) − (3n− 5)g(Y, Z) + 2(n− 2)η(Y )η(Z), (5.2.12)

where S̃ and S are the Ricci tensors o the connections ∇̃ and ∇ respectively. So in a Ken-

motsu manifold, the Ricci tensor of the semi-symmetric metric connection is symmetric.

It follows from (1.1.20) and (5.2.12) that

S̃(φY, φZ) = S̃(Y, Z) + 2(n− 1)η(Y )η(Z), (5.2.13)

S̃(Y, ξ) = −2(n− 1)η(Y ), (5.2.14)

Q̃Y = −2(n− 1)Y. (5.2.15)

Again, contracting (5.2.12) over Y, Z, we get

r̃ = r − 2(n− 1),

where Q̃ is the Ricci operator, r̃ and r are the scalar curvatures of the connections ∇̃ and

∇ respectively.

From (1.4.1) we have

(L̃V g)(X, Y ) + 2S̃(X, Y ) + 2λ̃g(X, Y ) = 0, (5.2.16)

where L̃V denotes the Lie derivative operator along the conformal killing vector field V

with respect to Levi-Civita connection.

(L̃V g)(X, Y ) = (LV g)(X, Y ) + η(V )g(Y, Z) − g(Y, V )η(Z) − g(Z, V )η(Y ). (5.2.17)

Using (5.2.3) and (5.2.17) in (5.2.16) we have

S̃(X, Y ) = 2η(X)η(Y ) − (2λ+ 3)

2
g(X, Y ). (5.2.18)
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From (5.2.12) and (5.2.18) we get

S(X, Y ) =

(
6n− 2λ̃− 13

2

)
g(X, Y ) + 2(3 − n)η(X)η(Y ). (5.2.19)

Thus we can state following:

Theorem 5.2.1. A Kenmotsu manifold admitting semi-symmetric metric connection is

an η-Einstein manifold.

5.3 Ricci soliton in semi-symmetric Kenmotsu mani-

folds with respect to semi-symmetric metric con-

nection

Let us consider a semi-symmetric Kenmotsu manifold M(n ≥ 3) admitting a semi-

symmetric metric connection, then

(R̃(X, Y ) · R̃)(U, V )Z = 0 (5.3.1)

R̃(X,Y )R̃(U, V )Z − R̃(R̃(X, Y )U, V )Z − R̃(U, R̃(X, Y )V )Z

−R̃(U, V )R̃(X, Y )Z = 0. (5.3.2)

Put X = U = ξ in (5.3.2) and using (5.2.10) and (5.2.11) we get

R̃(Y, V )Z = 2{g(Y, Z)V − g(V, Z)Y }. (5.3.3)

Taking inner product of (5.3.3) with W , we get

R̃(Y, V, Z,W ) = 2{g(Y, Z)g(V,W ) − g(V, Z)g(Y,W )}. (5.3.4)
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Taking Y = W = ei in (5.3.4) and summing over i = 1, 2, . . . , n, we get

S̃(V, Z) = −2(n− 1)g(Y, Z). (5.3.5)

From (5.2.18) and (5.3.5) and contracting over V, Z we get the value of λ that is

λ = 3n−4+4n(n−1)
2n

.

Theorem 5.3.1. Ricci soliton in semi-symmetric Kenmotsu manifold admitting semi-

symmetric metric connection is expanding with respect to Levi-Civita connection.

5.4 Ricci soliton in pseudo-projective semi-symmetric

Kenmotsu manifolds with respect to semi-symmetric

metric connection

In a Kenmotsu manifold M of dimension n ≥ 3, the pseudo-projective curvature tensor

P̃ with respect to semi-symmetric metric connection ∇̃ is given by

P̃ (X, Y )Z = aR̃(X, Y )Z + b[S̃(Y, Z)X − S̃(X,Z)Y ]

− r̃

n

(
a

n− 1
+ b

)
[g(Y, Z)X − g(X,Z)Y ], (5.4.1)

for X, Y, Z ∈ Γ(TM), where R̃, S̃ are the Riemannian curvature tensor, Ricci tensor with

respect to the connection ∇̃ respectively.

From (5.4.1) we have,

P̃ (ξ, Y )Z =

[
a+ 2b(n− 1) +

r̃

n

(
a

n− 1
+ b

)]
[η(Z)Y − g(Y, Z)ξ], (5.4.2)

P̃ (ξ, Y )ξ =

[
a+ 2b(n− 1) +

r̃

n

(
a

n− 1
+ b

)]
[Y − η(Y )ξ]. (5.4.3)
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Let us consider a pseudo-projective semi-symmetric Kenmotsu manifold M(n ≥ 3) ad-

mitting a semi-symmetric metric connection, then

(R̃(X, Y ) · P̃ )(U, V )Z = 0, (5.4.4)

R̃(X, Y )P̃ (U, V )Z − P̃ (R̃(X, Y )U, V )Z − P̃ (U, R̃(X, Y )V )Z

−P̃ (U, V )R̃(X, Y )Z = 0. (5.4.5)

Put X = U = ξ in (5.4.5)and using (5.4.2) and (5.4.3), we get

P̃ (Y, V )Z =

[
a+ 2b(n− 1) +

r̃

n

(
a

n− 1
+ b

)]
{g(Y, Z)V − g(V, Z)Y }. (5.4.6)

Taking inner product of (5.4.6) with W, we get

P̃ (Y, V, Z,W ) =

[
a+ 2b(n− 1) +

r̃

n

(
a

n− 1
+ b

)]
{g(Y, Z)g(V,W ) − g(V, Z)g(Y,W )}.

