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Preface

Geometry is a part of mathematics which focuses on the study of size, shape, rela-

tive configuration and spatial properties. Differential geometry is an old mathematical

discipline and well studied after the foundation of calculus laid by Newton and Leibnitz.

Gauss laid down the foundation of differential geometry of surface in three dimensional

Euclidean space in early nineteenth century. In fact the theory of plane and space curves

and of surfaces in the three dimensional Euclidean space formed the basis for the initial

development. Riemann (1854) extended the concept to more than three dimensions and

the object is known as abstract surface i.e., manifold and resembles Euclidean space of

certain dimension called the dimension of the manifold. Thus a line and a circle are one

dimension manifolds, a plane and the surface of a ball are two dimensional manifolds.

However for smooth manifolds one has to put additional structure such as differentiabil-

ity and analyticity. The multilinear algebra is used to study the concepts of curvature

and various other geometric properties of curves and spaces. At the end of nineteenth

century Levi-Civita and Ricci developed the concept of parallel translation in the classical

language of tensors.

1
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In 1868, after the publication of Riemann work, a number of mathematicians like Bel-

trami (1868), Lipschitz (1869) enriched the subject by introducing the idea of Christoffel

symbols, covariant differentiation and Gauss equations et. al. The manifold equipped with

Riemannian metric is known as Riemannian manifold. Schouten and Dantzing (1930) in-

troduced the concept of complex structure and a Hermitian metric on a differentiable

manifold and called it as a Hermitian manifold. In 1933, Kähler presented the idea of a

Kählerian structure on a complex manifold. Ehresmann (1950) defined an almost complex

structure on an even dimensional differentiable manifold.

If J is a linear endomorphism of Tp(M) defined by JU = iU. ∀U ∈ Tp(M), then

J2 = −I, where I is the identity transformation. This linear transformation is called the

almost complex structure attached to M.

Here we define the torsion tensor filed T of type (0, 2) of an almost complex structure

J by

T (U, V ) = [JU, JV ] − J [U, JV ] − J [JU, V ] − [U, V ],

for any vector fields U and V on M.

Let M be an almost complex manifold with almost complex structure J . Then J

is a complex structure if and only if J has no torsion. Let M be a complex manifold

with complex structure J . A Hermition metric on M is a Riemannian metric g such that

g(JU, JV ) = g(U, V ) for any vector fields U and V on M .

A complex manifold with a Hermition metric is called a Hermition manifold. The

fundamental 2-form Ω of M is defined by Ω(U, V ) = g(U, JV ).

A Hermition metric g on a complex manifold M is called a Kählerian metric if the

fundamental 2-form Ω is closed i.e., dΩ = 0. A complex manifold M with a Kählerian
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metric is called a Kählerian manifold.

The more differential aspects of Kähler spaces were studied by Bochner (1947-50),

Calabi and Spencer (1951), Hodge (1951), Goldberg (1960), Tachibana and Yano (1965),

Mishra (1969), Kon, Blair, Chen, Bagewadi, Shahid, Deszcz, De, Shaikh et. al.

The Ricci flow is a powerful technique in understanding the geometry and topology

of Riemannian manifolds. Intuitively, the idea is to set up a PDE that evolves a metric

according to its Ricci curvature. The resulting equation has much in common with the

heat equation, which tends to flow a given function to ever nicer functions. By analogy,

the Ricci flow evolves an initial metric into improved metrics. Hamilton [36] introduced

the Ricci flow and his ideas gave rise to Perelman’s [43] proof of the Poincare conjecture

in three dimensional topology. Cao [10] observed that the Kähler condition is preserved

under Hamilton’s Ricci flow, and to achieve this Cao wrote out a scalar parabolic equa-

tion satisfied by the Kähler potential of the Kähler-Ricci flow. The Kähler-Ricci flow has

become a major tool in Kähler geometry, where as in the field of geometric evolution equa-

tions, the singularity modes which arise are usually ancient solutions, where the solutions

exist all the way back to time minus infinity. Among such ‘long-existing’ solutions are the

selfsimilar solutions, which in Ricci flow are called Ricci solitons. Thus Ricci solitons are

generalizations of Einstein manifolds and they are also called as quasi Einstein manifolds

by theoretical physicists. The detail study on Ricci soliton in Kähler manifold was carried

out by many authors like Dong, Cao, Hamilton, Zau et. al.

The thesis entitled “A study on Ricci solitons in Kähler manifolds” has been parti-

tioned into six chapters.
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The first chapter is all about basic concepts, it includes the definitions and preliminar-

ies which are used in later chapters. The first section is related to Kähler, semisymmetric

and pseudo symmetric manifolds, Einstein and some curvature tensors. The Ricci soli-

tons are included in next section. The section three includes real, complex and generalized

complex space forms. Fourth section consists of definitions of umblicity and geodesity of

submanifolds. Lastly we define quaternion Kähler manifold.

Chapter-2 is devoted to the study of generalized complex space forms. Introduction

is the first section of this chapter. In the second section we study Bochner semisymmet-

ric generalized complex space form and show that it is an Einstein manifold. Further it

is shown that Ricci soliton is shrinking, steady and expanding accordingly when scalar

curvature is positive, zero and negative respectively. In sections three, four, five and six

we consider R · C∗=0, C∗ · R = 0, C∗ · S = 0 and Einstein semisymmetric respectively,

on generalized complex space forms and show that they are Einstein manifolds and corre-

spondingly get the values of λ to determine Ricci solitons of these. Section seven includes,

H-projective curvature tensor on generalized complex space form. In the next sections

we study pseudo-projective curvature tensor, Bochner Ricci-generalized pseudosymmet-

ric, D ·W2 = L1Q(g,W2) and divD = 0 on generalized complex space forms. Finally, the

last section includes conclusion.

Chapter-3 deals with symmetric properties of Kähler manifolds. First section is de-

voted to introduction part. In the second section we give the definitions and preliminaries.

Section three includes almost pseudo symmetric Kähler Manifold and show that manifold

is Ricci flat. In the fourth section we study almost pseudo Bochner symmetric Kähler



Preface 5

manifold and show that it is an Einstein manifold and after it is applied to Ricci soli-

ton. It is shrinking, steady and expanding depending upon r < 0, r = 0 and r > 0. In

the fifth and sixth sections, we study almost pseudo Ricci-symmetric and almost pseudo

Bochner Ricci-symmetric Kähler manifolds. We consider almost pseudo Bochner symmet-

ric generalized complex space form, almost pseudo Ricci-symmetric generalized complex

space form and Bochner flat almost pseudo Ricci-symmetric generalized complex space

form in sections seven, eight and nine respectively. Tenth section includes almost pseudo

symmetric Kähler manifolds admitting a special type of semi-symmetric non-metric con-

nection ∇̃. In section eleven we consider projective flat almost pseudo symmetric Kähler

manifolds admitting a special type of semi-symmetric non-metric connection ∇̃. Section

twelve is devoted to almost pseudo symmetric Kähler manifolds admitting a special type

of semi-symmetric non-metric connection ∇̃ with parallel projective curvature tensor. In

section thirteen we study almost pseudo projective symmetric Kähler manifolds admit-

ting a special type of semi-symmetric non-metric connection ∇̃. Section fourteen includes

almost pseudo symmetric with recurrent Kähler manifolds admitting a special type of

semi-symmetric non-metric connection ∇̃. Finally, the chapter ends with conclusion.

Chapter-4 is devoted to the study of Eisenhart problem to Ricci solitons in Kähler

manifolds. Introduction is the first section of this chapter. In the next section we study

parallel second order covariant tensor and Ricci soliton in a non-flat real, complex and

generalized complex space form. Finally, last section of this chapter is conclusion of all

the above space forms.

Chapter-5 deals with submanifolds in real and complex space forms. First and second

sections of this chapter consist of introduction and basic concepts. Third section includes
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parallel and semi-parallel submanifolds in a non-flat real space form. In the fourth section

we study recurrent submanifolds in a non-flat real space form. In the fifth section we

consider parallel and semi-parallel submanifolds in a non-flat complex space form. The

last section of this chapter is conclusion.

Chapter-6 is devoted to the study of Ricci solitons in quaternion space forms. The first

section is devoted to the introduction part. The second section is concerned with the basic

concepts. In the third section, we consider parallel second order covariant tensor and Ricci

soliton in a non-flat quaternion space form. Fourth section is devoted to semisymmetric

quaternion space form and we show that space form is an Einstein manifold and after

using this it is seen that Ricci soliton is shrinking. In the sections five and six we study

the semisymmetric conditions R ·B = 0 and B ·R = 0 of quaternion space form. Seventh

section includes hypersurface of a quaternion space form. Finally, the last section is the

conclusion of above concepts.

Finally, the thesis ends with a list of bibliography and publications.



Chapter 1

Preliminaries

This chapter is introductory and consists of basic concepts, which are used in the later

chapters.

1.1 Kähler manifold

Definition 1.1.1. A Kähler manifold is a complex n-dimensional manifold M , with a

complex structure J and a positive-definite metric g which satisfies the following condi-

tions

J2 = −I, g(JU, JV ) = g(U, V ) and ∇J = 0,

where ∇ means covariant derivation according to the Levi-Civita connection.

Example 1. Every Riemannian metric on Riemann surface is Kähler.

Example 2. The unit complex ball Bn admits a Kähler metric.

The formulae

R(U, V ) = R(JU, JV ), (1.1.1)

S(U, V ) = S(JU, JV ), (1.1.2)

S(JU, V ) + S(U, JV ) = 0, (1.1.3)

7
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are well known for a Kähler manifold.

Using the second Binachi identity, we infer [53]

(divR)(U, V )W = (∇W S)(U, V ) − (∇US)(W, V ) = (∇JV S)(JU, W ). (1.1.4)

The scalar curvature r = S(ei, ei) and

(∇V S)(ei, ei) = ∇V r = dr(V ). (1.1.5)

Let Q be the Ricci operator defined by

g(QV,W ) = S(V, W ), (1.1.6)

(∇US)(V, W ) = g((∇UQ)(V ), W ). (1.1.7)

Taking U = W = ei and taking summation over i in the above equation we get [53]

(∇ei
S)(V, ei) = g((∇ei

Q)(V ), ei).

⇒ (divQ)(V ) = tr(U → (∇UQ)(V )),

=
∑

g((∇ei
Q)(V ), ei),

(divQ)(V ) =
1

2
dr(V ), (1.1.8)

(∇ei
S)(V, ei) =

1

2
dr(V ). (1.1.9)

A Riemannian manifold (M, g) is called locally symmetric if its curvature tensor R is

parallel [11] i.e., ∇R = 0, where ∇ denotes the Levi-Civita connection. The notion of

semisymmetric manifold is a generalization of locally symmetric manifold and is defined

by [51]

(R(U, V ) · R)(X, Y, W ) = 0, X, Y, U, V,W ∈ χ(M).
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For a (0, k)-tensor field T̃ on M , k ≥ 1, we define the tensors R · T̃ , Q(g, T̃ ) and

Q(S, T̃ ) by [31]

(R · T̃ )(U1, . . . Uk, U, V ) = −T̃ (R(U, V )U1, U2, . . . Uk) − . . . − T̃ (U1, U2, . . . Uk−1, R(U, V )Uk),

Q(g, T̃ )(U1, . . . Uk, U, V ) = −T̃ ((U ∧g V )U1, U2, . . . Uk) − . . . − T̃ (U1, U2, . . . Uk−1, (U ∧g V )Uk),

Q(S, T̃ )(U1, . . . Uk, U, V ) = −T̃ ((U ∧S V )U1, U2, . . . Uk) − . . . − T̃ (U1, U2, . . . Uk−1, (U ∧S V )Uk),

where (U ∧g V ) and (U ∧S V ) are the endomorphism given by

(U ∧g V )Z = g(V, Z)U − g(U,Z)V, (U ∧S V )Z = S(V, Z)U − S(U,Z)V. (1.1.10)

The notion of pseudosymmetric manifold (in the sense of Deszcz [31]) is a generaliza-

tion of semisymmetric manifold and is defined by

R · R = LRQ(g,R),

and holds on the set UR = {p ∈ M | R − r
n(n−1)

G 6= 0 at p}, where G is the (0, 4)-tensor

defined by G(V1, V2, V3, V4)=g((V1 ∧ V2)V3, V4) and LR is some function on UR.

A Riemannian manifold is said to be Ricci generalized pseudosymmetric (in the sense

of Deszcz[31]) if

R · R = LRQ(S, R),

holds on the set UR = {p ∈ M : Q(S, R) 6= 0 at p} and LR is some function on UR.

Definition 1.1.2. The Einstein tensor denoted by E is defined by

E(U, V ) = S(U, V ) − r

n
g(U, V ), (1.1.11)

where S is a Ricci tensor and r is the scalar curvature.
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Given a complex n-dimensional Kähler manifold M , the Bochner curvature tensor D

and H-projective curvature tensor P̄ are given by [61]

D(U, V,W, X) = R(U, V,W, X) − 1

2n + 4
[g(V, W )S(U,X) − S(U,W )g(V, X)

+ g(JV, W )S(JU, X) − S(JU, W )g(JV, X) + S(V, W )g(U,X)

− g(U,W )S(V, X) + S(JV, W )g(JU, X) − g(JU,W )S(JV, X)

− 2S(V, JU)g(JW, X) − 2S(JW, X)g(JU, V )]

+
r

(2n + 2)(2n + 4)
[g(V, W )g(U,X) − g(U,W )g(V, X) (1.1.12)

+ g(JV, W )g(JU, X) − g(JU, W )g(JV, X) − 2g(JU, V )g(JW, X)].

P̄ (U, V )W = R(U, V )W − 2

n + 2
[S(V, W )U − S(U,W )V − S(JV, W )JU

+ S(JU, W )JV + S(JU, V )JW − S(JV, U)JW ]. (1.1.13)

In an n-dimensional Riemannian manifold M , the τ -curvature tensor [56] is given by

τ(U, V )W = x0R(U, V )W + x1S(V, W )U + x2S(U,W )V + x3S(U, V )W

+ x4g(V, W )QU + x5g(U,W )QV + x6g(U, V )QW

+ x7r(g(V, W )U − g(U,W )V ), (1.1.14)

where R, S, Q and r are the curvature tensor, the Ricci tensor, the Ricci operator and

the scalar curvature respectively.

If x1 = −x2 = x4 = −x5, x3 = x6 = 0 and x7 = 2x2 then it reduces to B-curvature tensor

B [47] i.e.,

B(U, V )W = x0R(U, V )W + x1[S(V, W )U − S(U,W )V + g(V, W )QU − g(U,W )QV ]

+ 2x2r[g(V, W )U − g(U,W )V ]. (1.1.15)



Preliminaries 11

If x0 = a, x1 = −x2 = x4 = −x5 = b, x3 = x6 = 0 and x7 = − 1
n
( x0

n−1
+ 2x1) then it is

reduced to quasi-conformal curvature tensor C∗ [63] i.e.,

C∗(U, V )W = aR(U, V )W + b[S(V, W )U − S(U,W )V + g(V, W )QU − g(U,W )QV ]

+
r

n
[

a

n − 1
+ 2b][g(V, W )U − g(U,W )V ]. (1.1.16)

If x0 = a, x1 = −x2 = b, x3 = x6 = x4 = −x5 = 0 and x7 = − 1
n
( a

n−1
+ b) then it is

reduced to pseudo-projective curvature tensor P ∗ [45] i.e.,

P ∗(U, V )W = aR(U, V )W + b[S(V, W )U − S(U,W )V ]

− r

n
[

a

n − 1
+ b][g(V, W )U − g(U,W )V ]. (1.1.17)

If x0 = 1, x4 = −x5 = − 1
n−1

and x1 = x2 = x3 = x6 = x7 = 0 then it is reduced to

W2-curvature tensor W2 [44] i.e.,

W2(U, V )Z = R(U, V )Z +
1

n − 1
[g(U,Z)QV − g(V, Z)QU ]. (1.1.18)

If x0 = 1, x1 = −x2 = x4 = −x5 = − 1
n−2

, x3 = x6 = 0 and x7 = 1
(n−1)(n−2)

then it is

reduced to Weyl-conformal curvature tensor C [33] i.e.,

C(U, V )W = R(U, V )W − 1

n − 2
[S(V, W )U − S(U,W )V + g(V, W )QU − g(U,W )QV ]

+
1

(n − 1)(n − 2)
[g(V, W )U − g(U,W )V ]. (1.1.19)

If x0 = 1, x1 = x2 = x3 = x4 = x5 = x6 = 0 and x7 = − 1
n(n−1)

then it is reduced to

concircular curvature tensor C̃ [64] i.e.,

C̃(U, V )W = R(U, V )W − r

n(n − 1)
[g(V, W )U − g(U,W )V ]. (1.1.20)

If x0 = 1, x1 = −x2 = x4 = −x5 = − 1
n−2

and x3 = x6 = x7 = 0 then it is reduced to
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conharmonic curvature tensor L∗ [38] i.e.,

L∗(U, V )W = R(U, V )W − 1

n − 2
[S(V, W )U − S(U,W )V

+ g(V, W )QU − g(U,W )QV ]. (1.1.21)

1.2 Ricci Solitons

Let φt : M −→ M, t ∈ R be a family of diffeomorphisms and (φt : t ∈ R) is a one

parameter family of abelian group called flow. It generates a vector field Yp given by

Ypf =
df(φt(p))

dt
, f ∈ C∞(M).