(5.4.7)

Taking Y = W = ei in (5.4.7), using (5.4.1) and summing over i = 1, 2, . . . , n we get

S̃(V, Z) = −
[
(n− 1)(a+ 2b(n− 1))

a+ b(n− 1)

]
g(Y, Z). (5.4.8)

From (5.2.18) and (5.4.8) and contracting over V, Z we get the value of λ that is

λ = 4+n(n−1)(a+2b(n−1))−3n
n(a+b(n−1))

.

Theorem 5.4.1. Ricci soliton in pseudo-projective semi-symmetric Kenmotsu manifold

admitting semi-symmetric metric connection is expanding with respect to Levi-Civita con-

nection.
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5.5 Ricci soliton in pseudo-symmetric Kenmotsu man-

ifolds with respect to semi-symmetric metric con-

nection

Let us consider a pseudo-symmetric Kenmotsu manifold M(n ≥ 3) admitting a semi-

symmetric metric connection, then

R̃(X, Y ) · R̃(U, V )Z = LR̃[((X ∧ Y ) · R̃)(U, V )Z], (5.5.1)

where LR is smooth function on M.

R̃(X, Y )R̃(U, V )Z − R̃(R̃(X, Y )U, V )Z − R̃(U, R̃(X, Y )V )Z

−R̃(U, V )R̃(X, Y )Z = LR̃[(X ∧ Y )R̃(U, V )Z − R̃((X ∧ Y )U, V )Z

−R̃(U, (X ∧ Y )V )Z − R̃(U, V )(X ∧ Y )Z]. (5.5.2)

Put X = U = ξ in (5.5.2) and using (5.2.10) and (5.2.11) we get

[LR̃ − 1][R̃(Y, V )Z − 2{g(Y, Z)V − g(V, Z)Y }] = 0. (5.5.3)

Taking inner product of (5.5.3) with W, we get either LR̃ = 1 or

R̃(Y, V, Z,W ) = 2{g(Y, Z)g(V,W ) − g(V, Z)g(Y,W )}. (5.5.4)

Taking Y = W = ei in (5.5.4) and summing over i = 1, 2, . . . , n we get.

S̃(V, Z) = −2(n− 1)g(Y, Z). (5.5.5)

From (5.2.18) and (5.5.5) and contracting over V, Z we get the value of λ that is

λ = 3n−4+4n(n−1)
2n

.
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Theorem 5.5.1. Ricci soliton in pseudo-symmetric Kenmotsu manifold admitting semi-

symmetric metric connection is expanding with respect to Levi-Civita connection.

5.6 Ricci soliton in para-Kenmotsu manifolds satis-

fying R ·C = LCQ(g, C) admitting conformal Ricci

soliton

Definition 5.6.1. An n-dimensional para-Kenmotsu manifold M is called concircularly

pseudo-symmetric if the tensors R ·C and Q(g, C) are linearly dependent. This is equiv-

alent to

R · C = LCQ(g, C) (5.6.1)

holding on the set UC = {x ∈M ;C 6= 0atx}, where LC is smooth function on UC .

For a n-dimensional manifold, the concircular curvature tensor C is given by

C(X, Y )Z = R(X, Y )Z − r

n(n− 1)
[g(Y, Z)X − g(X,Z)Y ]. (5.6.2)

Equation (5.6.1) can be written as

R(X, Y )C(U, V )Z − C(R(X,Y )U, V )Z − C(U,R(X, Y )V )Z

−C(U, V )R(X, Y )Z = LC [(X ∧ Y )C(U, V ) − C((X ∧ Y )U, V )Z

−C(U, (X ∧ Y )V )Z − C(U, V )(X ∧ Y )Z]. (5.6.3)

Taking X = U = ξ in (5.6.3) and by the definition of endomorphism i.e., (X ∧ Y )Z =

g(Y, Z)X − g(X,Z)Y also by virtue of (1.1.30), (5.6.2) we can obtain

(LC + 1){C(Y, V )Z +

(
1 +

r

n(n− 1)

)
[g(V, Z)Y − g(Y, Z)V ]} = 0. (5.6.4)
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There either LC = −1 or

C(Y, V )Z =

(
1 +

r

n(n− 1)

)
[g(Y, Z)V − g(V, Z)Y ]. (5.6.5)

Now on contraction of (5.6.5) and using (5.6.2) we get the Ricci tensor

S(V, Z) = −(n− 1)g(V, Z). (5.6.6)

Thus we state the following:

Lemma 5.6.1. Concircularly pseudo-symmetric para-Kenmotsu manifold is Einstein pro-

vided LC 6= −1.

Theorem 5.6.2. Ricci soliton in para-Kenmotsu manifold satisfying the condition

R · C = LCQ(g, C) which admit conformal Ricci soliton (g, V, λ, ρ) is

1. shrinking, if ρ < 2(n− 2)(λ < 0).