If X is a vector field then LY X = limt→0
φ∗

t X−X

t
is known as Lie derivative of X with

respect to Y . Ricci solitons move under the Ricci flow under φt : M −→ M of the

initial metric i.e., they are stationary points of the Ricci flow in space of metrics. If g0

is a metric on the codomain then g(t) = φ∗
t g0 is the pullback of g0, is a metric on the

domain. Hence if g0 is a solution of the Ricci flow on the codomain subject to condition

LV g0 + 2Ricg0 + 2λg0 = 0 on the codomain then g(t) is the solution of the Ricci flow on

the domain subject to the condition LV g +2Ricg +2λg = 0 on the domain under suitable

conditions [54]. Here g0 and g(t) are metrics which satisfy Ricci flow.

Thus the equation in general

LV g + 2S + 2λg = 0. (1.2.1)

is called Ricci soliton, where S is Ricci tensor of M , LV denotes the Lie derivative operator

along the vector field V and λ a real scalar. It is said to be expanding, shrinking and

steady according as λ > 0, λ < 0 and λ = 0 respectively.
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Example 3. Hamilton Cigar Soliton: Let M = R2 and φt : R2 −→ R2 be defined by

φt(u, w) = (e−2tu, e−2tw) forms a family of one parameter group of diffeomorphisms. The

vector field Y generated by {φt} is Y = −2
(
u ∂

∂u
+ w ∂

∂w

)
. The metric g0 is obtained as

g0 =
du2 + dw2

1 + u2 + w2
,

g̃(t) = φ∗
t (g0) =

du2 + dw2

e4t + u2 + w2
,

Ricg0 =
2

1 + u2 + w2
g0,

LY g0 =
4

1 + u2 + w2
g0.

Using (1.2.1), we have λ = 0. Hence, this Ricci soliton is steady and is called cigar soliton

as it is asymptotic to a flat cylinder at infinity.

1.3 Space Forms

Definition 1.3.1. A Riemannian manifold with constant sectional curvature k is called

a real space form and its [62] curvature tensor satisfies the equation

R(U, V )W = k{g(V, W )U − g(U,W )V }. (1.3.1)

Definition 1.3.2. A Kähler manifold with constant holomorphic sectional curvature k is

called a complex space form and its [62] curvature tensor is given by

R(U, V )W =
k

4
[g(V, W )U − g(U,W )V + g(U, JW )JV − g(V, JW )JU

+ 2g(U, JV )JW ]. (1.3.2)



Preliminaries 14

Definition 1.3.3. An almost Hermition manifold M is called a generalized complex space

form M(f1, f2) if its [55] Riemannian curvature tensor R satisfies,

R(U, V )W = f1{g(V, W )U − g(U,W )V } + f2{g(U, JW )JV

− g(V, JW )JU + 2g(U, JV )JW}, (1.3.3)

for all U, V,W ∈ TM , where f1 and f2 are smooth functions on M . Then equation

(1.3.3) we get the following;

S(V, W ) = {(n − 1)f1 + 3f2}g(V, W ), (1.3.4)

QV = [(n − 1)f1 + 3f2]V, (1.3.5)

r = n[(n − 1)f1 + 3f2], (1.3.6)

where S is the Ricci tensor, Q is the Ricci operator and r is scalar curvature of the space

form M(f1, f2).

1.4 Submanifolds

Definition 1.4.1. The manifold M is called a submanifold of a manifold M̃, if two

conditions are satisfied.

1. The set M is a subset of M̃.

2. The identity map i from M into M̃ is an imbedding of M into M̃.

Example 4. S2 is a 2−dimensional differentiable submanifold of R3.

Assume that φ : M −→ M̃ is an immersion of an n-dimensional Riemannian manifold

M into M̃ . Denote by ∇ and ∇̃ the Levi-Civita connections on M and M̃, respectively.
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The Gauss and Weingarten formulae are given by [50]

∇̃V W = ∇V W + σ(V, W ), (1.4.1)

∇̃V N = −ANV + ∇⊥
V N, (1.4.2)

for all vector V, W tangent to M and normal vector field N on M , where ∇ is the

Riemannian connection on M determined by the induced metric g, σ is a symmetric

covariant tensor of order 2, ∇⊥ is the normal connection on T⊥M of M and AN is the

shape operator which is related to σ by g(σ(V, W ), N) = g(ANV, W ). The Gauss equation

is given by

R̃(U, V )W = R(U, V )W − Aσ(V,W )U + Aσ(U,W )V, (1.4.3)

where V, W are vector fields tangent to M . The first covariant derivative of the second

fundamental form σ is given by

(∇̃Uσ)(V, W ) = ∇⊥
Uσ(V, W ) − σ(∇UV, W ) − σ(V,∇UW ), (1.4.4)

where ∇̃ is called the Wander-Bortolotti connection of M [21].

We denote by ∇qT ∗ the covariant differential of the qth order, q ≥ 1, of a (0, k)-tensor

field T ∗, k ≥ 1, defined on a Riemannain manifold (M, g) with the Levi-Civita connection.

According to [46, 50], the tensor T ∗ is said to be recurrent, if the following condition holds

on M

(∇T ∗)(U1, . . . Uk; U)T ∗(V1, . . . , Vk) = (∇T ∗)(V1, . . . Vk; U)T ∗(U1, . . . Uk), (1.4.5)

where U,U1, V1, . . . Uk, Vk ∈ TM. From (1.4.5) it follows that at a point p ∈ M if the

tensor T ∗ is non-zero then there exists a unique 1-form B, defined on a neighborhood X
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of p, such that

∇T ∗ = T ∗ ⊗ B, B = d(log ‖ T ∗ ‖), (1.4.6)

holds on U , where ‖ T ∗ ‖ denotes the norm of T ∗, ‖ T ∗ ‖2= g(T ∗, T ∗).

The mean curvature vector field is defined by

H =
tr.σ

n
. (1.4.7)

Definition 1.4.2. A submanifold M is said to be totally umbilical if we have

σ(U, V ) = Hg(U, V ). (1.4.8)

Definition 1.4.3. A submanifold M is said to be totally geodesic if σ(U, V ) = 0 for each

U, V ∈ TM and is minimal if H = 0 on M .

1.5 Quaternion Kähler manifold

Let M̄ be an n (n = 4m, m ≥ 1)-dimensional Riemannian manifold with the Riemannian

metric g. M̄ is called a quaternion Kähler manifold if there exists a 3-dimensional vector

bundle µ consisting of tensors of type (1, 1) with local basis of almost Hermitian structure

J, K and L such that [37, 61]

(a)

J2 = K2 = L2 = −I, (1.5.1)

JK = −KJ = L, KL = −LK = J, LJ = −JL = K, (1.5.2)

g(JU, JV ) = g(KU,KV ) = g(LU, LV ) = g(U, V ), (1.5.3)

where I denoting the identity tensor of type (1, 1) in M̄.

(b) If φ is a cross-section of the bundle µ, then ∇Uφ is also a cross-section of the bundle
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µ, U being an arbitrary vector field on M̄ and ∇ the Riemannian connection on M̄ .

The condition (b) is equivalent to the following condition;

(c) There exist the local 1-forms p, q and r such that

∇UJ = r(U)K − q(U)L, ∇UK = −r(U)J + p(U)L, ∇UL = q(U)J − p(U)K.

Example 5. For any simple Lie group G, there is a unique Wolf space G
H

obtained as a

quotient of G by a subgroup H = H0 ·SU(2). Here, SU(2) is the subgroup associated with

the highest root of G, and H0 is its centralizer in G. The Wolf spaces with positive Ricci

curvature are compact and simply connected. If G is Sp(n + 1), the corresponding Wolf

space is the quaternionic projective space KP n.

The formulae [61]

R(U, V ) = R(JU, JV ) = R(KU,KV ) = R(LU, LV ), (1.5.4)

S(U, V ) = S(JU, JV ) = S(KU,KV ) = S(LU, LV ), (1.5.5)

S(U, JV ) + S(JU, V ) = 0, S(U,KV ) + S(KU, V ) = 0 and

S(U,LV ) + S(LU, V ) = 0, (1.5.6)

are well known for a quaternion Kähler manifold.

Definition 1. A non-flat quaternion Kähler manifold M̄ is said to be

1. quasi-Einstein manifold if its Ricci tensor S is non zero and satisfies the condition

S(U, V ) = ag(U, V ) + bE(U)E(V ). (1.5.7)

2. generalized quasi-Einstein manifold if

S(U, V ) = ag(U, V ) + bE(U)E(V ) + cF (U)F (V ).
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3. a mixed generalized quasi-Einstein manifold if

S(U, V ) = ag(U, V ) + bE(U)E(V ) + cF (U)F (V ) + d[E(U)F (V ) + F (U)E(V )],

where a, b, c and d are non zero scalars, E and F are two non zero 1-forms such that

g(X, ρ) = E(X), g(X, β) = F (X), (1.5.8)

for all vector fields X.



Chapter 2

On Generalized Complex Space
Forms

2.1 Introduction

A Kähler manifold with constant holomorphic-sectional curvature is a complex space form

and its curvature tensor form is given in equation (1.3.2). In 1989 the author Olszak [42]

proved the existence of generalized complex space form. Nature of a generalized Sasakian

space form with some conditions in accordance to some curvature tensors have been

studied by De [27], Srivastava [60], Nagaraja [41] and Bagewadi et. al., In the context

of generalized complex space forms, the authors Bharathi and Bagewadi [8] have studied

some curvature tensors on generalized complex space forms. On the basis of the above

we extend our study and obtain interesting results.

19
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2.2 Bochner semisymmetric generalized complex

space form

Let us consider the condition R · D = 0 in M(f1, f2). Then for any tangent vectors

U,W,X, Y and Z, the above condition leads to

(R(U,W ) · D)(X, Y, Z) = 0. (2.2.1)

This implies

R(U,W )D(X,Y )Z − D(R(U,W )X, Y )Z − D(X, R(U,W )Y )Z

− D(X, Y )R(U,W )Z = 0. (2.2.2)

Taking inner product with vector field T we have,

g(R(U,W )D(X, Y )Z, T ) − g(D(R(U,W )X, Y )Z, T ) − g(D(X,R(U,W )Y )Z, T )

− g(D(X, Y )R(U,W )Z, T ) = 0. (2.2.3)

Using equations (1.1.12) and (1.3.3) in (2.2.3) and contracting U and Y , further applying

contraction over W and T of the simplified equation we get

f2

{
2n − 8

2n + 4
S(X, Z) − 5n + 2

(2n + 4)(2n + 2)
rg(X,Z)

}
= 0. (2.2.4)

If f2 6= 0, then

2n − 8

2n + 4
S(X, Z) − 5n + 2

(2n + 4)(2n + 2)
rg(X, Z) = 0. (2.2.5)

This comes to the below form,

S(X, Z) =
5n + 2

(2n − 8)(2n + 2)
rg(X, Z). (2.2.6)
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That is M(f1, f2) is an Einstein manifold.

Hence, we have the following:

Theorem 2.2.1. If n-dimensional generalized complex space form M(f1, f2) satisfies

R · D = 0 then it is an Einstein manifold provided f2 6= 0.

Using equation (2.2.6) in (1.2.1), we get

(LV g)(X, Z) + 2

[
5n + 2

(2n − 8)(2n + 2)

]
rg(X,Z) + 2λg(X, Z) = 0, (2.2.7)

setting X = Z = ei in (2.2.7) and then taking summation over i (1 ≤ i ≤ n), we obtain

divV +
5n + 2

(2n − 8)(2n + 2)
rn + λn = 0. (2.2.8)

If V is solenoidal then divV = 0. Therefore the equation (2.2.8) can be reduced to

λ = − 5n + 2

(2n − 8)(2n + 2)
r. (2.2.9)

Thus, we state the following:

Corollary 2.2.2. Let (g, V, λ) be a Ricci soliton in a generalized complex space form

satisfying Bochner semisymmetric condition. If V is solenoidal then it is shrinking, steady

and expanding accordingly scalar curvature is positive, zero and negative respectively.

2.3 Ricci soliton in generalized complex space form

satisfying R · C∗ = 0

Let R and C∗ satisfy the equation R · C∗ = 0 in M(f1, f2). Then this equation leads to

(R(U,W ) · C∗)(X, Y, Z) = 0, (2.3.1)



On Generalized Complex Space Forms 22

where U,W,X, Y and Z are any tangent vectors.

Equation (2.3.1) can be written as

R(U,W )C∗(X, Y )Z−C∗(R(U,W )X, Y )Z−C∗(X, R(U,W )Y )Z−C∗(X, Y )R(U,W )Z = 0.

By taking inner product T we have

g(R(U,W )C∗(X, Y )Z, T ) − g(C∗(R(U,W )X,Y )Z, T ) − g(C∗(X, R(U,W )Y )Z, T )

−g(C∗(X, Y )R(U,W )Z, T ) = 0. (2.3.2)

Applying equations (1.1.16) and (1.3.3) in (2.3.2) and setting U = Y = ei, further setting

W = T = ei to the simplified equation, where {ei} is an orthonormal basis of the tangent

space at each point of the manifold and taking summation over i (1 ≤ i ≤ n) we obtain

S(X, Z) =
α7 + β7

3bf2n(n − 4)(n − 1)
r.g(X, Z), (2.3.3)

where α7 = f1(n− 1)[−n + a(2 + n) + b(2n2 + n− 4)] and β7 = 6f2(n− 2)[a + 2(n− 1)b].

Hence, we state the following:

Theorem 2.3.1. If n-dimensional generalized complex space form M(f1, f2) satisfies

R · C∗ = 0 then it is an Einstein manifold.

Applying equation (2.3.3) in (1.2.1) we get,

(LV g)(X, Z) + 2

[
α7 + β7

3bf2n(n − 4)(n − 1)

]
rg(X, Z) + 2λg(X,Z) = 0. (2.3.4)

On contraction over X and Z, then we gain

(LV g)(ei, ei) + 2

[
α7 + β7

3bf2n(n − 4)(n − 1)

]
rg(ei, ei) + 2λg(ei, ei) = 0. (2.3.5)
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The equation (2.3.5) leads to,

divV +
α7 + β7

3bf2(n − 4)(n − 1)
r + λn = 0. (2.3.6)

If divV = 0 then V is solenoidal. Therefore the equation (2.3.6) is reduced

λ = − α7 + β7

3bf2n(n − 4)(n − 1)
r.

Thus, we write the following:

Corollary 2.3.2. Let (g, V, λ) be a Ricci soliton in a generalized complex space form

satisfying quasi-conformal semisymmetric condition, then V is solenoidal if and only if it

is shrinking, steady and expanding depending upon the scalar curvature is positive, zero

and negative respectively.

2.4 Ricci soliton in generalized complex space form

satisfying C∗ · R = 0

Consider the semisymmetric condition (C∗(U, V ) · R)(X, Y, W ) = 0 in M(f1, f2), then

U, V,X, Y and W are tangent vectors, this equation can be expressed as:

C∗(U, V )R(X, Y )W − R(C∗(U, V )X, Y )W − R(X, C∗(U, V )Y )W

− R(X, Y )C∗(U, V )W = 0. (2.4.1)

Taking inner product with T in the above equation we get

g(C∗(U, V )R(X,Y )W, T ) − g(R(C∗(U, V )X, Y )W, T ) − g(R(X, C∗(U, V )Y )W, T )

−g(R(X, Y )C∗(U, V )W, T ) = 0. (2.4.2)
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Using equations (1.1.16) and (1.3.3) in (2.4.2) and putting U = Y = ei, further putting

V = T = ei, i (1 ≤ i ≤ n) to the simplified equation we gain

S(X, W ) =
α5

β5

rg(X, W ), (2.4.3)

where α5 = [a+(n−2)b](n−1)f1+[a+2b(n−1)]f2 and β5 = [f1[a+b(n−2)]+4f2b]n(n−1).

This means, generalized complex space form is an Einstein manifold.

Hence, we state the following:

Theorem 2.4.1. If n-dimensional generalized complex space form M(f1, f2) satisfies

C∗ · R = 0 then it is an Einstein manifold.

Using equation (2.4.3) in (1.2.1) we get

(LV g)(X,W ) + 2

[
α5

β5

]
rg(X,W ) + 2λg(X, W ) = 0. (2.4.4)

Letting X = W = ei and taking summation over i in the above equation, we get

divV +

[
α5

β5

]
nr + λn = 0. (2.4.5)

If V is solenoidal then divV = 0. Therefore the last equation can be reduced to

λ = −α5

β5

r.

Thus, we obtain the following:

Corollary 2.4.2. A Ricci soliton in a generalized complex space form satisfying C∗ ·R = 0

is shrinking, steady and expanding if accordingly scalar curvature is positive, zero and

negative respectively.
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2.5 Ricci soliton in generalized complex space form

satisfying C∗ · S = 0

We assume (C∗(X, Y ) · S)(Z,W ) = 0 in M(f1, f2), this equation readily read as;

S(C∗(X, Y )Z,W ) + S(Z,C∗(X, Y )W ) = 0. (2.5.1)

Applying equations (1.1.16) and (1.3.3) in (2.5.1) and setting X = W = ei, further using

equations (1.3.4), (1.3.5) and (1.3.6) to the simplified equation we obtain

S(Y, Z) = −γg(Y, Z), (2.5.2)

where γ = (2(n − 1)f1 + 3f2). By using equation (2.5.2) in (1.2.1) we get

(LV g)(Y, Z) + 2[−γ]g(Y, Z) + 2λg(Y, Z) = 0. (2.5.3)

By substituting Y = Z = ei in (2.5.3), we obtain

divV − γn + λn = 0. (2.5.4)

If V is solenoidal then divV = 0. Therefore the equation (2.5.4) can be reduced to

λ = γ.