2. steady, if ρ = 2(n− 2)(λ = 0).

3. expanding, if ρ > 2(n− 2)(λ > 0).

Proof. By the definition of conformal Ricci soliton i.e., equation (1.4.3) and Lie derivative

we have

g(∇Xξ, Y ) + g(X,∇Y ξ) + 2S(X, Y ) =

[
2λ−

(
ρ+

2

n

)]
g(X, Y ). (5.6.7)

Using (1.1.28) in (5.6.7) we get

S(X, Y ) =

[
λ− 1 − ρ

2
− 1

n

]
g(X, Y ) + η(X)η(Y ). (5.6.8)

From (5.6.6) and (5.6.8) we can get the value of λ given by

λ =
ρ

2
− (n− 2). (5.6.9)

Which completes the proof.
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5.7 Ricci soliton in para-Kenmotsu manifolds satis-

fying C ·R = LRQ(g,R) admitting conformal Ricci

soliton

Let us assume the pseudo-symmetric condition

C ·R = LRQ(g,R). (5.7.1)

Equation (5.7.1) can be written as

C(X, Y )R(U, V )Z −R(C(X, Y )U, V )Z −R(U,C(X, Y )V )Z

−R(U, V )C(X, Y )Z = LR[(X ∧ Y )R(U, V ) −R((X ∧ Y )U, V )Z

−R(U, (X ∧ Y )V )Z −R(U, V )(X ∧ Y )Z]. (5.7.2)

Taking X = U = ξ in (5.7.2) and by the definition of endomorphism i.e., (X ∧ Y )Z =

g(Y, Z)X − g(X,Z)Y also by virtue of (1.1.30), (5.2.3) we can obtain[
LR +

(
1 +

r

n(n− 1)

)]
{R(Y, V )Z + [g(V, Z)Y − g(Y, Z)V ]} = 0. (5.7.3)

There either LR = −
(
1 + r

n(n−1)

)
or

R(Y, V )Z = g(Y, Z)V − g(V, Z)Y (5.7.4)

Now on contraction of (5.7.4) we get the Ricci tensor

S(V, Z) = −(n− 1)g(V, Z). (5.7.5)

Thus we state the following:

Lemma 5.7.1. Para-Kenmotsu manifold satisfying the pseudosymmetric condition

C ·R = LRQ(g,R) is Einstein provided LR 6= −
(
1 + r

n(n−1)

)
.
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Theorem 5.7.2. Ricci soliton in para-Kenmotsu manifold satisfying the condition

C ·R = LRQ(g,R) which admit conformal Ricci soliton (g, V, λ, ρ) is

1. shrinking, if ρ < 2(n− 2)(λ < 0).

2. steady, if ρ = 2(n− 2)(λ = 0).

3. expanding, if ρ > 2(n− 2)(λ > 0).

5.8 Ricci soliton in para-Kenmotsu manifolds satis-

fying R · P̄ = LP̄Q(g, P̄ ) admitting conformal Ricci

soliton

Definition 5.8.1. An n-dimensional para-Kenmotsu manifold M is called pseudo-projectively-

pseudo-symmetric if the tensors R · P̄ and Q(g, P̄ ) are linearly dependent. This is equiv-

alent to

R · P̄ = LP̄Q(g, P̄ ). (5.8.1)

holding on the set UP̄ = {x ∈M ; P̄ 6= 0at x}, where LP̄ is smooth function on UP̄ .

For an n-dimensional manifold the pseudo-projective curvature tensor defined by

P̄ (X, Y )Z = aR(X, Y )Z + b[S(Y, Z)X − S(X,Z)Y ]

− r

n

(
a

n− 1
+ b

)
[g(Y, Z)X − g(X,Z)Y ]. (5.8.2)
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Equation (5.8.1) can be written as

R(X, Y )P̄ (U, V )Z − P̄ (R(X, Y )U, V )Z − P̄ (U,R(X,Y )V )Z

−P̄ (U, V )R(X, Y )Z = LP̄ [(X ∧ Y )P̄ (U, V ) − P̄ ((X ∧ Y )U, V )Z

−P̄ (U, (X ∧ Y )V )Z − P̄ (U, V )(X ∧ Y )Z]. (5.8.3)

Taking X = U = ξ in (5.8.3) and by the definition of endomorphism i.e., (X ∧ Y )Z =

g(Y, Z)X − g(X,Z)Y also by virtue of (1.1.30), (5.8.2) we can obtain

(LP̄ + 1){P̄ (Y, V )Z +

[
a+ b(n− 1) +

r

n

(
a

n− 1
+ b

)]
[g(V, Z)Y − g(Y, Z)V ]} = 0.

(5.8.4)

There either LP̄ = −1 or

P̄ (Y, V )Z =

[
a+ b(n− 1) +

r

n

(
a

n− 1
+ b

)]
[g(Y, Z)V − g(V, Z)Y ] (5.8.5)

Now on contraction of (5.8.5) and using (5.8.2) we get the Ricci tensor

S(V, Z) = −(n− 1)g(V, Z). (5.8.6)

Thus we state the following:

Lemma 5.8.1. Pseudo-projectively pseudo-symmetric para-Kenmotsu manifold is Ein-

stein provided LP̄ 6= −
(
a+ b(n− 1) + r

n

(
a

n−1
+ b
))

.

Theorem 5.8.2. Ricci soliton in para-Kenmotsu manifold satisfying the condition

R · P̄ = LP̄Q(g, P̄ ) which admit conformal Ricci soliton (g, V, λ, ρ) is

1. shrinking, if ρ < 2(n− 2)(λ < 0).

2. steady, if ρ = 2(n− 2)(λ = 0).

3. expanding, if ρ > 2(n− 2)(λ > 0).
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5.9 Ricci soliton in para-Kenmotsu manifolds satis-

fying P̄ ·R = LRQ(g,R) admitting conformal Ricci

soliton

Let us assume the pseudo-symmetric condition

P̄ ·R = LRQ(g,R). (5.9.1)

Equation (5.9.1) can be written as

P̄ (X, Y )R(U, V )Z −R(P̄ (X,Y )U, V )Z −R(U, P̄ (X, Y )V )Z

−R(U, V )P̄ (X, Y )Z = LR[(X ∧ Y )R(U, V ) −R((X ∧ Y )U, V )Z

−R(U, (X ∧ Y )V )Z −R(U, V )(X ∧ Y )Z]. (5.9.2)

Taking X = U = ξ in (5.9.2) and by the definition of endomorphism i.e., (X ∧ Y )Z =

g(Y, Z)X − g(X,Z)Y also by virtue of (1.1.30), (5.8.2) we can obtain

[
LR +

(
a+ b(n− 1) +

r

n

(
a

n− 1
+ b

))]
{R(Y, V )Z + [g(V, Z)Y − g(Y, Z)V ]} = 0.

(5.9.3)

There either LR = −
(
a+ b(n− 1) + r

n

(
a

n−1
+ b
))

or

R(Y, V )Z = g(Y, Z)V − g(V, Z)Y. (5.9.4)

Now on contraction of (5.9.4) we get the Ricci tensor

S(V, Z) = −(n− 1)g(V, Z). (5.9.5)

Thus we state the following:
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Lemma 5.9.1. Para-Kenmotsu manifold satisfying the pseudo-symmetric condition

P̄ ·R = LRQ(g,R) is Einstein provided LR 6= −
(
a+ b(n− 1) + r

n

(
a

n−1
+ b
))

.

Theorem 5.9.2. Ricci soliton in para-Kenmotsu manifold satisfying the condition

P̄ ·R = LRQ(g,R) which admitting conformal Ricci soliton (g, V, λ, ρ) is

1. shrinking, if ρ < 2(n− 2)(λ < 0).

2. steady, if ρ = 2(n− 2)(λ = 0).

3. expanding, if ρ > 2(n− 2)(λ > 0).

5.10 Conclusion

The influential results finding of this chapter are as follows:

• A Kenmotsu manifold admitting semi-symmetric metric connection is η-Einstein

manifold.

• Ricci soliton in semi-symmetric, pseudo-symmetric, pseudo projective semi-symmetric

Kenmotsu manifolds admitting semi-symmetric metric connection is expanding with

respect to Levi-Civita connection.

We have obtained the following result for conformal Ricci soliton in para-Kenmotsu

manifolds:

• Ricci soliton in para-Kenmotsu manifold satisfying the pseudo-symmetric conditions

R ·C = LCQ(g, C), C ·R = LRQ(g,R), R · P̄ = LP̄Q(g, P̄ ) and P̄ ·R = LRQ(g,R)

which admit conformal Ricci soliton (g, V, λ, ρ) is
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1. shrinking, if ρ < 2(n− 2)(λ < 0).

2. steady, if ρ = 2(n− 2)(λ = 0).

3. expanding, if ρ > 2(n− 2)(λ > 0).
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Chapter 6

On (LCS)n-manifolds

6.1 Introduction

The notion of Lorentzian concircular structure manifolds (briefly (LCS)n-manifolds) with

an example was introduced by Shaikh [74], which generalize the notion of LP-Sasakian

manifolds introduced by Mantsumoto [53] and also by Mihai and Rosca [54]. Then Shaikh

and Baishya [75], [76] investigated the applications of (LCS)n-manifolds to the general

theory of relativity and cosmology. The (LCS)n-manifolds are also studied by Atceken

et al. [10], [9] and many authors. The interest in studying Ricci solitons has consider-

ably increased and has been carried out in many contexts; on Kenmotsu manifolds, α-

Sasakian manifolds, trans-Sasakian manifolds, Lorentzian α-Sasakian manifolds, (LCS)n-

manifolds, f-Kenmotsu manifolds respectively. Recently Blaga studied the η-Ricci soliton

on Lorentzian para-Sasakian manifolds and on para-Kenmotsu manifolds [19], [18]. In [68]

the authors studied the η-Ricci solitons on para-Sasakian manifolds. Recently Chandra,

Hui and Shaikh [25], Hui and Chakraborty [43], [44] have also studied Ricci solitons and

η-Ricci solitons in (LCS)n-manifolds. However authors [25] have used Esienhart problem

113
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to study Ricci solitons In this chapter we study the η-Ricci soliton condition for semi-

symmetric and pseudo-symmetric (LCS)n manifold, also irrotational (LCS)n manifolds

and get the following results.