Thus, we state the following:

Corollary 2.5.1. Let (g, V, λ) be a Ricci soliton in generalized complex space form satis-

fying C∗ · S = 0. If V is solenoidal then it is expanding.
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2.6 Einstein semisymmetric generalized complex

space form

Definition 2.6.1. A n-dimensional generalized complex space form is called Einstein

semisymmetric if

(R(X, Y ) · E)(U,W ) = 0, (2.6.1)

for any vector fields X,Y, U and W .

Now, we consider the generalized complex space form which is Einstein semisymmetric,

i.e., equation (2.6.1) can be expressed as

E(R(X, Y )U,W ) + E(U,R(X, Y )W ) = 0. (2.6.2)

In view of (1.1.11) equation (2.6.2) becomes

S(R(X, Y )U,W ) − r

n
g(R(X, Y )U,W )

+S(U,R(X, Y )W ) − r

n
g(U,R(X,Y )W ) = 0. (2.6.3)

Using equation (1.3.3) in (2.6.3) and replacing X = U = ei we infer after simplification

that

f1 [−nS(Y, W ) + rg(Y, W )] = 0. (2.6.4)

If f1 6= 0, then

S(Y, W ) =
r

n
g(Y,W ). (2.6.5)

Then we can said the following:
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Theorem 2.6.1. A generalized complex space form in which Einstein semisymmetric

satisfies is an Einstein manifold provided f1 6= 0.

Using equation (2.6.5) in (1.2.1), we get

(LV g)(Y,W ) + 2
r

n
g(Y,W ) + 2λg(Y,W ) = 0. (2.6.6)

Setting Y = W = ei in (2.6.6), we get

divV + r + λn = 0. (2.6.7)

If V is solenoidal then divV = 0. Therefore the above equation (2.6.7) can be reduced to

λ =
−r

n
. (2.6.8)

Thus, we can state the following:

Corollary 2.6.2. Let (g, V, λ) be a Ricci soliton in a generalized complex space form

satisfying Einstein semisymmetric condition. Then V is solenoidal if and only if it is

shrinking, steady and expanding accordingly scalar curvature is positive, zero and negative

respectively.

2.7 H-projective curvature tensor on generalized

complex space form

We consider the condition (R(U, V ) · P̄ )(X, Y, W ) = 0 in generalized complex space form.

Then for any tangent vectors U, V,X, Y and W , the above implies:

R(U, V )P̄ (X, Y )W − P̄ (R(U, V )X, Y )W − P̄ (X, R(U, V )Y )W − P̄ (X, Y )R(U, V )W = 0.
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Taking inner product with Z we have

g(R(U, V )P̄ (X, Y )W, Z) − g(P̄ (R(U, V )X, Y )W, Z) − g(P̄ (X, R(U, V )Y )W, Z)

−g(P̄ (X, Y )R(U, V )W, Z) = 0. (2.7.1)

Using equations (1.1.13) and (1.3.3) in (2.7.1) and contraction U, Y , further applying

contraction V, Z in the resulting equation we gain

S(X, W ) =
2f1(n − 2) − 4f2

f1(n2 − 5n + 2) − 2nf2

rg(X, W ).

Hence, we state the following:

Theorem 2.7.1. If n-dimensional generalized complex space form M(f1, f2) satisfies

R · P̄ = 0 then it is an Einstein manifold.

Taking covariant derivative of (1.1.13) we get

(∇ZP̄ )(U, V )W = (∇ZR)(U, V )W − 2

n + 2
[(∇ZS)(V, W )U − (∇ZS)(U,W )V

− (∇ZS)(JY, W )JX + (∇ZS)(JX,W )JY + (∇ZS)(JX, V )JZ

− (∇ZS)(JY, U)JZ]. (2.7.2)

Consider the equation (R(U, V ) ·∇P̄ )(X, Y, Z, W ) = 0 in generalized complex space form.

Then for any tangent vectors U, V, X, Y, Z and W , it can be written as:

R(U, V )(∇XP̄ )(Y, Z)W − (∇R(U,V )XP̄ )(Y, Z)W − (∇XP̄ )(R(U, V )Y, Z)W

−(∇XP̄ )(Y, R(U, V )Z)W − (∇XP̄ )(Y, Z)R(U, V )W = 0.

Taking inner product with the vector field T we have

g(R(U, V )(∇XP̄ )(Y, Z)W, T ) − g((∇R(U,V )XP̄ )(Y, Z)W, T ) − g((∇XP̄ )(R(U, V )Y, Z)W, T )

−g((∇XP̄ )(Y,R(U, V )Z)W, T ) − g((∇XP̄ )(Y, Z)R(U, V )W, T ) = 0. (2.7.3)
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Using equations (1.1.4), (1.3.3) and (2.7.2) in (2.7.3) and substituting U = Y = ei, further

applying contraction over V and W in the resulting equation we get

{
f1(−f1(5 + n) − 2f2n(n + 1))

n + 3

}
dr(X) = 0

dr(X) = 0 for all X.

This implies r is constant.

Hence, we have the following:

Theorem 2.7.2. If n-dimensional generalized complex space form M(f1, f2) satisfies

R · ∇P̄ = 0 then its scalar curvature is constant.

Let the generalized complex space form satisfy (P̄ (X, Y ) ·S)(Z,W ) = 0, where X, Y, Z

and W are tangent vectors this equation readily read as:

S(P̄ (X, Y )Z,W ) + S(Z, P̄ (X, Y )W ) = 0. (2.7.4)

Applying (1.1.13) and (1.3.3) in (2.7.4) and contracting over X and W , further using

(1.3.6) to the resulting equation we get

S(Y, Z) =
(n + 2)

(3n2 − 4n + 4)f1 + (6n − 12)f2 + 16
rg(Y, Z).

Hence, we have the following:

Theorem 2.7.3. A n-dimensional generalized complex space form M(f1, f2) satisfying

P̄ · S = 0 is an Einstein manifold.
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2.8 Pseudo-projective curvature tensor on general-

ized complex space form

Consider the semisymmetric condition (R(U, V ) · P ∗)(X, Y, W ) = 0 in M(f1, f2), which

is satisfied by R and P ∗ and for any tangent vectors U, V,X, Y and W , this equation can

be expressed as:

R(U, V )P ∗(X, Y )W−P ∗(R(U, V )X, Y )W−P ∗(X, R(U, V )Y )W−P ∗(X, Y )R(U, V )W = 0.

Taking inner product with Z, then we have

g(R(U, V )P ∗(X, Y )W, Z) − g(P ∗(R(U, V )X,Y )W, Z) − g(P ∗(X, R(U, V )Y )W, Z)

−g(P ∗(X, Y )R(U, V )W, Z) = 0. (2.8.1)

Using equations (1.1.17) and (1.3.3) in (2.8.1) and putting U = Y = ei, further again

putting V = Z = ei in the simplified equation we obtain

S(X,W ) =
f1(bn(n − 1)(n − 2)) + f2(−a + 3a(n − 1) + 3b(n − 1)2 − b(n − 1))

n(n − 1)[f1(n(n − 2)) + f2(2a − 4b + 3bn)]
rg(X, W ).

This means M(f1, f2) is an Einstein manifold and we state the following:

Theorem 2.8.1. If n-dimensional generalized complex space form M(f1, f2) satisfies

R · P ∗ = 0 then it is an Einstein manifold.

Taking covariant derivative of (1.1.17) we get

(∇ZP ∗)(U, V )W = a(∇ZR)(U, V )W + b[(∇ZS)(V, W )U − (∇ZS)(U,W )V ]

− dr(Z)

n
[

a

n − 1
+ b][g(V, W )U − g(U,W )V ]. (2.8.2)
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We assume (R(U, V ) · ∇P ∗)(X, Y, Z, W ) = 0, where U, V,X, Y, Z and W are tangent

vectors. This equation takes the following form:

R(U, V )(∇XP ∗)(Y, Z)W − (∇R(U,V )XP ∗)(Y, Z)W − (∇XP ∗)(R(U, V )Y, Z)W

−(∇XP ∗)(Y, R(U, V )Z)W − (∇XP ∗)(Y, Z)R(U, V )W = 0.

Taking inner product with the vector field T we have

g(R(U, V )(∇XP ∗)(Y, Z)W, T ) − g((∇R(U,V )XP ∗)(Y, Z)W, T ) − g((∇XP ∗)(R(U, V )Y, Z)W, T )

−g((∇XP ∗)(Y,R(U, V )Z)W, T ) − g((∇XP ∗)(Y, Z)R(U, V )W, T ) = 0. (2.8.3)

Applying equations (1.1.4), (1.3.3) and (2.8.2) in (2.8.3) and letting U = Y = ei, further

again letting V = W = ei in the resulting equation we get

{
b((n − 1)f 2

1 − 3nf2) + a(f1f2 −
3

2
)

}
dr(X) = 0

dr(X) = 0 for all X.

This implies r is constant.

Hence, we have the following:

Theorem 2.8.2. If n-dimensional generalized complex space form M(f1, f2) satisfies

R · ∇P ∗ = 0 then its scalar curvature is constant.

We consider the equation (P ∗(X, Y )·S(Z,W )) = 0 satisfied by S and P ∗ in generalized

complex space form and for any tangent vectors X, Y, Z and W . It can be written as

follows:

S(P ∗(X, Y )Z,W ) + S(Z, P ∗(X,Y )W ) = 0. (2.8.4)
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Using equations (1.1.17) and (1.3.3) in equation (2.8.4) and contracting X and W we

obtain

S(Z, Y ) =
[−b(n − 1)2f1 − 3af2 − 3b(n − 1)f2]n

[bn2f1(n − 1) + af1(n − 1) + 3bn2f2 − an2f1](n − 1)
rg(Z, Y ).

Hence, we have the following:

Theorem 2.8.3. If n-dimensional generalized complex space form M(f1, f2) satisfies

P ∗ · S = 0 then it is an Einstein manifold.

2.9 Bochner Ricci-generalized pseudosymmetric

generalized complex space form

Let us consider the Ricci-generalized Bochner pseudosymmetric generalized complex space

form M(f1, f2). Then we have

(R(U,W ) · D)(X, Y, Z) = LD((UΛSW · D)(X, Y, Z)). (2.9.1)

This leads to

R(U,W )D(X, Y )Z − D(R(U,W )X, Y )Z − D(X, R(U,W )Y )Z − D(X,Y )R(U,W )Z

= LD[(UΛSW )D(X, Y )Z − D((UΛSW )X, Y )Z − D(X, (UΛSW )Y )Z − D(X, Y )(UΛSW )Z].

Taking inner product the above with T we have,

g(R(U,W )D(X, Y )Z, T ) − g(D(R(U,W )X,Y )Z, T ) − g(D(X, R(U,W )Y )Z, T )

− g(D(X, Y )R(U,W )Z, T ) = LD[g((UΛSW )D(X, Y )Z, T ) − g(D((UΛSW )X, Y )Z, T )

− g(D(X, (UΛSW )Y )Z, T ) − g(D(X, Y )(UΛSW )Z, T )]. (2.9.2)
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Using equations (1.1.12), (1.3.4) and (1.3.5) in (2.9.2) and substituting U = Y = ei,

further again substituting W = T = ei in the resulting equation and summing over i

(i = 1, 2, . . . , n), we get

f2{
2n − 8

2n + 4
S(X, Z) − 5n + 2

(2n + 4)(2n + 2)
rg(X,Z)}

= LB[
4((n − 1)f1 + 3f2 − 1) − n(r + 1)

2n + 4
S(X, Z)

+
r(n + 2) − (n + 4)

(2n + 2)(2n + 4)
rg(X, Z)]. (2.9.3)

This implies that

[
f2(2n − 8) − LB(4((n − 1)f1 + 3f2 − 1) − n(r + 1))

2n + 4
]S(X, Z)

−[
f2(5n + 2) + LB(r(n + 2) − (n + 4))

(2n + 4)(2n + 2)
]rg(X, Z) = 0. (2.9.4)

The above equation leads to

α8S(X, Z) − β8rg(X,Z) = 0. (2.9.5)

where α8 = [f2(2n−8)−LB(4((n−1)f1+3f2−1)−n(r+1))
2n+4

] and β8 = [f2(5n+2)+LB(r(n+2)−(n+4))
(2n+4)(2n+2)

]. The

last equation implies

S(X, Z) =
β8r

α8

g(X, Z). (2.9.6)

Thus, we state the following:

Theorem 2.9.1. A Bochner Ricci-generalized pseudosymmetric generalized complex space

Form is an Einstein manifold.

Using equation (2.9.6) in (1.2.1), we get

(LV g)(X, Z) + 2
β8r

α8

g(X, Z) + 2λg(X, Z) = 0. (2.9.7)
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Contraction (2.9.7) over X and Z gives

divV +
β8r

α8

n + λn = 0. (2.9.8)

If V is solenoidal then divV = 0. Therefore the equation (2.9.8) is reduced to

λ =
−β8r

α8

. (2.9.9)

Thus, we can write the following:

Corollary 2.9.2. Let (g, V, λ) be a Ricci soliton in a generalized complex space form

satisfying Bochner Ricci-generalized pseudosymmetric. Then V is solenoidal if and only

if it is shrinking, steady and expanding depending upon the sign of scalar curvature.

2.10 Generalized complex space form satisfying

D · W2 = L1Q(g,W2)

We assume that D · W2 = L1Q(g,W2) holds on M(f1, f2), then we have

(D(U, V ) · W2)(X, Y, Z) = L1[((U ∧ V ) · W2)(X, Y )Z], (2.10.1)

where U, V,X, Y, Z are tangent vectors. The above equation leads to,

D(U, V )W2(X,Y )Z − W2(D(U, V )X, Y )Z − W2(X, D(U, V )Y )Z − W2(X, Y )D(U, V )Z

= L1[(UΛgV )W2(X, Y )Z − W2((UΛgV )X, Y )Z − W2(X, (UΛgV )Y )Z − W2(X, Y )(UΛgV )Z].

Taking the above with inner product T we have,

g(D(U, V )W2(X, Y )Z, T ) − g(W2(D(U, V )X, Y )Z, T ) − g(W2(X,D(U, V )Y )Z, T )

−g(W2(X, Y )D(U, V )Z, T ) = L1[g((UΛgV )W2(X, Y )Z, T ) − g(W2((UΛgV )X, Y )Z, T )

−g(W2(X, (UΛgV )Y )Z, T − g(W2(X, Y )(UΛgV )Z, T )]. (2.10.2)
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Using equations (1.1.12), (1.1.18) and (1.3.3) in (2.10.2) and putting U = Y = ei, further

again putting V = T = ei in the simplified equation we get

γ1

(n − 1)
S(X, Z) +

δ1

(n − 1)
rg(X, Z) = L1[

1

n − 1
[nS(X,Z) − rg(X, Z)]], (2.10.3)

where γ1 = (2n+2)[(6n3−8n2−39n−22)f2−2(n3+4n2+7n−18)(n+1)f1]+rn(2n+4)
(2n+2)(2n+4)

and δ1 = −f1(2n+2)(4n+2)+6f2(2n+2)(n+1)+r
(2n+2)(2n+4)

.

The equation (2.10.3) implies

[γ1S(X, Z) + δ1rg(X, Z)] = L1[nS(X, Z) − rg(X, Z)]. (2.10.4)

Thus we have

S(X, Z) = α6rg(X, Z), (2.10.5)

where α6 = (L1+δ1)
L1n−γ1

.

Hence, we state the following:

Theorem 2.10.1. An n-dimensional generalized complex space form satisfying

D · W2 = L1Q(g,W2) is an Einstein manifold.

Using equation (2.10.5) in (1.2.1), we get

(LV g)(X, Z) + 2α6rg(X, Z) + 2λg(X, Z) = 0. (2.10.6)

Taking X = Z = ei and summing over i = 1, 2, . . . , n in (2.10.6), we obtain

(LV g)(ei, ei) + 2α6rg(ei, ei) + 2λg(ei, ei) = 0. (2.10.7)

This implies

divV + α6rn + λn = 0. (2.10.8)
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If V is solenoidal then divV = 0. Therefore the equation (2.10.8) is reduced to

λ = −α6r. (2.10.9)

Thus, we can obtain the following:

Corollary 2.10.2. Let (g, V, λ) be a Ricci soliton in a generalized complex space form

satisfying D ·W2 = L1Q(g,W2). Then V is solenoidal if and only if it is shrinking, steady

and expanding depending upon the scalar curvature i.e., r is positive, zero and negative

respectively.

2.11 Generalized complex space form with divD=0

Assume that the Bochner curvature tensor of a generalized complex space form is conser-

vative that is divD = 0.

Using equations (1.3.4) and (1.3.5) in (1.1.12), we obtain

D(U, V,W ) = R(U, V,W ) − 2
[(n − 1)f1 + 3f2]

2n + 4
[g(V, W )U − g(U,W )V + g(JV, W )JU

− g(JU,W )JV − 2g(JU, V )JW ]

+
r

(2n + 2)(2n + 4)
[g(V, W )U − g(U,W )V + g(JV, W )JU

− g(JU,W )JV − 2g(JU, V )JW ]. (2.11.1)

Differentiating (2.11.1) covariantly, contracting and by our assumption we have.

0 = (divR)(U, V )W − 2
d[(n − 1)f1 + 3f2]

2n + 4
[g(V, W )U − g(U,W )V + g(JV, W )JU

− g(JU, W )JV − 2g(JU, V )JW ]

+
dr

(2n + 2)(2n + 4)
[g(V, W )U − g(U,W )V + g(JV, W )JU

− g(JU, W )JV − 2g(JU, V )JW ]. (2.11.2)
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Using equation (1.1.4) in (2.11.2) we obtain

0 = (∇US)(V, W ) − (∇V S)(U,W ) − 2
d[(n − 1)f1 + 3f2]

2n + 4
[g(V, W )U − g(U,W )V

+ g(JV, W )JU − g(JU, W )JV − 2g(JU, V )JW ]

+
dr

(2n + 2)(2n + 4)
[g(V, W )U − g(U,W )V + g(JV, W )JU

− g(JU, W )JV − 2g(JU, V )JW ]. (2.11.3)

Taking [(n − 1)f1 + 3f2] = constant = k1 6= 0 in equation (2.11.3) we obtain

0 = (∇US)(V, W ) − (∇V S)(U,W ) +
dr

(2n + 2)(2n + 4)
[g(V, W )U − g(U,W )V

+ g(JV, W )JU − g(JU, W )JV − 2g(JU, V )JW ]. (2.11.4)

Using equation (1.1.4) in (2.11.4) we get

0 = (∇JW S)(JV, U) +
dr

(2n + 2)(2n + 4)
[g(V, W )U − g(U,W )V + g(JV, W )JU

− g(JU, W )JV − 2g(JU, V )JW ]. (2.11.5)

Replace W by JW in the above equation we get

(∇W S)(JV, U) =
dr

(2n + 2)(2n + 4)
[g(V, JW )U − g(U, JW )V + g(V, W )JU

− g(U,W )JV + 2g(JU, V )W ]. (2.11.6)

Contraction (2.11.6) over V and W after simplification we get dr(JU) = 0. If dr(JU) = 0

then dr(U) = 0 so r is constant. Using r = constant in (2.11.6) we get

(∇US)(V, W ) = (∇V S)(U,W ). (2.11.7)

Thus, we can state the following:
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Theorem 2.11.1. A n-dimensional generalized complex space form with conservative

Bochner curvature tensor is of constant scalar curvature provided [(n − 1)f1 + 3f2] =

k1(constant).

Theorem 2.11.2. [26] Let M be a Kähler manifold of dimension n ≥ 4. Then div R=0

and div C=0 are equivalent.

Using above Theorem we can state the following:

Theorem 2.11.3. Let M(f1, f2) be a generalized complex space form of dimension

n ≥ 4. Then div R=0, div C=0 and div D=0 are equivalent provided [(n − 1)f1 + 3f2] =

k1(constant).

2.12 Conclusion

The important results finding of this chapter are as follows:

• If n-dimensional generalized complex space form M(f1, f2)

1. satisfy the conditions like R · P ∗ = 0, R · P̄ = 0, R · C∗ = 0, C∗ · R = 0,

P ∗ ·S = 0, P̄ ·S = 0, D ·W2 = L1Q(g,W2) and C∗ ·S = 0 then it is an Einstein

manifold in each case.

2. satisfies R · ∇P ∗ = 0 and R · ∇P̄ = 0 then the scalar curvature is constant in

each case.

3. is Bochner semisymmetric and Einstein semisymmetric then it is Einstein man-

ifold provided f2 6= 0 and f1 6= 0 respectively.

4. is Bochner Ricci-generalized pseudosymmetric then it is an Einstein manifold.
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• Let (g, V, λ) be a Ricci soliton in a generalized complex space form satisfying

1. R · D = 0, R · C∗ = 0, C∗ · R = 0, D · W2 = L1Q(g,W2) and R · E = 0. If

V is solenoidal then it is shrinking, steady and expanding accordingly scalar

curvature is positive, zero and negative respectively in each case.

2. C∗ · S = 0. If V is solenoidal then it is expanding.

3. Bochner Ricci-generalized pseudosymmetric. Then V is solenoidal if and only

if it is shrinking.

• An n-dimensional generalized complex space form with conservative Bochner cur-

vature tensor is of constant scalar curvature provided [(n− 1)f1 + 3f2] is a non zero

constant.



Chapter 3

On Symmetric Properties of Kähler
Manifolds

3.1 Introduction

The Riemannain symmetric spaces were introduced by French mathematician Cartan

during nineteenth century and play a main tool in differential geometry. A Riemannian

manifold is called locally symmetric [11] if ∇R = 0, where R is the Riemannian cur-

vature tensor of (M, g). During the last five decades the notion of locally symmetric

manifolds has been studied by many authors in several ways to a different extent such

as semi-symmetric manifolds, weakly symmetric manifolds, weakly Ricci-symmetric man-

ifolds, pseudo symmetric manifolds, pseudo Ricci-symmetric manifolds, almost pseudo

symmetric manifold and almost pseudo Ricci-symmetric manifolds.

The notions of almost pseudo symmetric and almost pseudo Ricci-symmetric manifolds

were introduced by De and Gazi [25] and Chaki and Kawaguchi [14] respectively. These

are extended class of pseudo symmetric and pseudo Ricci-symmetric manifolds introduced

by Chaki [15] and Chaki and Kawaguchi [14] respectively. Here we note that the notion

of pseudo symmetry in the sense of Chaki is different from that of Deszcz [31]. However,

40
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pseudo symmetry defined by Chaki will be pseudo symmetry defined by Deszcz if and only

if the non zero 1-form associated with pseudo symmetric is closed. It may be mentioned

that the almost pseudo symmetric manifold is not a particular case of a weakly symmetric

manifold introduced by Tamassy and Bink [52]. Tamassy et. al., [53] found interesting

results on weakly symmetric and weakly Ricci-symmetric Kähler manifolds in 2000. Also

Shaikh et. al., [48] discussed on quasi-conformlly flat almost pseudo Ricci-symmetric

manifolds in 2010. Chathurvadi and Pandey [18] studied semi-symmetric non-metric

connections in Kähler manifolds. Then in 2015, Chathurvadi and Pandey [19] studied

special type of semi-symmetric metric connection in a weakly symmetric Kähler manifold.

Based on the above work in this chapter, we have made an attempt to study the properties

of Bochner and projective curvature tensors in Kähler manifolds and generalized complex

space forms.

3.2 Basic concepts

Definition 3.2.1. A non flat Riemannian manifold (M, g) is said to be almost pseudo

symmetric manifold [25] if its curvature tensor satisfies the condition

(∇UR)(V, W, X, Y ) = [E(U) + F (U)]R(V, W, X, Y ) + E(V )R(U,W,X, Y )

+E(W )R(V, U,X, Y ) + E(X)R(V, W, U, Y ) + E(Y )R(V, W, X,U), (3.2.1)

where E, F are 1-forms defined by (1.5.8) and ∇ denotes the operator of covariant

differentiation with respect to the metric g.

Definition 3.2.2. A non-flat Riemannian manifold (M, g) is said to be almost pseudo



On Symmetric Properties of Kähler Manifolds 42

Ricci-symmetric [14] whose Ricci tensor S of type (0, 2) satisfies the condition

(∇US)(V, W ) = [E(U) + F (U)]S(V, W ) + E(V )S(U,W ) + E(W )S(V, U),(3.2.2)

where E, F and ∇ have the meaning already stated.

If E(U) = F (U) in (3.2.1) and (3.2.2) then it reduces to pseudo symmetric and pseudo

Riici-symmetric manifolds respectively.

Definition 3.2.3. A Kähler manifold is called an almost pseudo Bochner symmetric

manifold if its Bochner curvature tensor D of type (0,4) is not identically zero and satisfies

the condition

(∇UD)(V, W, X, Y ) = [E(U) + F (U)]D(V, W, X, Y ) + E(V )D(U,W,X, Y )

+E(W )D(V, U,X, Y ) + E(X)D(V, W, U, Y ) + E(Y )D(V, W, X,U), (3.2.3)

where E, F and ∇ have the meaning already stated and D is given by (1.1.12).

Definition 3.2.4. A Kähler manifold is called almost pseudo Bochner Ricci-symmetric

manifold if its Bochner Ricci tensor K of type (0, 2) is not identically zero and satisfies

the condition

(∇UK)(V, W ) = [E(U) + F (U)]K(V, W ) + E(V )K(U,W ) + E(W )K(V, U), (3.2.4)

where E, F are nowhere vanishing 1-forms and K is given by,

K(V, W ) =
n

2n + 4
[S(V, W ) − r

2(n + 1)
g(V, W )]. (3.2.5)

Suppose (M, g) is a Kähler manifold and (g, V, λ) is a Ricci soliton in (M, g). If V is

killing vector field, then

LV g = 0. (3.2.6)
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If V is conformal killing vector field, then

LV g = ϕg, (3.2.7)

where ϕ is some scalar function.

Putting W = ρ in (1.3.4) we get,

S(V, ρ) = {(n − 1)f1 + 3f2}E(V ). (3.2.8)

If ∇ is the Levi-Civita connection of the manifold then a semi-symmetric non-metric

connection is given by [1]

∇̃UV = ∇UV + E(V )U, (3.2.9)

for all vector fields U , V and E is a 1-form defined by (1.5.8). It is called a special type

of semi-symmetric non-metric connection if the torsion tensor T̄ and the curvature tensor

R̃ of the connection ∇̃ satisfy the following conditions

T̄ (U, V ) = E(V )U − E(U)V, (3.2.10)

(∇̃U T̄ )(V, W ) = E(U)T̄ (V, W ), (3.2.11)

and R̃(U, V )W = 0. (3.2.12)

Agashe and Chafle [1] proved in 1992 that the curvature tensor R̃ with respect to semi-

symmetric non-metric connection ∇̃, (3.2.9) is given by

R̃(U, V )W = R(U, V )W + α(U,W )V − α(V, W )U, (3.2.13)

where α(V, W ) is a tensor field of type (0, 2) defined by

α(V, W ) = (∇V E)(W ) − E(V )E(W ). (3.2.14)
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Moreover from (3.2.9) we have

(∇̃UE)(V ) = (∇UE)(V ) − E(U)E(V ). (3.2.15)

From (3.2.10) we have,

(C1
1 T̄ )(V ) = (n − 1)E(V ), (3.2.16)

where C1
1 denotes operation of contraction. From (3.2.16) it follows that

(∇̃UC1
1 T̄ )(V ) = (n − 1)(∇̃UE)(V ). (3.2.17)

Again from (3.2.11) we get by using (3.2.16)

(∇̃UC1
1 T̄ )(V ) = E(U)(C1

1 T̄ )(V ) = (n − 1)E(U)E(V ). (3.2.18)

Hence from (3.2.17) and (3.2.18) we obtain

(∇̃UE)(V ) = E(U)E(V ). (3.2.19)

Using (3.2.19) the equation (3.2.15) can be written as,

(∇UE)(V ) = 2E(U)E(V ). (3.2.20)

By virtue of (3.2.20) it follows from (3.2.14) that

α(V, W ) = E(V )E(W ). (3.2.21)

Now using (3.2.21) the equation (3.2.13) can be written as follows

R̃(U, V,W, Z) = R(U, V,W, Z) + E(U)E(W )g(V, Z) − E(V )E(W )g(U,Z). (3.2.22)

Applying (3.2.12) in (3.2.22), we infer

R(U, V,W, Z) = E(V )E(W )g(U,Z) − E(U)E(W )g(V, Z). (3.2.23)
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Putting U = Z = ei and summing over i (1 ≤ i ≤ n) in (3.2.23) we have

S(V, W ) = (n − 1)E(V )E(W ). (3.2.24)

Contracting (3.2.24) we get

r = (n − 1)E(ρ), (3.2.25)

where r is the scalar curvature. Further, putting V = W = ei and taking sum over

i(1 ≤ i ≤ n) in (3.2.23) we have

S(U,Z) = g(U,Z)E(ρ) − E(U)E(Z), (3.2.26)

putting Z = ρ in (3.2.26) and (3.2.23) we get

S(U, ρ) = 0. (3.2.27)

and

R(U, V,W, ρ) = 0, (3.2.28)

respectively.

3.3 Almost pseudo symmetric Kähler manifolds

In this section we study almost pseudo symmetric Kähler manifold. We have

R(JV, JW,X, Z) = R(V, W, X,Z). (3.3.1)

Taking the covariant derivative of (3.3.1), we get

(∇UR)(JV, JW,X, Z) = (∇UR)(V, W, X,Z). (3.3.2)
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Applying (3.2.1) in (3.3.2), and by virtue of (3.3.1) we get

E(V )R(U,W,X, Z) + E(W )R(V, U,X, Z) = E(JV )R(U, JW, X, Z)

+E(JW )R(JV, U, X, Z). (3.3.3)

Putting W = X = ei in (3.3.3), we obtain

E(V )S(U,Z) − R(V, U, Z, ρ) = E(JV )S(U, JZ) + R(JV, U, Z, Jρ). (3.3.4)

Again putting V = ρ = ei in (3.3.4) and summing over i(1 ≤ i ≤ n), we infer

(n − 2)S(U,Z) = 0. (3.3.5)

The above equation leads to

S(U,Z) = 0. (3.3.6)

Thus, we have the following:

Theorem 3.3.1. Let M be an almost pseudo symmetric Kähler manifold then it is Ricci

flat.

Using equation (3.3.6) in (1.2.1), we get

(LV g)(U,Z) + 2λg(U,Z) = 0. (3.3.7)

Contracting above equation we gain

divV + λn = 0. (3.3.8)

If V is solenoidal then divV = 0. Therefore the equation (3.3.8) can be reduced to

λ = 0. (3.3.9)

Thus, we can write the following:
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Corollary 3.3.2. The Ricci soliton (g, V, λ) in an almost pseudo symmetric Kähler man-

ifold is steady if and only if V is solenoidal.

Equation (3.3.7) can be written as

(LV g)(U,Z) = −2λg(U,Z), (3.3.10)

comparing equation (3.2.7) and (3.3.10) we write the following:

Corollary 3.3.3. If (g, V, λ) is a Ricci soliton in an almost pseudo symmetric Kähler

manifold then V is conformal killing.

3.4 Almost pseudo Bochner symmetric Kähler

manifolds

Using equations (1.1.1) and (1.1.12) we find

D(JV, JW,X, Z) = D(V, W, X,Z). (3.4.1)

In this section we suppose that (M, g) is an almost pseudo Bochner symmetric Kähler

manifold. Then using equations (1.1.1), (3.2.3) and (3.4.1) we gain

(∇UD)(JV, JW,X, Z) = (∇UD)(V, W, X,Z). (3.4.2)

Applying (3.2.3) in (3.4.2), we get

E(V )D(U,W,X, Z) + E(W )D(V, U,X, Z) = E(JV )D(U, JW, X, Z)

+E(JW )D(JV, U, X, Z). (3.4.3)
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Setting W = X = ei in (3.4.3) and taking summation over i (1 ≤ i ≤ n) we get

E(V )K(U,Z) − E(D(V, U)Z) = −E(JV )K(JU, Z) − E(D(JV, U)JZ). (3.4.4)

Again setting V = ρ = ei in (3.4.4) and taking sum over i(1 ≤ i ≤ n), we obtain

(n − 2)K(U,Z) = 0. (3.4.5)

This can be written as

K(U,Z) = 0. (3.4.6)

The above equation in (3.2.5) gives

S(U,Z) =
r

2(n + 1)
g(U,Z). (3.4.7)

Thus, we can state the following:

Theorem 3.4.1. If M is an almost pseudo Bochner symmetric Kähler manifold then it

is an Einstein manifold.

Applying equation (3.4.7) in (1.2.1), we get

(LV g)(U,Z) + 2[
r

2(n + 1)
+ λ]g(U,Z) = 0, (3.4.8)

contracting the above equation we get

divV +
r

2(n + 1)
n + λn = 0. (3.4.9)

If V is solenoidal then divV = 0. Therefore the equation (3.4.9) can be reduced to

λ = − r

2(n + 1)
. (3.4.10)

Thus, we obtain the following:
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Corollary 3.4.2. Let (g, V, λ) be a Ricci soliton in an almost pseudo Bochner symmetric

Kähler manifold. Then V is solenoidal if and only if it is shrinking, steady and expanding

depending upon r > 0, r = 0 and r < 0.

3.5 Almost pseudo Ricci-symmetric Kähler manifolds

If the manifold M is an almost pseudo Ricci-symmetric Kähler Manifold, then from (1.1.1),

(1.1.2) and (3.2.2) we find

(∇US)(JV, JW ) = (∇US)(V, W ). (3.5.1)

Using (3.2.2) in (3.5.1), we get

E(JV )S(U, JW ) + E(JW )S(JV, U) = E(V )S(U,W ) + E(W )S(V, U). (3.5.2)

By substituting V = ρ = ei, 1 ≤ i ≤ n in (3.5.2) and summing over i, we have

(n + 2)S(U,W ) = 0. (3.5.3)

This equation leads to

S(U,W ) = 0. (3.5.4)

Hence, we have the following:

Theorem 3.5.1. Let M be an almost pseudo Ricci-symmetric Kähler manifold then it is

Ricci flat.