6.2 η-Ricci soliton on (LCS)n-manifolds

Let M(φ, ξ, η, g) be an n-dimensional Lorentzian concircular structure manifold and let

(M, (g, ξ, λ, µ)) be a (LCS)n η-Ricci soliton. Then the relation (1.4.2) implies

(Lξg)(X, Y ) + 2S(X, Y ) + 2λg(X,Y ) + 2µη(X)η(Y ) = 0,

2S(X, Y ) = −(Lξg)(X, Y ) − 2λg(X, Y ) − 2µη(X)η(Y ). (6.2.1)

Here Lξg denotes the Lie derivative of Riemannian metric g along a vector field ξ, by the

definition of Lie derivative we have

(Lξg)(X, Y ) = g(∇Xξ, Y ) + g(∇Y ξ,X). (6.2.2)

Using (1.1.35) in (6.2.2) we obtain

(Lξg)(X, Y ) = 2α{g(X,Y ) + η(X)η(Y )}. (6.2.3)

Using (6.2.1) and (6.2.3) we can write

S(X,Y ) = (−α− λ)g(X, Y ) + (−α− µ)η(X)η(Y ). (6.2.4)

Thus we state the following theorem:

Theorem 6.2.1. An (LCS)n η-Ricci soliton (M, (g, ξ, λ, µ)) is an η-Einstein manifold.
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In particular, if µ = 0 in (6.2.4), then it reduces to

S(X,Y ) = (−α− λ)g(X, Y ) − αη(X)η(Y ). (6.2.5)

Thus we state the following:

Corollary 6.2.2. An (LCS)n-Ricci soliton (M, (g, ξ, λ)) is an η-Einstein manifold.

6.3 η-Ricci soliton on pseudo-projective pseudo

-symmetric (LCS)n-manifolds

An (LCS)n-manifoldM is said to be pseudo-symmetric ifM satisfies the condition R·P̄ =

LP̄Q(g, P̄ ), where LP̄ is some smooth function on M and P̄ is the pseudo-projective

curvature tensor and it is given by

P̄ (X, Y )Z = aR(X, Y )Z + b[S(Y, Z)X − S(X,Z)Y ]

− r

n

(
a

n− 1
+ b

)
[g(Y, Z)X − g(X,Z)Y ]. (6.3.1)

Using (1.1.44), (6.2.5) in (6.3.1) we get

η(P̄ (X, Y )Z) = ϑ[g(Y, Z)η(X) − g(X,Z)η(Y )], (6.3.2)

P̄ (ξ, Y )Z = ϑ[g(Y, Z)ξ − η(Z)Y ], (6.3.3)

where, ϑ =
[
a(α2 − ρ) + b(−α− λ) − r

n

(
a

n−1
+ b
)]

.

(R · P̄ )(U, V, Z; ξ, Y ) = LP̄ (Q(g, P̄ )(U, V, Z; ξ, Y )). (6.3.4)

L.H.S of (6.3.4) takes the form

(R · P̄ )(U, V, Z; ξ, Y ) = R(ξ, Y )P̄ (U, V )Z − P̄ (R(ξ, Y )U, V )Z

− P̄ (U,R(ξ, Y )V )Z − P̄ (U, V )R(ξ, Y )Z. (6.3.5)
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Taking inner product of (6.3.5) with ξ and by virtue of (1.1.43) and (6.3.2) we can obtain

g((R · P̄ )(U, V, Z; ξ, Y ), ξ) = −(α2 − ρ)P̄ (U, V, Z, Y )

+ (α2 − ρ)ϑ[g(Y, U)g(V, Z) − g(Y, V )g(U,Z)]. (6.3.6)

R.H.S of (6.3.4) takes the form

Q(g, P̄ )(U, V, Z; ξ, Y ) = (ξ ∧ Y )P̄ (U, V )Z − P̄ ((ξ ∧ Y )U, V )Z

− P̄ (U, (ξ ∧ Y )V )Z − P̄ (U, V )R(ξ ∧ Y )Z. (6.3.7)

Taking inner product of (6.3.7) with ξ and by using the definition of endomorphism i.e.,

(X ∧ Y )Z = g(Y, Z)X − g(X,Z)Y and (6.3.2) we can obtain

g(Q(g, P̄ )(U, V, Z; ξ, Y ), ξ) = −P̄ (U, V, Z, Y )

+ ϑ[g(Y, U)g(V, Z) − g(Y, V )g(U,Z)]. (6.3.8)

Using equations (6.3.6) and (6.3.8) in (6.3.4) we can get

Either LP̄ = (α2 − ρ) or

− P̄ (U, V, Z, Y ) + ϑ[g(Y, U)g(V, Z) − g(Y, V )g(U,Z)] = 0. (6.3.9)

Let {e1, e2, . . . , en} be an orthonormal basis of the tangent space at each point of the

manifold. Putting U = Y = ei in (6.3.9) and taking summation over i, (1 ≤ i ≤ n) and

using equation (6.3.1) we get

S(V, Z) =

[
a(α2 − ρ) + b(−α− λ)

a+ b(n− 1)

]
g(V, Z). (6.3.10)

Thus we can state the following:

Theorem 6.3.1. A pseudo-projective pseudo-symmetric (LCS)n η-Ricci soliton (M, (g, ξ, λ, µ))

is an Einstein manifold provided LP̄ 6= (α2 − ρ).
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Similarly we obtain the same result for pseudo-projective semi-symmetric (LCS)n-

manifold and we can state the following:

Corollary 6.3.2. An pseudo-projectively semi-symmetric (LCS)n η-Ricci soliton (M, (g, ξ, λ, µ))

is an Einstein manifold.