Using equation (3.5.4) in (1.2.1), we get

(LV g)(U,W ) + 2λg(U,W ) = 0. (3.5.5)
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Substituting U = W = ei in (3.5.5) and then summing over i (1 ≤ i ≤ n), we obtain

divV + λn = 0. (3.5.6)

If V is solenoidal then divV = 0. Therefore the equation (3.5.6) can be reduced to

λ = 0. (3.5.7)

Thus, we can write the following:

Corollary 3.5.2. Ricci soliton (g, V, λ) in an almost pseudo Ricci-symmetric Kähler

manifold is steady if and only if V is solenoidal.

3.6 Almost pseudo Bochner Ricci-symmetric Kähler

manifolds

If the manifold M is an almost pseudo Bochner Ricci-symmetric Kähler manifold, then

we can easily write

K(JV, JW ) = K(V, W ). (3.6.1)

Taking the covariant derivative of (3.6.1), we get

(∇UK)(JV, JW ) = (∇UK)(V, W ). (3.6.2)

Using (3.2.4) in (3.6.2), we get

E(JV )K(U, JW ) + E(JW )K(JV, U) = E(V )K(U,W ) + E(W )K(V, U). (3.6.3)

Letting V = ρ = ei in (3.6.3), where {ei} is an orthonormal basis of the tangent space at

each point of the manifold and summing over i (1 ≤ i ≤ n) we gain

K(U,W ) = 0. (3.6.4)
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Applying the above equation in (3.2.5) we write

S(U,W ) =
r

2(n + 1)
g(U,W ). (3.6.5)

Thus, we can state the following:

Theorem 3.6.1. An almost pseudo Bochner Ricci-symmetric Kähler manifold M is an

Einstein manifold.

Using equation (3.6.5) in (1.2.1), we obtain

(LV g)(U,W ) + 2
r

2(n + 1)
g(U,W ) + 2λg(U,W ) = 0. (3.6.6)

Contracting (3.6.6), we obtain

divV +
r

2(n + 1)
n + λn = 0. (3.6.7)

If V is solenoidal then divV = 0. Therefore the equation (3.6.7) can be reduced to

λ = − r

2(n + 1)
. (3.6.8)

Hence, we state the following result:

Corollary 3.6.2. Let (g, V, λ) be a Ricci soliton in an almost pseudo Bochner Ricci-

symmetric Kähler manifold. Then V is solenoidal if and only if it is shrinking, steady

and expanding depending upon the sign of scalar curvature.

Equation (3.6.6) can be written as

(LV g)(U,W ) = −2

[
r

2(n + 1)
+ λ

]
g(U,W ), (3.6.9)

comparing equation (3.2.7) and (3.6.9) we can write the following:

Corollary 3.6.3. If (g, V, λ) is a Ricci soliton in an almost pseudo Ricci-symmetric

Kähler manifold then V is conformal killing.
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3.7 Almost pseudo Bochner symmetric generalized

complex space form

Let M be an almost pseudo Bochner symmetric generalized complex space form, we know

that

D(JV, JW,X, Y ) = D(V, W, X, Y ). (3.7.1)

Taking the covariant derivative of (3.7.1), we get

(∇UD)(JV, JW,X, Y ) = (∇UD)(V, W, X, Y ). (3.7.2)

Suppose M is an almost pseudo Bochner symmetric, then using (3.2.3) in (3.7.2), we

obtain

E(V )D(U,W,X, Y ) + E(W )D(V, U,X, Y ) = E(JV )D(U, JW, X, Y )

+E(JW )D(JV, U, X, Y ). (3.7.3)

Substituting W = X = ei in (3.7.3) and summing over i (1 ≤ i ≤ n) we have

E(V )K(U, Y ) − E(D(V, U)Y ) = −E(JV )K(JU, Y ) − E(D(JV, U)JY ). (3.7.4)

Applying equations (1.1.12) and (3.2.5) in (3.7.4) and setting U = Y = ei, (1 ≤ i ≤ n),

further using equations (1.3.6) and (3.2.8) in the resulting equation, then we obtain

E(V )r = 0. (3.7.5)

Thus if r 6= 0, then from (3.7.5) we get E(V ) = 0. Using E(V ) = 0 in (3.2.3) we have

(∇UD)(V, W, X, Y ) = F (U)D(V, W, X, Y ).

That is, an almost pseudo Bochner symmetric generalized complex space forms reduces

to recurrent one. Therefore we can write the following:
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Theorem 3.7.1. An almost pseudo Bochner symmetric generalized complex space form

with non zero scalar curvature is recurrent.

Contracting (3.2.3) with respect to the pair of arguments V, Y , we have

(∇UK)(W, X) = [E(U) + F (U)]K(W, X) + E(W )K(U,X) + E(X)K(W, U)

+ E(D(U,W )V ) − E(D(X, U)W ). (3.7.6)

Applying equations (1.1.12) and (3.2.5) in (3.7.6) and putting U = X = ei, further using

equation (1.3.6) and (3.2.8) to the simplified equation we get

drZ =
(n + 1)

n2
[(n + 2)rE(W ) + 2nS(W, β) − nr

(n + 1)
F (W )]. (3.7.7)

Let us suppose that the space form under consideration of non zero constant scalar cur-

vature. Then from (3.7.7) we get,

S(W, β) =
r

2(n + 1)
F (W ) − (n + 2)r

2n
E(W ). (3.7.8)

By virtue of (1.1.6) the above equation shows that S(W, β) cannot be of the form κF (W ),

where κ is a scalar.

Hence β cannot be an eigen vector corresponding to any eigen value κ of S.

This leads to the following theorem:

Theorem 3.7.2. In an almost pseudo Bochner symmetric generalized complex space form

of non zero constant scalar curvature, β cannot be an eigen vector corresponding to any

eigen value of S.

If in particular E = F , then from (3.7.8), we have

S(W, β) = −(n2 + 2n + 2)

2n(n + 1)
rF (W ). (3.7.9)

Hence, we obtain the following:
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Corollary 3.7.3. In a pseudo Bochner symmetric generalized complex space form of non

zero constant scalar curvature, − (n2+2n+2)
2n(n+1)

r is an eigen value corresponding to the eigen

vector β.

Using equation (3.7.9) in (1.2.1), we get

(LV g)(W, β) + 2(−(n2 + 2n + 2)

2n(n + 1)
r)g(W, β) + 2λg(W, β) = 0. (3.7.10)

Suppose V is killing vector field then using equation (3.2.6) in (3.7.10), we get

λ =
(n2 + 2n + 2)

2n(n + 1)
r.

This we obtain the following:

Corollary 3.7.4. Let (g, V, λ) be a Ricci soliton in a pseudo Bochner symmetric general-

ized complex space form of non zero constant scalar curvature. If V is killing vector field

then it is expanding, steady and shrinking when r > 0, r = 0 and r < 0.

3.8 Almost pseudo Bochner Ricci-symmetric gener-

alized complex space form

Suppose the manifold M is an almost pseudo Bochner Ricci-symmetric generalized com-

plex space form, then we have

K(JV, JW ) = K(V, W ). (3.8.1)

Taking the covariant derivative of (3.8.1), we get

(∇UK)(JV, JW ) = (∇UK)(V, W ). (3.8.2)
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Using (3.2.4) in (3.8.2), we get

E(JV )K(U, JW ) + E(JW )K(JV, U) = E(V )K(U,W ) + E(W )K(V, U). (3.8.3)

Applying equation (3.2.5) in (3.8.3) and replacing U = W = ei, further using equations

(1.3.6) and (3.2.8) in the resulting equation we obtain,

E(V )r = 0. (3.8.4)

Thus if r 6= 0, then from (3.8.4) we get E(V ) = 0. Using E(V ) = 0 in (3.2.4) we have

(∇UK)(V, W ) = F (U)K(V, W ). (3.8.5)

Hence, we obtain the following:

Theorem 3.8.1. An almost pseudo Bochner Ricci-symmetric generalized complex space

form with non zero scalar curvature reduces to Ricci recurrent one.

Also from (3.8.5) we get

(∇UK)(V, W ) − (∇V K)(U,W ) = F (U)K(V, W ) − F (V )K(U,W ). (3.8.6)

Contracting (3.8.6) over V and W and using equations (1.3.4), (1.3.6) and (3.2.5), we get

dr(U) = r(n + 1)F (U) − n

2n + 4
S(U, β). (3.8.7)

If the scalar curvature r is constant, then

dr(U) = 0. (3.8.8)

By virtue of (3.8.7) and (3.8.8) yields

S(U, β) =
(2n + 4)(n + 1)

n
rF (U). (3.8.9)



On Symmetric Properties of Kähler Manifolds 56

In the other way, we assume that the Bochner curvature tensor of this space form is

Codazzi type [35]. Then we have

(∇UK)(V, W ) − (∇V K)(U,W ) = 0. (3.8.10)

Applying (3.8.10) in (3.8.6), we get

F (U)K(V, W ) − F (V )K(U,W ) = 0. (3.8.11)

Using equations (1.3.4) and (3.2.5) and contraction over V and W , further using equation

(1.3.6) to the simplified equation we infer

S(U, β) =
(2n + 4)(n + 1)

n
rF (U). (3.8.12)

This leads the following theorem:

Theorem 3.8.2. In an almost pseudo Bochner Ricci-symmetric generalized complex space

form, if

• non zero scalar curvature or

• Bochner curvature tensor is Codazzi type

then (2n+4)(n+1)
n

r is an eigenvalue of the Ricci tensor S corresponding to the

eigenvector β.

Using equation (3.8.9) or (3.8.12) in (1.2.1), we get

(LV g)(U, β) + 2(
(2n + 4)(n + 1)

n
r)g(U, β) + 2λg(U, β) = 0. (3.8.13)

By virtue of equation (3.2.7) in (3.8.13), we get

λ = −nϕ + 2(2n + 4)(n + 1)r

2n
.

This leads the following:
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Corollary 3.8.3. Let (g, V, λ) be a Ricci soliton in an almost pseudo Bochner Ricci-

symmetric generalized complex space form of non zero scalar curvature or Bochner cur-

vature tensor is Codazzi type. If V is conformal killing vector field then it is shrinking,

steady and expanding depending upon the scalar curvature.

3.9 Bochner flat almost pseudo Ricci-symmetric gen-

eralized complex space form

From (3.2.2) we get

(∇US)(V, W ) − (∇V S)(U,W ) = F (U)S(V, W ) − F (V )S(U,W ). (3.9.1)

Setting V = W = ei in (3.9.1), then we obtain

dr(U) = 2rF (U) − 2S(U, β). (3.9.2)

Putting U = JU and V = JV in (3.9.1), we get

(∇JUS)(JV, W ) − (∇JV S)(JU, W ) = F (JU)S(JV, W ) − F (JV )S(JU, W ). (3.9.3)

Again setting V = W = ei in (3.9.3), where {ei}, i = 1, 2, 3 . . . n, is an orthonormal basis

of the tangent space at each point of the manifold and summing over i (≤ i ≤ n), we get

dr(JU) = −2S(U, β). (3.9.4)

Let the generalized complex space form be Bochner flat. Then we have

D(U, V )W = 0. (3.9.5)
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Using (3.9.5) in (1.1.12) and Differentiating covariantly and contracting we obtain

0 = (divR)(U, V )W − 1

2n + 4
[g(V, W )dr(U) − (∇V S)(U,W )

+ g(JV, W )dr(JU) − (∇JV S)(JU, W ) + (∇US)(V, W ) − g(U,W )dr(V )

+ (∇JUS)(JV, W ) − g(JU, W )dr(JV ) − 2(∇JW S)(V, JU)

− 2g(JU, V )dr(JW )] +
1

(2n + 2)(2n + 4)
[g(V, W )dr(U) − g(U,W )dr(V )

+ g(JV, W )dr(JU) − g(JU, W )dr(JV ) − 2g(JU, V )dr(JW )]. (3.9.6)

Using equation (1.1.4) in (3.9.6), we get

2n + 3

2n + 4
[(∇US)(V, W ) − (∇V S)(U,W )] − 1

2n + 4
[(∇JUS)(JV, W ) − (∇JV S)(JU, W )

−2(∇JW S)(V, JU)] =
2n + 1

(2n + 2)(2n + 4)
[g(V, W )dr(U) − g(U,W )dr(V )

+g(JV, W )dr(JU) − g(JU, W )dr(JV ) − 2g(JU, V )dr(JW )]. (3.9.7)

Further let the generalized complex space form be almost pseudo Ricci-symmetric. Then

applying equations (3.9.1) and (3.9.3) in (3.9.7) we gain

2n + 3

2n + 4
[F (U)S(V, W ) − F (V )S(U,W )] − 1

2n + 4
[F (JU)S(JV, W ) − F (JV )S(JU, W )

−2(∇JW S)(V, JU)] =
2n + 1

(2n + 2)(2n + 4)
[g(V, W )dr(U) − g(U,W )dr(V )

+g(JV, W )dr(JU) − g(JU, W )dr(JV ) − 2g(JU, V )dr(JW )]. (3.9.8)

Using equation (1.3.4) in (3.9.8), we have

2n + 3

2n + 4
{(n − 1)f1 + 3f2}[(n − 1)F (U)] − 1

2n + 4
[F (JU)S(JV, W ) − F (JV )S(JU, W )

−2(∇JW S)(V, JU)] =
2n + 1

(2n + 2)(2n + 4)
[g(V, W )dr(U) − g(U,W )dr(V )

+g(JV, W )dr(JU) − g(JU, W )dr(JV ) − 2g(JU, V )dr(JW )]. (3.9.9)
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Setting V = W = ei and taking sum over i (1 ≤ i ≤ n), on further simplification using

equations (1.3.6), (3.9.2) and (3.9.4) we get

S(U, β) =
4n + 3

−2n2 + 4n + 4
(n − 1){(n − 1)f1 + 3f2}F (U). (3.9.10)

S(U, β) = φ1g(U, β), (3.9.11)

where φ1 = 4n+3
−2n2+4n+4

(n − 1){(n − 1)f1 + 3f2}.

Then we can state the following theorem:

Theorem 3.9.1. In a Bochner flat almost pseudo Ricci-symmetric generalized complex

space form, φ1 is an eigen value corresponding to the eigen vector β.

Applying equation (3.9.11) in (1.2.1), we get

(LV g)(U, β) + 2φ1g(U, β) + 2λg(U, β) = 0. (3.9.12)

Equation (3.2.7) in (3.9.12), we get

λ = −ϕ + 2φ1

2
.

Then we can write the following:

Corollary 3.9.2. Let (g, V, λ) be a Ricci soliton in a Bochner flat almost pseudo Ricci-

symmetric generalized complex space form. If V is conformal killing vector field then it is

shrinking.
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3.10 Almost pseudo symmetric Kähler manifolds ad-

mitting a special type of semi-symmetric non-

metric connection ∇̃

Let (M, g) be an almost pseudo symmetric and Kähler manifold. We know

R(JV, JW,X, Y ) = R(V, W, X, Y ). (3.10.1)

Taking the covariant derivative of (3.10.1), we get

(∇UR)(JV, JW,X, Y ) = (∇UR)(V, W, X, Y ). (3.10.2)

Applying (3.2.1) in (3.10.2), we get

E(V )R(U,W,X, Y ) + E(W )R(V, U,X, Y ) = E(JV )R(U, JW, X, Y )

+E(JW )R(JV, U, X, Y ). (3.10.3)

Contracting (3.10.3) we get

E(V )S(U, Y ) − R(V, U, Y, ρ) = E(JV )S(U, JY ) + R(JV, U, Y, Jρ). (3.10.4)

By setting U = Y = ei in (3.10.4) and summing over i(1 ≤ i ≤ n), we obtain

rE(V ) − S(V, ρ) = S(V, ρ). (3.10.5)

Using (3.2.27) in (3.10.5) we gain,

rE(V ) = 0. (3.10.6)

Thus if r 6= 0, then from (3.10.6) we get E(V ) = 0. Using E(V ) = 0 in (3.2.3) we have

(∇UD)(V, W, X, Y ) = F (U)D(V, W, X, Y ).

Thus, we can write the following:
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Theorem 3.10.1. An almost pseudo symmetric Kähler manifold admitting a special type

of semi-symmetric non-metric connection ∇̃ with non zero scalar curvature is recurrent.

We can write (3.2.1) as,

(∇UR)(V, W )X = [E(U) + F (U)]R(V, W )X + E(V )R(U,W )X + E(W )R(V, U)X

+ E(X)R(V, W )U + R(V, W, X,U)ρ. (3.10.7)

Contracting the above with respect to U, we get

(divR)(V, W )X = E(R(V, W )X) + F (R(V, W )X) + E(V )S(W, X)

− E(W )S(X,V ) + R(V, W, X, ρ). (3.10.8)

Applying (1.1.4) in (3.10.8) we obtain

(∇V S)(W, X) − (∇W S)(V, X) = E(R(V, W )X) + F (R(V, W )X) + E(V )S(W, X)

− E(W )S(X, V ) + R(V, W, X, ρ). (3.10.9)

Replacing orthonormal basis {ei} in place of V and X and using equation (1.1.8) in

(3.10.9) and taking summation over i (1 ≤ i ≤ n) we get

1

2
dr(W ) − dr(W ) = −S(W, ρ) − S(W, β) + S(W, ρ) − rE(W ) − S(W, ρ), (3.10.10)

whence by using (3.2.27) and dr(W ) = 0 as r = 0, we get S(W, β) = 0. The above

equation can also be written as

S(W, β) = 0.g(W, β). (3.10.11)

Which, by replacing β by ω, leads to

S(W, ω) = 0.g(W, ω). (3.10.12)

Hence, from equations (3.10.11) and (3.10.12), we conclude:
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Theorem 3.10.2. Let M be an almost pseudo symmetric Kähler manifold admitting a

special type of semi-symmetric non-metric connection ∇̃, then it is Ricci flat and hence

β and ω are eigenvectors of the Ricci tensor S with respect to the zero eigen value.

Using equation (3.10.11) in (1.2.1), we get

(LV g)(W, β) + 2λg(W, β) = 0. (3.10.13)

By virtue of (3.2.6) in (3.10.13), we get

λ = 0.

Then we can state the following:

Corollary 3.10.3. Let (g, V, λ) be a Ricci soliton in an almost pseudo symmetric Kähler

manifold equipped with a special type of semi-symmetric non-metric connection ∇̃. If V

is killing vector field then it is steady.

By virtue of (3.2.7) in (3.10.13), we get

λ = −ϕ

2
.

Then we can write the following:

Corollary 3.10.4. Let (g, V, λ) be a Ricci soliton in an almost pseudo symmetric Kähler

manifold initiating a special type of semi-symmetric non-metric connection ∇̃. If V is

conformal killing vector field then it is shrinking.
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3.11 Projective flat almost pseudo symmetric Kähler

manifolds admitting a special type of semi-symmetric

non-metric connection ∇̃

Taking orthonormal basis over U and Z in (3.2.22), we get

S̃(V, W ) = S(V, W ) − (n − 1)E(W )E(V ). (3.11.1)

Now the projective curvature tensor P̃ of connection ∇̃ is given by

P̃ (U, V,W, Z) = R̃(U, V,W, Z) − 1

n − 1
[S̃(V, W )g(U,Z) − S̃(U,W )g(V, Z)]. (3.11.2)

Using (3.2.22) and (3.11.1) in (3.11.2), we get [1]

P̃ (U, V,W, Z) = P (U, V,W, Z). (3.11.3)

If the manifold is projective flat with respect to ∇̃ then the manifold will be projective

flat with respect to the connection ∇ i.e.,

P̃ (U, V,W, Z) = 0 ⇒ P (U, V,W, Z) = 0. (3.11.4)

Now equation (3.11.4) implies,

R(U, V,W, Z) =
1

n − 1
[S(V, W )g(U,Z) − S(U,W )g(V, Z)]. (3.11.5)

Applying (3.2.24) in (3.11.5), we have

R(U, V,W, Z) = E(W )[E(V )g(U,Z) − E(U)g(V, Z)]. (3.11.6)

Hence, from the above equation we conclude:
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Theorem 3.11.1. If M is a projective flat Riemannian manifold with respect to a special

type of semi-symmetric non-metric connection ∇̃, then it is the manifold of constant

curvature.

Equation (3.2.23) and (3.11.6) are identical and therefore Theorems (3.10.1), (3.10.2)

and Corollaries (3.10.3) and (3.10.4) can be stated as follows:

Theorem 3.11.2. Let M be an almost pseudo symmetric projective flat Kähler manifold

allowing a special type of semi-symmetric non-metric connection ∇̃ with non zero scalar

curvature is recurrent.

Theorem 3.11.3. Let M be an almost pseudo symmetric projective flat Kähler manifold

admitting a special type of semi-symmetric non-metric connection ∇̃, then the vector fields

β and ω are eigenvector of the Ricci tensor S with respect to ∇̃.

Corollary 3.11.4. Let (g, V, λ) be a Ricci soliton in an almost pseudo symmetric pro-

jective flat Kähler manifold equipped with a special type of semi-symmetric non-metric

connection ∇̃. If V is killing vector field then it is steady.

Corollary 3.11.5. Let (g, V, λ) be a Ricci soliton in an almost pseudo symmetric projec-

tive flat Kähler manifold initiating a special type of semi-symmetric non-metric connection

∇̃. If V is conformal killing vector field then it is shrinking.
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3.12 Almost pseudo symmetric Kähler manifolds ad-

mitting a special type of semi-symmetric non-

metric connection ∇̃ with parallel projective cur-

vature tensor

Assume that the projective curvature of an almost pseudo symmetric Kähler manifold is

parallel i.e.,∇P = 0.

Using the properties of Kähler manifolds and using (3.11.3), the equation (3.11.2) we can

be expressed as

P (JU, JV, W, Z) = R(U, V,W, Z) − 1

n − 1
[S(JV, W )g(JU,Z)

− S(JU, W )g(JV, Z)]. (3.12.1)

Putting U = W = ei in (3.12.1), where {ei}, i = 1, 2, 3 . . . n, is an orthonormal basis of

the tangent space at each point of the manifold and summing over i, 1 ≤ i ≤ n, we get

g(P (Jei, JV )ei, Z) =
n

n − 1
S(V, Z). (3.12.2)

Taking covariant differentiation of (3.12.2) and our assumption yields

(∇W )S(V, Z) = 0. (3.12.3)

In view of (3.11.3), The covariant derivative ∇P can be expressed in the following form:

(∇ZP )(U, V )W = (∇ZR)(U, V )W − 1

n − 1
[(∇ZS)(V, W )U − (∇ZS)(U,W )V ]. (3.12.4)

Using (3.12.3) in (3.12.4), we obtain

(∇ZP )(U, V )W = (∇ZR)(U, V )W. (3.12.5)
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Thus, we can write the following:

Theorem 3.12.1. An almost pseudo symmetric Kähler manifold M initiate a special type

of semi-symmetric non-metric connection ∇̃, then M is projectively symmetric if and only

if it is locally symmetric.

3.13 Almost pseudo projective symmetric Kähler man-

ifolds admitting a special type of semi-symmetric

non-metric connection ∇̃

Definition 2. A Riemannian manifold (M, g) is called almost pseudo projective symmet-

ric manifold if its Projective curvature tensor P of type (0, 4) is satisfies the condition

(∇UP )(JV, JW,X, Y ) = [E(U) + F (U)]P (JV, JW,X, Y ) + E(JV )P (U, JW, X, Y )

+E(JW )P (JV, U, X, Y ) + E(X)P (JV, JW,U, Y ) + E(Y )P (JV, JW,X, U), (3.13.1)

where E, F are two non zero 1-forms and P is given in (3.12.1).

Setting orthonormal basis over V and Y in (3.13.1) we get

(∇US)(W, X)[
n − 2

n − 1
] = [E(U) + F (U)][

n − 2

n − 1
]S(W, X) − R(U, JW, X, Jρ)

− 1

n − 1
[S(JW, X)E(JU) + S(U,X)E(W )] − E(JW )[

n

n − 1
]S(JU,X) (3.13.2)

+E(X)[
n − 2

n − 1
]S(W, U) − R(X, U, W, ρ) − 1

n − 1
[−S(JW, X)E(JU) + S(JX, ρ)g(JW, U)].

Again we putting orthonormal basis in (3.13.2) place of W and X we obtain

[
n − 2

n − 1
]dr(U) = r[E(U) + F (U)][

n − 2

n − 1
] + S(U, ρ)[4 − 2

n − 1
]. (3.13.3)
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Applying equation (3.2.27) in (3.13.3) we get

dr(U) = r[E(U) + F (U)]. (3.13.4)

Hence, we state the following:

Theorem 3.13.1. The scalar curvature tensor r of an almost pseudo projective symmet-

ric Kähler manifold allowing a special type of semi-symmetric non-metric connection ∇̃

satisfies the following relation

dr(U) = r[E(U) + F (U)] for all U. (3.13.5)

Let us consider an almost pseudo projective symmetric Kähler manifold of constant

scalar curvature. Thus from (3.13.5) and r not equal to 0, we get

E(U) + F (U) = 0 for all U. (3.13.6)

Then we can write the following:

Theorem 3.13.2. If the two associated 1-forms are linearly independent in an almost

pseudo projective symmetric Kähler manifold admitting a special type of semi-symmetric

non-metric connection ∇̃, then it has non-zero constant scalar curvature.

3.14 Almost pseudo symmetric with recurrent Kähler

manifolds admitting a special type of semi

-symmetric non-metric connection ∇̃

Recurrent manifolds were introduced by Walkar [59] in 1950, now we have discuss Kähler

recurrent manifolds. A Kähler manifold (M, g) is called recurrent if its curvature tensor
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R satisfies the condition

(∇UR)(V, W, X, Y ) = A(U)R(V, W, X, Y ), (3.14.1)

where E is a non-zero 1-form and it is defined by A(U) = g(U, ξ), where ξ is the associated

vector field.

Using equation (3.2.1) in (3.14.1) then we get,

[E(U) + F (U)]R(V, W, X, Y ) + E(V )R(U,W,X, Y ) + E(W )R(V, U,X, Y )

+E(X)R(V, W, U, Y ) + R(V, W, X,U)E(Y ) = A(U)R(V, W, X, Y ). (3.14.2)

Contracting the above equation (3.14.2) over U and Y we obtain

E(R(V, W )X) + F (R(V, W )X) + E(V )S(W, X) − E(W )S(V, X)

+R(V, W, X, ρ) = R(V, W, X, ξ). (3.14.3)

Putting V = X = ei, where {ei} is an orthonormal basis of the tangent space at each

point of the manifold and summing over i(1 ≤ i ≤ n), we get

S(W, ρ) + S(W, β) + rE(W ) = S(W, ξ). (3.14.4)

Using equation (3.2.27) and (3.10.6) in (3.14.4) we obtain

S(W, β) − S(W, ξ) = 0. (3.14.5)

This implies

S(W, β − ξ) = 0. (3.14.6)

Hence, we can yield the following result:

Theorem 3.14.1. If M is an almost pseudo symmetric with recurrent Kähler manifold

admitting a special type of semi-symmetric non-metric connection ∇̃, then β − ξ is the

eigenvector as the Ricci tensor S with respect to the zero eigenvalue.
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3.15 Conclusion

The important results finding of this chapter are as follows:

• The almost pseudo symmetric and almost pseudo Ricci-symmetric Kähler manifolds

are Ricci flat.

• The almost pseudo Bochner symmetric and almost pseudo Bochner Ricci-symmetric

Kähler manifolds are Einstein manifold.

• Let (g, V, λ) be Ricci soliton in an almost pseudo Bochner symmetric or an almost

pseudo Bochner Ricci-symmetric Kähler manifold. Then V is solenoidal if and only

if it is shrinking, steady and expanding depending upon the sign of scalar curvature.

• Let (g, V, λ) be Ricci soliton in an almost pseudo Ricci-symmetric Kähler manifold

then it is steady if and only if V is solenoidal.

• An almost pseudo Bochner symmetric and an almost pseudo Bochner Ricci-symmetric

generalized complex space form with non zero scalar curvature is recurrent and Ricci

recurrent respectively.

• Let (g, V, λ) be Ricci soliton in a pseudo Bochner symmetric generalized complex

space form of non zero constant scalar curvature. If V is killing vector field then it

is expanding, steady and shrinking when r > 0, r = 0 and r < 0 respectively.

• Let (g, V, λ) be Ricci soliton in a Bochner flat almost pseudo Ricci-symmetric gener-

alized complex space form. If V is conformal killing vector field then it is shrinking.

• Let M be an almost pseudo symmetric or projective flat almost pseudo symmetric
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Kähler manifold allowing a special type of semi-symmetric non-metric connection

∇̃ with non zero scalar curvature is recurrent.

• Let M be an almost pseudo symmetric Kähler manifold admitting a special type of

semi-symmetric non-metric connection ∇̃, then it is Ricci flat.

• Let (g, V, λ) be Ricci soliton in an almost pseudo symmetric Kähler manifold or an

almost pseudo symmetric projective flat Kähler manifold, equipped with a special

type of semi-symmetric non-metric connection ∇̃ then we have

1. If V is killing then it is steady.

2. If V is conformal then it is expanding.

• An almost pseudo symmetric Kähler manifold M initiate a special type of semi-

symmetric non-metric connection ∇̃, then M is projectively symmetric if and only

if it is locally symmetric.



Chapter 4

Eisenhart Problem to Ricci Solitons
in Kähler Manifolds

4.1 Introduction

Eisenhart [34] proved that if a positive definite Riemannian manifold (M, g) admits a

second order parallel symmetric covariant tensor other than a constant multiple of the

metric tensor then it is reducible. In 1925 [40], Levy obtained the necessary and sufficient

conditions for the existence of such tensors. Since then, many others investigated the

Eisenhart problem of finding symmetric and skew-symmetric parallel tensors on various

spaces and obtained fruitful results. For instance, by giving a global approach based

on the Ricci identity. Sharma [49] investigated Eisenhart problem on non-flat real and

complex space forms, in 1989.

Using Eisenhart problem the authors Calin and Crasmareanu [9], Bagewadi and In-

galahalli [39, 7], Debnath and Bhattacharyya [29], Hui and Shaikh [17] have studied the

existence of Ricci solitons in f -Kenmotsu manifolds, α-Sasakian, Lorentzian α - Sasakian,

Trans-Sasakian and (LCS)n manifolds. Based on the above work, In this chapter we study

Ricci solitons of Kähler manifolds using Eisenhart problem and the following results:

71
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Theorem 4.1.1. [49] A symmetric parallel second order covariant tensor h in a non-flat

real space form of dimension n > 2 is a scalar multiple of the metric tensor i.e.,

h(U,W ) =
tr.h

n
g(U,W ). (4.1.1)

Theorem 4.1.2. [49] A parallel second order covariant tensor h in a non-flat complex

space form is a linear combination (with constant coefficients) of the underlying Kählerian

metric and Kählerian 2-form i.e.,

h(U,W ) =
1

n
[(tr.h)g(U,W ) + tr.(hJ)Ω(U,W )], (4.1.2)

where U,W are vector fields, J is complex structure tensor of type (1, 1), Ω is a Kählerian

2-form.

4.2 Parallel second order covariant tensor and Ricci

soliton in a non-flat real space form

We write the following Corollary using Theorem (4.1.1).

Corollary 4.2.1. A locally Ricci symmetric (∇S = 0) non-flat real space form is an

Einstein manifold.

Proof: Take h = S in (4.1.1), then tr.S = r. Therefore the equation (4.1.1) can be

written as

S(U,W ) =
r

n
g(U,W ). (4.2.1)

Remark 4.2.1. The following statements for non-flat real space form are equivalent.

1. Einstein.
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2. locally Ricci symmetric.

3. Ricci semisymmetric.

4. Ricci pseudosymmetric i.e., R · S = LSQ(g, S) and holds on the set

US = {p ∈ M : S 6= c r
n
g at p}, where LS is some function on US.

Proof: The statements (1) → (2) → (3) and (3) → (4) are trivial. Now, we prove

the statement (4) → (1) is true.

Here R · S = LSQ(g, S) means

(R(U, V ) · S(X, Y )) = LSQ(g, S)(X, Y ; U, V ),

this leads to

S(R(U, V )X,Y ) + S(X,R(U, V )Y ) = LS[S((U ∧ V )X, Y ) + S(X, (U ∧ V )Y )]. (4.2.2)

Using equations (1.3.1) in (4.2.2) and contracting we get

−nS(U, Y ) + rg(U, Y ) = LS[−nS(U, Y ) + rg(U, Y )]. (4.2.3)

The above equation can be written as,

[LS − 1][−nS(U, Y ) + rg(U, Y )] = 0. (4.2.4)

If LS − 1 6= 0, then (4.2.4) reduced to

S(U, Y ) =
r

n
g(U, Y ). (4.2.5)

Therefore, we conclude the following:

Lemma 4.2.2. A Ricci pseudosymmetric in a non-flat real space form is an Einstein

manifold if LS 6= 1.
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Corollary 4.2.3. Suppose that in a non-flat real space form, the (0,2) type field LV g+2S

is parallel where V is a given vector field. Then (g, V ) yields a Ricci soliton. In particular,

if the given a non-flat real space form is Ricci semisymmetric with LV g parallel, we have

same conclusion.

Proof: The proof follows from Theorem (4.1.1), Corollary (4.2.1) and Remark (4.2.1).

Since

(LV g + 2S)(U, Y ) =
2

n
(divV + r)g(U, Y ).

Using equation (4.2.5) in (1.2.1), we get

(LV g)(U, Y ) + 2
r

n
g(U, Y ) + 2λg(U, Y ) = 0. (4.2.6)

Contracting the above equation, we get

divV + r + λn = 0. (4.2.7)

If V is solenoidal then divV = 0. Therefore the equation (4.2.7) can be reduced to

λ =
−r

n
. (4.2.8)

Thus, we can state the following:

Corollary 4.2.4. Let (g, V, λ) be a Ricci soliton in a non-flat real space form of dimension

(n > 2). Then V is solenoidal if and only if it is shrinking, steady and expanding depending

upon the scalar curvature is r > 0, r = 0 and r < 0.

4.3 Parallel second order covariant tensor and Ricci

soliton in a non-flat complex space form

We write the following Corollary using Theorem (4.1.2).
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Corollary 4.3.1. A locally Ricci symmetric (∇S = 0) non-flat complex space form is an

Einstein manifold.