In particular, if µ = 0 in (6.2.4) and comparing with (6.3.10) and contracting we get

the value of λ as

λ =
an(α2 − ρ)

n(b− 1)
+
α(a+ b(n− 1))

n(b− 1)
− α. (6.3.11)

Thus, we can state the following:

Corollary 6.3.3. A Ricci soliton in pseudo-projective pseudo-symmetric manifolds is

given by (6.3.11)

6.4 η-Ricci soliton on (LCS)n-manifolds admitting

pseudo-symmetric condition P̄ ·R = LRQ(g,R)

(P̄ (ξ, Y ) ·R)(U, V )Z = LR[((ξ ∧ Y ) ·R)(U, V )Z], (6.4.1)

which implies

P̄ (ξ, Y )R(U, V )Z −R(P̄ (ξ, Y )U, V )Z −R(U, P̄ (ξ, Y )V )Z

−R(U, V )P̄ (ξ, Y )Z = LR[(ξ ∧ Y )R(U, V )Z −R((ξ ∧ Y )U, V )Z

−R(U, (ξ ∧ Y )V )Z −R(U, V )(ξ ∧ Y )Z]. (6.4.2)

Taking inner product of (6.4.2) with ξ and using (6.3.3) and (1.1.44) we can get

Either LR = ϑ, or

R(U, V, Z, Y ) = (α2 − ρ)[g(Y, U)g(V, Z) − g(Y, V )g(U,Z)]. (6.4.3)
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Let {e1, e2, . . . , en} be an orthonormal basis of the tangent space at each point of the

manifold. Putting U = Y = ei in (6.4.3) and taking summation over i,(1 ≤ i ≤ n), we

get

S(V, Z) = (α2 − ρ)(n− 1)g(V, Z). (6.4.4)

Thus we can state the following:

Theorem 6.4.1. An (LCS)n η-Ricci soliton (M, (g, ξ, λ, µ)) admitting pseudo-symmetric

condition P̄ ·R = LRQ(g,R) is an Einstein manifold provided LR 6= ϑ .

Consequently we state the following:

Corollary 6.4.2. An (LCS)n η-Ricci soliton (M, (g, ξ, λ, µ)) admitting semi-symmetric

condition P̄ ·R = 0 is an Einstein manifold.

6.5 Ricci soliton in irrotational pseudo-projective

(LCS)n-manifolds

Let (g, V, λ) be a Ricci soliton in an n-dimensional (LCS)n-manifold M . From (1.1.35)

we have

(Lξg)(X, Y ) = 2α[g(X,Y ) − η(X)η(Y )]. (6.5.1)

From (1.4.1) and (6.5.1) we get

S(X, Y ) = −[(α+ λ)g(X, Y ) + αη(X)η(Y )]. (6.5.2)
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The above equation yields that

QX = −[(α+ λ)X + αη(X)ξ], (6.5.3)

S(X, ξ) = −λη(X), (6.5.4)

r = −λn− α(n− 1). (6.5.5)

The pseudo-projective curvature tensor P̄ is given by (6.3.1). Put Z = ξ in (6.3.1) and

using (1.1.42) and (6.5.2) we get

P̄ (X, Y )ξ = ϑ[η(Y )X − η(X)Y ], (6.5.6)

where ϑ = a(α2 − ρ) − λb− r
n

(
a

n−1
+ b
)
.

The rotation (curl) of pseudo-projective curvature tensor P̄ on a Riemannian manifold is

given by

RotP̄ = (∇U P̄ )(X, Y, Z)+(∇XP̄ )(U, Y, Z)+(∇Y P̄ )(U,X,Z)− (∇ZP̄ )(X, Y, U). (6.5.7)

By virtue of second Bianchi identity

(∇U P̄ )(X, Y, Z) + (∇XP̄ )(U, Y, Z) + (∇Y P̄ )(U,X,Z) = 0. (6.5.8)

i.e.,

curlP̄ = −(∇ZP̄ )(X, Y, U).

If the pseudo-projective curvature tensor is irrotational then curlP̄ = 0 and we have

(∇ZP̄ )(X, Y, U) = 0. Which implies

∇Z{P̄ (X, Y )U)} = P̄ (∇ZX,Y )U + P̄ (X,∇ZY )U + P̄ (X, Y )∇ZU. (6.5.9)

Put U = ξ in (6.5.9) and by virtue of (1.1.34), (1.1.35), (1.1.36) and (6.5.6) we can get

P̄ (X,Y )Z = ϑ{g(Y, Z)X − g(X,Z)Y }. (6.5.10)
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Taking inner product of (6.5.10) with W

P̄ (X, Y, Z,W ) = ϑ{g(Y, Z)g(X,W ) − g(X,Z)g(Y,W )}. (6.5.11)

On contraction of equation (6.5.11) over X and W and using (6.3.1) we get

S(Y, Z) =

[
(a(α2 − ρ) − bλ)(n− 1)

a+ b(n− 1)

]
g(Y, Z) (6.5.12)

Put Y = Z = ξ in (6.5.12) and using (6.5.4) we can get the value of λ is given by

λ = −(n− 1)(α2 − ρ). (6.5.13)

We have the following well known established theorem [8]

Theorem 6.5.1. If S : α(x1, x2, . . . , xn) = c is a surface (abstract surface or manifold)

in Rn then the gradient vector field ∇α (connected only at points of S) is a non-vanishing

normal vector field on the entire surface (abstract surface or manifold) S.

Remark 6.5.1. Taking a real valued scalar function α associated with an (LCS)n-manifold

with M = Rn and α = c we have, ∇α as a non vanishing normal vector on the subman-

ifold S ⊂ M and directional derivative of α with respect to ξ, ρ = ξα = ξ.∇α =

|ξ||∇α| cos(ξ̂,∇α)

1. If ξ is tangent to S then ξα = 0.

2. If ξ is tangent to M but not to S then ξα 6= 0.

3. If the angle between ξ and ∇α is acute then 0 < cos(ξ̂,∇α) < 1, then ξα = k|∇α|,

0 < k < 1 and ξα > 0.

4. If the angle between ξ and ∇α is obtuse then −1 < cos(ξ̂,∇α) < 0, then ξα = k|∇α|,

−1 < k < 0 and ξα < 0.
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We can consequently state the following theorem

Theorem 6.5.2. A Ricci soliton in irrotational pseudo-projective (LCS)n-manifolds is

1. Shrinking, if the characteristic vector field ξ is orthogonal to ∇α.

2. Shrinking, if the angle between characteristic vector ξ and the gradient vector ∇α is

acute.

3. Shrinking, if the angle between characteristic vector ξ and the gradient vector ∇α

is obtuse then it is Shrinking if α2 > k|∇α|, Expanding α2 < k|∇α| and steady

α2 = k|∇α|.

Proof. From (6.5.11) and remark (6.5.1), items (1), (3) and (4) respectively we have

1. λ = −(n− 1)α2, λ < 0;

2. λ = −(n− 1)(α2 + k|∇α|), λ < 0;

3. λ = −(n− 1)(α2 − k|∇α|), λ < 0,

which concludes the proof.

6.6 Ricci soliton in irrotational quasi-conformal

(LCS)n-manifolds

The quasi-confirmal curvature tensor C̃ is given by

C̃(X, Y )Z = aR(X,Y )Z + b[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ]

− r

n

(
a

n− 1
+ 2b

)
[g(Y, Z)X − g(X,Z)Y ]. (6.6.1)
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Put Z = ξ in (6.6.1) and using (1.1.42), (6.5.2) we get

C̃(X, Y )ξ = ϑ2[η(Y )X − η(X)Y ]. (6.6.2)

Where ϑ2 = a(α2 − ρ) − b(2λ+ α) − r
n

(
a

n−1
+ 2b

)
.

The rotation (curl) of quasi-conformal curvature tensor C̃ on a Riemannian manifold is

given by

RotC̃ = (∇U C̃)(X, Y, Z)+(∇XC̃)(U, Y, Z)+(∇Y C̃)(U,X,Z)− (∇ZC̃)(X, Y, U). (6.6.3)

By virtue of second Bianchi identity

(∇U C̃)(X, Y, Z) + (∇XC̃)(U, Y, Z) + (∇Y C̃)(U,X,Z) = 0. (6.6.4)

i.e.,

curlC̃ = −(∇ZM̄)(X, Y, U).

If the quasi-conformal curvature tensor is irrotational then curlC̃ = 0 and we have

(∇ZC̃)(X, Y, U) = 0. Which implies

∇Z{C̃(X, Y )U)} = C̃(∇ZX, Y )U + C̃(X,∇ZY )U + C̃(X, Y )∇ZU. (6.6.5)

Put U = ξ in (6.6.5) and by virtue of (1.1.34), (1.1.35), (1.1.36) and (6.6.2) we can get

C̃(X, Y )Z = ϑ2{g(Y, Z)X − g(X,Z)Y }. (6.6.6)

Taking inner product of 6.6.6 with W

C̃(X, Y, Z,W ) = ϑ2{g(Y, Z)g(X,W ) − g(X,Z)g(Y,W )}. (6.6.7)

On contraction of equation (6.6.7) over X and W and using (6.6.1) we get

S(Y, Z) =

(
a(n− 1)(α2 − ρ) − b(n− 1)(2λ+ α) − br

a+ b(n− 2)

)
g(Y, Z). (6.6.8)
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Put Y = Z = ξ in (6.6.8) and using (6.5.4) and (6.5.5) we can get the value of λ is given

by

λ = −(n− 1)(α2 − ρ). (6.6.9)

We can consequently state the following theorem:

Theorem 6.6.1. A Ricci soliton in irrotational quasi-conformal (LCS)n-manifolds is

1. Shrinking, if the characteristic vector field ξ is orthogonal to ∇α.

2. Shrinking, if the angle between characteristic vector ξ and the gradient vector ∇α is

acute.

3. Shrinking, if the angle between characteristic vector ξ and the gradient vector ∇α

is obtuse then it is Shrinking if α2 > k|∇α|, Expanding α2 < k|∇α| and steady

α2 = k|∇α|.