Proof: Take h = S in (4.1.2). If H = Q then tr.Q = r and tr.QJ = 0 by virtue of

(1.1.3). Hence (4.1.2) can be written as

S(U,W ) =
r

n
g(U,W ). (4.3.1)

Remark 4.3.1. The following statements for non-flat complex space form are equivalent.

1. Einstein.

2. locally Ricci symmetric.

3. Ricci semisymmetric.

4. Ricci pseudosymmetric i.e., R · S = LSQ(g, S) and holds on the set

US = {p ∈ M : S 6= c r
n
g at p}, where LS is some function on US.

Proof: The statements (1) → (2) → (3) and (3) → (4) are trivial. Now, we prove

the statement (4) → (1) is true.

Here R · S = LSQ(g, S) means

(R(U, V ) · S(X, Y )) = LSQ(g, S)(X, Y ; U, V ).

Which implies

S(R(U, V )X,Y ) + S(X,R(U, V )Y ) = LS[S((U ∧ V )X, Y ) + S(X, (U ∧ V )Y )]. (4.3.2)

Applying equations (1.3.2) in (4.3.2) and putting orthonormal basis over V and X, we

get after simplification that

nS(U, Y ) − rg(U, Y ) = LS[nS(U, Y ) − rg(U, Y )]. (4.3.3)
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The above equation implies,

[LS − 1][nS(U, Y ) − rg(U, Y )] = 0. (4.3.4)

If LS − 1 6= 0, then (4.3.4) reduced to

S(U, Y ) =
r

n
g(U, Y ). (4.3.5)

Therefore, we conclude the following:

Lemma 4.3.2. A Ricci pseudosymmetric non-flat complex space form is an Einstein

manifold if LS 6= 1.

Corollary 4.3.3. Suppose that on a non-flat complex space form, the (0,2) type field

LV g + 2S is parallel where V is a given vector field. Then (g, V ) yields a Ricci soli-

ton if JV is solenoidal. In particular, if the given non-flat complex space form is Ricci

semisymmetric with LV g parallel, we have same conclusion.

Proof: From Theorem (4.1.2), Remark (4.3.1) and Corollary (4.3.1), we have λ = − r
n

as seen below:

(LV g + 2S)(U, Y ) =
1

n
[tr(LV g + 2S)g(U, Y ) + tr.((LV g + 2S)J)Ω(U, Y )]

=
1

n
[2(divV + r)g(U, Y ) + 2(divJV )Ω(U, Y )

+ 2(tr.SJ)Ω(U, Y )], (4.3.6)

by virtue of (1.1.3) the above equation becomes

(LV g + 2S)(U, Y ) =
2

n
[(divV + r)g(U, Y ) + (divJV )Ω(U, Y )]. (4.3.7)

By definition (g, V, λ) yields Ricci soliton. If divJV = 0 then divV = 0 because JV = iV

i.e.,

(LV g + 2S)(U, Y ) =
2r

n
g(U, Y ) = −2λg(U, Y ). (4.3.8)
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Therefore λ = − r
n
.

Corollary 4.3.4. Let (g, V, λ) be a Ricci soliton in a non-flat complex space form of di-

mension (n > 2). Then V is solenoidal if and only if it is shrinking, steady and expanding

depending upon the scalar curvature is positive, zero and negative respectively.

Proof: Using equation (4.3.5) in (1.2.1) we get

(LV g)(U, Y ) + 2
r

n
g(U, Y ) + 2λg(U, Y ) = 0. (4.3.9)

Taking orthonormal basis over U and Y of the above equation, we get

divV + r + λn = 0. (4.3.10)

If V is solenoidal then divV = 0. Therefore the equation (4.3.10) can be reduces to

λ =
−r

n
.

4.4 Parallel second order covariant tensor and Ricci

soliton in a non-flat generalized complex space

form

Let h be a (0, 2)-tensor which is parallel with respect to ∇ that is ∇h = 0. Applying the

Ricci identity [49]

∇2h(U, Y ; Z,W ) −∇2h(U, Y ; W, Z) = 0, (4.4.1)

we obtain the relation

h(R(U, Y )Z,W ) + h(Z,R(U, Y )W ) = 0. (4.4.2)
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Applying equation (1.3.3) in (4.4.2) and letting U = W = ei, 1 ≤ i ≤ n after simplifica-

tion, we get

f1{g(Y, Z)(tr.H) − h(Y, Z)} + f2{h(JY, JZ) − g(Y, JZ)(tr.HJ) + 2h(JZ, JY )}

− {(n − 1)f1 − 3f2}h(Z, Y ) = 0, (4.4.3)

where H is a (1, 1) tensor metrically equivalent to h. Symmetrization and anti-symmetrization

of (4.4.3) yield

[nf1 − 3f2]

f1

h(Z, Y ) − 3f2

f1

h(JY, JZ) = (tr.H)g(Y, Z). (4.4.4)

[(n − 2)f1 − 3f2]

f2

h(Y, Z) + h(JZ, JY ) = g(Y, JZ(tr.HJ)). (4.4.5)

Replacing Y, Z by JY, JZ respectively in (4.4.4) and adding the resultant equation from

(4.4.4), we obtain

hs(Y, Z) = π(tr.H)g(Y, Z), (4.4.6)

where π = f1

[nf1−6f2]
.

Replacing Y, Z by JY, JZ respectively in (4.4.5) and adding the resultant equation from

(4.4.5), we obtain

ha(Y, Z) =
f2

[(n − 2)f1 − 4f2]
(tr.HJ)g(Y, JZ). (4.4.7)

By summing up (4.4.6) and (4.4.7) we obtain the expression

h = π(tr.H)g + ρ1(tr.HJ)Ω, (4.4.8)

where ρ1 = f2

[(n−2)f1−4f2]
. Hence we can state the following:

Theorem 4.4.1. A second order parallel tensor in a non-flat generalized complex space

form is a linear combination (with constant coefficients) of the underlying Kählerian met-

ric and Kählerian 2-form.
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Corollary 4.4.2. The only symmetric (anti-symmetric) parallel tensor of type (0, 2) in

a non-flat generalized complex space form is the Kählerian metric (Kählerian 2-form) up

to a constant multiple.

Corollary 4.4.3. A locally Ricci symmetric (∇S = 0) non-flat generalized complex space

form is an Einstein manifold.

Proof: If H = S in (4.4.8) then tr.H = r and tr.HJ = 0 by virtue of (1.1.3). Equation

(4.4.8) can be written as

S(Y, Z) = πrg(Y, Z). (4.4.9)

Remark 4.4.1. The following statements for non-flat generalized complex space form are

equivalent.

1. Einstein.

2. locally Ricci symmetric.

3. Ricci semisymmetric that is R · S = 0 if f1 6= 0.

Proof: The statements (1) → (2) → (3) are trivial. Now, we prove the statement

(3) → (1) is true.

Here R · S = 0 means

(R(U, V ) · S)(X, Y ) = 0.

Which implies

S(R(U, V )X, Y ) + S(X, R(U, V )Y ) = 0. (4.4.10)

Using equations (1.3.3) in (4.4.10) and setting V = X = ei, where {ei} is an orthonormal

basis of the tangent space at each point of the manifold and summing over i (1 ≤ i ≤ n)
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we yield after simplification that

f1{nS(U, Y ) − rg(U, Y )} = 0. (4.4.11)

If f1 6= 0, then (4.4.11) reduces to

S(U, Y ) =
r

n
g(U, Y ). (4.4.12)

Therefore, we conclude the following:

Lemma 4.4.4. A Ricci semisymmetric non-flat generalized complex space form is an

Einstein manifold if f1 6= 0.

Corollary 4.4.5. Suppose that on a non-flat generalized complex space form, the (0,2)

type field LV g + 2S is parallel where V is a given vector field. Then (g, V ) yield a Ricci

soliton if JV is solenoidal. In particular, if the given non-flat generalized complex space

form is Ricci semisymmetric with LV g parallel, we have same conclusion.

Proof: From Theorem (4.4.1) and corollary (4.4.3), we have λ = −πr as seen below:

(LV g + 2S)(U, Y ) = [π.tr(LV g + 2S)g(U, Y ) + ρ1.tr((LV g + 2S)J)Ω(U, Y )]

= [π2(divV + r)g(U, Y ) + ρ1[2(divJV )Ω(U, Y )

+ 2(tr.SJ)Ω(U, Y )]], (4.4.13)

by virtue of (1.1.3) the above equation becomes

(LV g + 2S)(U, Y ) = [2π(divV + r)g(U, Y ) + 2ρ1(divJV )Ω(U, Y )]. (4.4.14)

By definition (g, V, λ) yields Ricci soliton if divJV = 0 then divV = 0 because JV = iV

i.e.,

(LV g + 2S)(U, Y ) = 2πrg(U, Y ) = −2λg(U, Y ). (4.4.15)
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Therefore λ = −πr

Corollary 4.4.6. Let (g, V, λ) be a Ricci soliton in a non-flat generalized complex space

form. Then V is solenoidal if and only if it is shrinking, steady and expanding depending

upon the sign of scalar curvature.

Proof: Using equation (4.4.12) in (1.2.1) we get

(LV g)(U, Y ) + 2
r

n
g(U, Y ) + 2λg(U, Y ) = 0. (4.4.16)

Setting U = Y = ei, i (1 ≤ i ≤ n) in the above equation we obtain

divV + r + λn = 0. (4.4.17)

If V is solenoidal then divV = 0. Therefore the equation (4.4.17) can be reduced to

λ =
−r

n
.

4.5 Conclusion

The important results finding of this chapter are as follows:

• A second order parallel tensor in a non-flat generalized complex space form is a

linear combination (with constant coefficients) of the underlying Kählerian metric

and Kählerian 2-form.

• The only symmetric (anti-symmetric) parallel tensor of type (0, 2) in a non-flat

generalized complex space form is the Kählerian metric (Kählerian 2-form) up to a

constant multiple.
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• The following statements for non-flat real or complex space form are equivalent.

1. Einstein.

2. Locally Ricci symmetric.

3. Ricci semisymmetric.

4. Ricci pseudosymmetric i.e., R · S = LSQ(g, S) and holds on the set

US = {p ∈ M̃ : S 6= c r
n
g at p}, where LS is some function on US.

• From Corollaries (4.2.3), (4.3.3) and (4.4.5) we conclude the following:

According to Corollary (4.2.3) we have

(LV g + 2S)(U, Y ) =
2

n
(divV + r)g(U, Y )

and in the above equation the solenoidal condition does not affect for the existence

of Ricci soliton in non-flat real space form, but according to Corollaries (4.3.3) and

(4.4.5) we have

(LV g + 2S)(U, Y ) =
2

n
[(divV + r)g(U, Y ) + (divJV )Ω(U, Y )],

(LV g + 2S)(U, Y ) = [2π(divV + r)g(U, Y ) + 2ρ1(divJV )Ω(U, Y )],

and in these equations solenoidal condition affects for the existence of Ricci solitons

in non-flat complex and generalized complex space form, unless divJV = 0.

• Let (g, V, λ) be a Ricci soliton in a non-flat real or complex or generalized space

forms of dimension n(> 2). Then V is solenoidal if and only if it is shrinking,

steady and expanding depending upon the scalar curvature r > 0, r = 0 and r < 0.



Chapter 5

Submanifolds in Real and Complex
Space Forms

5.1 Introduction

Riemannian invariants play the most fundamental role in Riemannian geometry. They

provide the intrinsic characteristics of Riemannian manifolds moreover, they affect the

behavior of Riemannian manifolds in general. Classically, among Riemannian curvature

invariants people have studied Sectional, Ricci and Scalar curvatures intensively since

Riemann.

The study of submanifolds was initiated by Darboux and Nash. In 1971, Chern et.

al., [23] studied submanifold with parallelism of the second fundamental form. Minimal

surfaces of an Euclidean m-space Em and minimal surfaces of hypersphers of Em are

surfaces with parallel mean curvature vector of Em, i.e. ∇H = 0. In [20] Chen and

[65] Yau independently studied the surface with parallel mean curvature vector in real

space form. In 2004, Turkay [57] classified the surfaces immersed in E5 satisfying the

condition R⊥(U, V ) · H = 0. Then in 2011, Kadri et. al. [4], found interesting results on

H-recurrent surfaces in Euclidean space Em. The authors Yano and Kon [61], Chen [20],
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Alegre and Carriazo [3], De and Shaikh [24], Hasan Shahid [30], Özgur [50], Bagewadi [5]

et. al. studied submanifolds in different structures of manifold. Sharma [49] investigated

Eisenhart problem on non-flat real and complex space forms, in 1989. Using the result of

Sharma we study the geometric properties of submanifold M of non-flat real and complex

space form. In this chapter we study submanifold of real and complex space forms whose

second fundamental forms are parallel, semi-parallel, recurrent and using the

Theorems (4.1.1): (4.1.2):

Theorem 5.1.1. [20, 65] Let M be a smooth surface in m-dimensional real space form

Rm(k) of constant sectional curvature k. If H is parallel in the normal bundle, then M is

one of the following surfaces:

1. M is minimal surface in Rm(k).

2. M is minimal surface in a small hypersphere of Rm(k).

3. M is a surface with constant mean curvature ‖H‖ in S3 of Rm(k).

Theorem 5.1.2. [4] Let M be a smooth submanifold in En. If M satisfies the H-recurrent

condition ∇UH = B(U)H, then M is R⊥-parallel. Where B is a 1-form.

Theorem 5.1.3. [57] If M is a surface satisfying R⊥(U, V ) · H = 0, then M is either

minimal or totally umbilical or normally flat i.e., R⊥ = 0.

Theorem 5.1.4. [32] Every semi-parallel surface is H-parallel.
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5.2 Basic concepts

If M is an immersion of space form M̃(k), then we know that ∇ and ∇̃ are Levi-Civita

connections on M and M̃(k) respectively and σ is a second fundamental form on M. The

second fundamental form σ of the imbedding is said to be

• parallel if (∇̃Uσ)(V, W ) = 0.

• recurrent if (∇̃Uσ)(V, W ) = B(U)σ(V, W ).

• semi-parallel if R̃ · σ = 0.

• pseudoparallel if R̃ · .σ = L1Q(g, σ)

• Ricci-generalized pseudoparallel if R̃ · σ = L1Q(S, σ),

where L1 and L2 are function depending on σ.

We know that σ(U, JV ) = Jσ(U, V ) [21], where σ is second order covariant tensor on

Kähler manifold. Then

1

n
(tr.(σJ)) = J

1

n
(tr.σ) = HJ. (5.2.1)

5.3 Parallel and semi-parallel submanifolds in a non-

flat real space form

Let σ be parallel, i.e., (∇̃Uσ)(V, W ) = 0.

Using (1.4.4) in the above equation implies

∇⊥
Uσ(V, W ) − σ(∇UV, W ) − σ(V,∇UW ) = 0. (5.3.1)
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Since σ is symmetric, covariant tensor of order 2 we have by virtue (4.1.1)

∇⊥
U{

tr.σ

n
g(V, W )} − tr.σ

n
g(∇UV, W ) − tr.σ

n
g(V,∇UW ) = 0. (5.3.2)

Using equation (1.4.7) in (5.3.2) we get

∇⊥
U{Hg(V, W )} − H(∇UV, W ) − H(V,∇UW ) = 0. (5.3.3)

This implies

(∇⊥
UH)g(V, W ) + H∇⊥

Ug(V, W ) = HXg(V, W ). (5.3.4)

Putting an orthonormal basis over V and W in the above equation implies

(∇⊥
UH)n = 0. (5.3.5)

The above equation becomes

∇⊥
UH = 0. (5.3.6)

This implies H is parallel in normal bundle. Then we have the following result from

Theorem (5.1.1):

Theorem 5.3.1. Let M be a submanifold of a non flat real space form. If σ is parallel,

then M is one of the following surfaces:

1. M is minimal surface in Rm(k).

2. M is minimal surface in a small hypersphere of Rm(k).

3. M is a surface with constant mean curvature ‖H‖ in S3 of Rm(k).

Let R̃ and σ satisfy the equation R̃ · σ = 0, i.e., M be semi-parallel.

The above equation implies

R⊥(U, V )σ(X, Y ) − σ(R(U, V )X, Y ) − σ(X, R(U, V )Y ) = 0. (5.3.7)
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Using equation (1.3.1) and Gauss equation (1.4.3) in (5.3.7) and setting X = Y = ei we

obtain,

R⊥(U, V )H = 0. (5.3.8)

This implies H is either constant or zero or R⊥ = 0, hence we state the following from

Theorem (5.1.3):

Theorem 5.3.2. Let M be a submanifold of a non-flat real space form. If σ is semi-

parallel then M is either totally umbilical or minimal or normal flat.

Then M must be either part of an extrinsic sphere or a plane which is totally umbilical

[12, 21]. Hence we state the following:

Corollary 5.3.3. Let M be a connected and compact submanifold of a non-flat real space

form then σ is semi-parallel if and only if M is either an extrinsic sphere or a plane.

Every semi-parallel surface is H-parallel in [32]. Thus We state the following:

Theorem 5.3.4. Let M be a submanifold of a non-flat real space form. If σ is semi-

parallel then M is H-parallel.

The calculation for pseudoparallel or Ricci-generalized pseudoparallel in a non-flat real

space form will lead to the (5.3.8), so we state the following:

Theorem 5.3.5. Let M be a submanifold of a non-flat real space form. If σ is pseudopar-

allel or Ricci-generalized pseudoparallel then M is either totally umbilical or minimal or

normal flat.