Proof. From (6.6.9) and remark:(6.5.1), items (1), (3) and (4) respectively we have

1. λ = −(n− 1)α2, λ < 0;

2. λ = −(n− 1)(α2 + k|∇α|), λ < 0;

3. λ = −(n− 1)(α2 − k|∇α|), λ < 0,

which concludes the proof.



On (LCS)n-manifolds 124

6.7 Ricci soliton in irrotational M-Projective

(LCS)n-manifolds

The M -projective curvature tensor M̄ is given by

M̄(X, Y )Z = R(X, Y )Z

− 1

2(n− 1)
[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ] . (6.7.1)

Put Z = ξ in (6.7.1) and using (1.1.42), (6.5.2) we get

M̄(X, Y )ξ = ϑ3[η(Y )X − η(X)Y ]. (6.7.2)

Where ϑ3 = (α2 − ρ) +
(

2λ+α
2(n−1)

)
.

The rotation (curl) of M -projective curvature tensor M̄ on a Riemannian manifold is

given by

RotM̄ = (∇UM̄)(X,Y, Z) + (∇XM̄)(U, Y, Z) + (∇Y M̄)(U,X,Z) − (∇ZM̄)(X, Y, U).

(6.7.3)

By virtue of second Bianchi identity

(∇UM̄)(X, Y, Z) + (∇XM̄)(U, Y, Z) + (∇Y M̄)(U,X,Z) = 0. (6.7.4)

i.e.,

curlM̄ = −(∇ZM̄)(X, Y, U).

If the M -projective curvature tensor is irrotational then curlM̄ = 0 and we have

(∇ZM̄)(X, Y, U) = 0. Which implies

∇Z{M̄(X, Y )U)} = M̄(∇ZX, Y )U + M̄(X,∇ZY )U + M̄(X, Y )∇ZU (6.7.5)
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Put U = ξ in (6.7.5) and by virtue of (1.1.34), (1.1.35), (1.1.36) and (6.7.2) we can get

M̄(X, Y )Z = k3{g(Y, Z)X − g(X,Z)Y }. (6.7.6)

Taking inner product of (6.7.6) with W

M̄(X, Y, Z,W ) = k3{g(Y, Z)g(X,W ) − g(X,Z)g(Y,W )}. (6.7.7)

On contraction of equation (6.7.7) over X and W and using 6.7.1 we get

S(Y, Z) =
2(n− 1)

n

[
(α2 − ρ)(n− 1) +

λ(n− 2)

2(n− 1)

]
g(Y, Z). (6.7.8)

Put Y = Z = ξ in (6.7.8) and using (6.5.4) and (6.5.5) we can get the value of λ is given

by

λ = −(n− 1)(α2 − ρ). (6.7.9)

We can consequently state the following theorem:

Theorem 6.7.1. A Ricci soliton in irrotational M-projective (LCS)n manifolds is

1. Shrinking, if the characteristic vector field ξ is orthogonal to ∇α.

2. Shrinking, if the angle between characteristic vector ξ and the gradient vector ∇α is

acute.

3. Shrinking, if the angle between characteristic vector ξ and the gradient vector ∇α

is obtuse then it is Shrinking if α2 > k|∇α|, Expanding α2 < k|∇α| and steady

α2 = k|∇α|.

Proof. From (6.7.9) and remark:(6.5.1), items (1), (3) and (4) respectively we have

1. λ = −(n− 1)α2, λ < 0;
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2. λ = −(n− 1)(α2 + k|∇α|), λ < 0;

3. λ = −(n− 1)(α2 − k|∇α|), λ < 0,

which concludes the proof.

6.8 Conclusion

The influential results finding of this chapter are as follows:

• An (LCS)nη-Ricci soliton (M, (g, ξ, λ)) is an η-Einstein manifold.

• A pseudo-projectively pseudo-symmetric (LCS)n η-Ricci soliton (M, (g, ξ, λ, µ)) is

an Einstein manifold provided LP̄ 6= (α2 − ρ).

• A pseudo-projectively semi-symmetric (LCS)n η-Ricci soliton (M, (g, ξ, λ, µ)) is an

Einstein manifold.

• An (LCS)n η-Ricci soliton (M, (g, ξ, λ, µ)) admitting semi-symmetric condition

P̄ ·R = LRQ(g,R) is an Einstein manifold provided

LR 6=
[
a(α2 − ρ) + b(−α− λ) − r

n

(
a

n−1
+ b
)]

.

• An (LCS)n η-Ricci soliton (M, (g, ξ, λ, µ)) admitting semi-symmetric condition

P̄ ·R = 0 is an Einstein manifold.

• A Ricci soliton in irrotational pseudo-projective, irrotational quasi-conformal, irro-

tational M -projective (LCS)n manifolds is

1. Shrinking, if the characteristic vector field ξ is orthogonal to ∇α.
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2. Shrinking, if the angle between characteristic vector ξ and the gradient vector

∇α is acute.

3. Shrinking, if α2 > k|∇α|, Expanding α2 < k|∇α| and steady α2 = k|∇α|, if

the angle between characteristic vector ξ and the gradient vector ∇α is obtuse.
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