Corollary 5.3.6. Let M be a connected and compact submanifold of a non-flat real space

form then σ is pseudoparallel or Ricci-generalized pseudoparallel if and only if M is either

an extrinsic sphere or a plane.
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Theorem 5.3.7. Let M be a submanifold of a non-flat real space form. If σ is pseu-

doparallel or Ricci-generalized pseudoparallel then M is H-parallel.

5.4 Recurrent submanifolds in a non-flat real

space form

Consider σ is recurrent, from (1.4.6) we get

(∇̃Uσ)(V, W ) = B(U)σ(V, W ). (5.4.1)

Using (1.4.4) in the above equation implies

∇⊥
Uσ(V, W ) − σ(∇UV, W ) − σ(V,∇UW )) = B(U)σ(V, W ). (5.4.2)

Setting V = W = ei in (5.4.2), then we obtain

(∇⊥
UH) = −B(U)H. (5.4.3)

We state the following:

Theorem 5.4.1. Let M be a submanifold of a non-flat real space form. If σ is recurrent

then the mean curvature vector is recurrent in the normal space.

If M satisfies the H-recurrent condition ∇UH = B(U)H, then M is R⊥-parallel.

Hence we state the following:

Corollary 5.4.2. Let M be a submanifold of a non-flat real space form. If σ is recurrent,

then M is R⊥-parallel.
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5.5 Parallel and semi-parallel submanifolds in a non-

flat complex space form

Let σ be parallel, i.e., (∇̃Uσ)(V, W ) = 0.

Using (1.4.4) above equation implies

∇⊥
Uσ(V, W ) − σ(∇UV, W ) − σ(V,∇UW ) = 0. (5.5.1)

Since σ is covariant tensor of order 2 we have by virtue (4.1.2)

∇⊥
U{

1

n
[(tr.σ)g(V, W ) + (tr.(σJ))g(V, JW )]} − 1

n
[(tr.σ)g(∇UV, W ) + (tr.(σJ))g(∇UV, JW )]

− 1

n
[(tr.σ)g(V,∇UW ) + (tr.(σJ))g(V,∇UJW )] = 0. (5.5.2)

Using equation (1.4.7) and (5.2.1) in (5.5.2) we get

∇⊥
U{Hg(V, W ) + HJg(V, JW )]} − [Hg(∇UV, W ) + HJg(∇UV, JW )]

−[Hg(V,∇UW ) + HJg(V,∇UJW )] = 0. (5.5.3)

The above equation implies

[(∇⊥
UH)g(V, W ) + H∇⊥

Ug(V, W )] + [(∇⊥
UHJ)g(V, JW ) + HJ(∇⊥

U)g(V, JW )]

= HXg(V, W ) + HJXg(V, JW ). (5.5.4)

Taking V = W = ei, where {ei} is an orthonormal basis of the tangent space at each

point of the manifold and taking summation over i (1 ≤ i ≤ n), after simplification we

yield

(∇⊥
UH)n = 0. (5.5.5)

The above equation implies

∇⊥
UH = 0. (5.5.6)



Submanifolds in Real and Complex Space Forms 90

This implies H is parallel in normal bundle. Then we have the following result:

Theorem 5.5.1. Let M be a submanifold of a non-flat complex space form. If σ is parallel

then M is minimal.

Let R̃ and σ satisfy the equation R̃ · σ = 0, i.e., M be semi-parallel.

The above equation implies

R⊥(U, V )σ(X, Y ) − σ(R(U, V )X, Y ) − σ(X, R(U, V )Y ) = 0. (5.5.7)

Using equation (1.3.2) and Gauss equation (1.4.3) in (5.5.7) and setting X = Y = ei we

obtain,

R⊥(U, V )HJ = kΩ(U, V )HJ. (5.5.8)

Thus, we have the following result:

Theorem 5.5.2. Let M be a submanifold of a non-flat complex space form. If σ is semi-

parallel then the mean curvature vector in Kähler space is the eigen vector of the normal

transformation and the corresponding eigen value is the product of holomorphic sectional

curvature and Kähler metric.

5.6 Conclusion

The important results finding of this chapter are as follows:

• Let M be a submanifold of a non flat real space form. If σ is parallel, then M is

one of the following surfaces:

1. M is minimal surface in Rm(k).
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2. M is minimal surface in a small hypersphere of Rm(k).

3. M is a surface with constant mean curvature ‖H‖ in S3 of Rm(k).

• Let M be a submanifold of a non-flat real space form. If σ is semi-parallel or

pseudoparallel or Ricci generalized pseudoparallel then M is either totally umbilical

or minimal or normal flat.

• Let M be a connected and compact submanifold of a non flat real space form then

σ is semi-parallel or pseudoparallel or Ricci generalized pseudoparallel if and only

if M is either an extrinsic sphere or a plane.

• Let M be a submanifold of a non-flat real space form. If σ is recurrent, then M is

R⊥-parallel.

• Let M be a submanifold of a non-flat complex space form. If σ is parallel then M

is minimal.

• Let M be a submanifold of a non-flat complex space form. If σ is semi-parallel

then the mean curvature vector in Kähler space is the eigen vector of the normal

transformation and the corresponding eigen value is the product of holomorphic

sectional curvature and Kähler metric.



Chapter 6

Ricci Solitons in Quaternion Space
Forms

6.1 Introduction

In this chapter we extend the work of Sharma [49] and Bagewadi [7, 8] to quaternion

space form.

6.2 Basic concepts

Let U be a unit vector tangent to the quaternion Kahlerian manifold M̄ , then U, JU,KU

and LU form an orthonormal frame. We denote by Q(U) the 4-plane spanned by them,

and call it the quaternion 4-plane determined by U . Every plane in a quaternion 4-plane

is called a quaternion plane. The sectional curvature for a quaternion plane is called a

quaternion sectional curvature.

A quaternion Kählerian manifold is called a quaternion space form M̄(k) if its quater-

nion sectional curvatures are equal to a constant k. It is known that a quaternion

Kählerian manifold is a quaternion space form if and only if its curvature tensor R is
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of the following form [37, 22]:

R(U, Y )Z =
k

4
[g(Y, Z)U − g(U,Z)Y + g(JY, Z)JU − g(JU, Z)JY + 2g(U, JY )JZ

+ g(KY, Z)KU − g(KU,Z)KY + 2g(U,KY )KZ + g(LY,Z)LU

− g(LU, Z)LY + 2g(U,LY )LZ]. (6.2.1)

6.3 Parallel second order covariant tensor and Ricci

soliton in a non-flat quaternion space form

If h is a parallel (0, 2) covariant tensor in a non-flat quaternion space form, then using

(6.2.1) in (4.4.2) and contracting over U and W , we get

g(Y, Z)(tr.H) − h(Y, Z) − (n + 8)h(Z, Y ) + g(JY, Z)tr.(HJ) + h(JY, JZ)

+2h(JZ, JY ) + g(KY, Z)tr.(HK) + h(KY, KZ) + 2h(KZ, KY )

+g(LY,Z)tr.(HL) + h(LY,LZ) + 2h(LZ,LY ) = 0, (6.3.1)

where H is a (1, 1) tensor metrically equivalent to h. Symmetrization and anti-symmetrization

of (6.3.1) yield:

g(Y, Z)(tr.H) = (n + 9)h(Y, Z) − 3h(JY, JZ) − 3h(KY, KZ)

− 3h(LY,LZ), (6.3.2)

g(JY, Z)tr.(HJ) + g(KY, Z)tr.(HK) + g(LY,Z)tr.(HL) = (n + 7)h(Z, Y )

− h(JZ, JY ) − h(KZ, KY ) − h(LZ,LY ). (6.3.3)
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Replacing Y and Z by JY and JZ, KY and KZ, LY and LZ respectively in (6.3.2) and

adding the resultant equations from (6.3.2), then we get

g(Y, Z)(tr.H) = (n + 6)hs(Y, Z) − 3hs(KY, KZ) − 3hs(LY,LZ), (6.3.4)

g(Y, Z)(tr.H) = (n + 6)hs(Y, Z) − 3hs(JY, JZ) − 3hs(LY,LZ), (6.3.5)

g(Y, Z)(tr.H) = (n + 6)hs(Y, Z) − 3hs(JY, JZ) − 3hs(KY, KZ). (6.3.6)

Again changing Y, Z by KY, KZ respectively in (6.3.4) and adding the resultant equation

from (6.3.4), we obtain

(n+9)g(Y, Z)(tr.H) = ((n+6)2−9)hs(Y, Z)−3(n+6)hs(LY,LZ)−9hs(JY, JZ). (6.3.7)

Multiply −3 to equation (6.3.5) and adding the resultant equation from (6.3.7) we obtain

the expression

g(Y, Z)(tr.H) =
(n2 + 9n + 9)

(n + 6)
hs(Y, Z) − (3n + 9))

(n + 6)
hs(LY,LZ). (6.3.8)

Substituting Y, Z by LY,LZ respectively in (6.3.8) and adding the resultant equation

from (6.3.8), the relation

hs(Y, Z) =
(tr.H)

n
g(Y, Z). (6.3.9)

Likewise: changing Y and Z by JY and JZ, KY and KZ, LY and LZ respectively in

(6.3.3) and adding the resultant equations from (6.3.3), then we obtain

g(Y, JZ)tr.(HJ) + g(Y,KZ)tr.(HK) + g(Y, LZ)tr.(HL) = (n + 6)ha(Y, Z)

−ha(KY, KZ) − ha(LY,LZ), (6.3.10)

g(Y, JZ)tr.(HJ) + g(Y,KZ)tr.(HK) + g(Y, LZ)tr.(HL) = (n + 6)ha(Y, Z)

−ha(JY, JZ) − ha(LY,LZ), (6.3.11)
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g(Y, JZ)tr.(HJ) + g(Y,KZ)tr.(HK) + g(Y, LZ)tr.(HL) = (n + 6)ha(Y, Z)

− ha(KY, KZ) − ha(JY, JZ). (6.3.12)

Again replacing Y, Z by KY, KZ respectively in (6.3.10) and adding the resultant equation

from (6.3.10), we get

(n + 7)[g(Y, JZ)tr.(HJ) + g(Y, KZ)tr.(HK) + g(Y, LZ)tr.(HL)]

= [(n + 6)2 − 1]ha(Y, Z) − (n + 6)ha(LY,LZ) − ha(JY, JZ). (6.3.13)

Multiply −1 to equation (6.3.11) and adding the resultant equation from (6.3.13) we

obtain the expression

g(Y, JZ)tr.(HJ) + g(Y, KZ)tr.(HK) + g(Y, LZ)tr.(HL) =
n2 + 11n − 29

(n + 6)
ha(Y, Z)

− (n + 5)

(n + 6)
ha(LY,LZ). (6.3.14)

Substituting Y, Z by LY,LZ respectively in (6.3.14) and adding the resultant equation

from (6.3.14), then we get

ha(Y, Z) =
(n + 6)

(n2 + 10n − 34)
[g(Y, JZ)tr.(HJ) + g(Y, KZ)tr.(HK)

+ g(Y, LZ)tr.(HL)]. (6.3.15)

By summing up (6.3.9) and (6.3.15) we obtain the expression

h = [
1

n
(tr.H)g + %[g(Y, JZ)tr.(HJ) + g(Y, KZ)tr.(HK) + g(Y, LZ)tr.(HL)], (6.3.16)

where % = (n+6)
(n2+10n−34)

. The above equation implies

h =

[
1

n
(tr.H)g + %[tr.(HJ)Ω1 + tr.(HK)Ω2 + tr.(HL)Ω3]

]
. (6.3.17)

Thus, we can state the following:
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Theorem 6.3.1. A second order parallel tensor in a non-flat quaternion space form is

a linear combination (with constant coefficients) of the underlying quaternion Kählerian

metric and quaternion Kählerian 2-forms.

Corollary 6.3.2. The only symmetric (anti-symmetric) parallel tensor of type (0, 2) in a

non-flat quaternion space form is the quaternion Kählerian metric (quaternion Kählerian

2-forms) up to a constant multiple.

Corollary 6.3.3. A locally Ricci symmetric (∇S = 0) non-flat quaternion space form is

an Einstein manifold.

Proof: If h = S in (6.3.17) then tr.H = r, tr.HJ = 0, tr.HK = 0 and tr.HL = 0 by

virtue of (1.5.6). Equation (6.3.17) can be written as

S(Y, Z) =
r

n
g(Y, Z). (6.3.18)

Remark 6.3.1. The following statements for non-flat quaternion space form are equivalent.

1. Einstein.

2. locally Ricci symmetric.

3. Ricci semisymmetric that is R · S = 0.

Proof: The statements (1) → (2) → (3) are trivial. Now, we prove the statement

(3) → (1) is true.

Here R · S = 0 means

(R(U, V ) · S(Y, Z)) = 0. (6.3.19)

Which implies

S(R(U, V )Y, Z) + S(Y,R(U, V )Z) = 0. (6.3.20)



Ricci Solitons in Quaternion Space Forms 97

Using equations (6.2.1) in (6.3.20) and taking orthonormal basis over V and Y , we get

after simplification that

k

4
{nS(U,Z) − rg(U,Z)} = 0. (6.3.21)

The above equation implies

S(U,Z) =
r

n
g(U,Z). (6.3.22)

Therefore, we conclude the following:

Lemma 6.3.4. A Ricci semisymmetric non-flat quaternion space form is an Einstein

manifold.

Corollary 6.3.5. Suppose that on a non-flat quaternion space form, the (0,2) type field

LV g + 2S is parallel where V is a given vector field. Then (g, V ) yields a Ricci soliton

if JV , KV and LV are solenoidal. In particular, if the given non-flat quaternion space

form is Ricci semisymmetric with LV g parallel, we have same conclusion.

Proof: From Theorem (6.3.1) and Corollary (6.3.3), we have λ = − r
n

as seen below:

(LV g + 2S)(Y, Z) = [
1

n
tr(LV g + 2S)g(Y, Z) + %[tr.((LV g + 2S)J)Ω1(Y, Z)

+ tr.((LV g + 2S)K)Ω2(Y, Z) + tr.((LV g + 2S)L)Ω3(Y, Z)]],

(LV g + 2S)(Y, Z) = [
1

n
2(divV + r)g(Y, Z) + %[2(divJV )Ω1(Y, Z) + 2(tr.SJ)Ω1(Y, Z)

+ 2(divKV )Ω2(Y, Z) + 2(tr.SK)Ω2(Y, Z)

+ 2(divLV )Ω3(Y, Z) + 2(tr.SL)Ω3(Y, Z)]], (6.3.23)

by virtue of (1.5.6) the above equation becomes

(LV g + 2S)(Y, Z) = [
2

n
[(divV + r)g(Y, Z) + 2%[(divJV )Ω1(Y, Z)

+ (divKV )Ω2(Y, Z) + (divLV )Ω3(Y, Z)]]. (6.3.24)
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By definition (g, V, λ) yields Ricci soliton. If divJV = 0, divKV = 0 and divLV = 0 then

divV = 0 because JV = KV = LV = iV i.e.,

(LV g + 2S)(Y, Z) =
2r

n
g(Y, Z) = −2λg(Y, Z). (6.3.25)

Therefore λ = − r
n
.

Lemma 6.3.6. Let (g, V, λ) be a Ricci soliton in a non-flat quaternion space form. Then

V is solenoidal if and only if it is shrinking, steady and expanding depending upon the

scalar curvature is positive, zero and negative respectively.

Proof: Using equation (6.3.22) in (1.2.1) we obtain

(LV g)(Y, Z) + 2
r

n
g(Y, Z) + 2λg(Y, Z) = 0. (6.3.26)

Putting orthonormal basis over Y and Z of the above equation, we get

divV + r + λn = 0. (6.3.27)

If V is solenoidal then divV = 0. Therefore the equation (6.3.27) can be reduced to

λ =
−r

n
.

6.4 Semisymmetric quaternion space form

Let us consider the semisymmetric conditions in quaternion space form i.e.,

(R(U, V ) · R)(X, Y, Z) = 0. (6.4.1)

This implies

R(U, V )R(X, Y )Z − R(R(U, V )X,Y )Z − R(X, R(U, V )Y )Z

− R(X, Y )R(U, V )Z = 0. (6.4.2)
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Taking inner product with T we have,

g(R(U, V )R(X,Y )Z, T ) − g(R(R(U, V )X, Y )Z, T ) − g(R(X, R(U, V )Y )Z, T )

− g(R(X, Y )R(U, V )Z, T ) = 0. (6.4.3)

Using equation (6.2.1) in (6.4.3) and putting U = Y = ei, further again putting V = T =

ei in the resultant equation, we get

S(X, Z) = k

(
−12n2 − 51n − 131

2

)
g(X, Z). (6.4.4)

This implies,

S(X,Z) = β3g(X, Z). (6.4.5)

where β3 = k
(
−12n2 − 51n − 131

2

)
. That is quaternion space form is an Einstein manifold.

Hence, we can state the following result:

Theorem 6.4.1. A quaternion space form satisfying R · R = 0 is an Einstein manifold.

Using equation (6.4.5) in (1.2.1), we get

(LV g)(X, Z) + 2β3g(X, Z) + 2λg(X, Z) = 0. (6.4.6)

Putting X = Z = ei in the above equation and taking summation over i (1 ≤ i ≤ n), we

get

divV + β3 + λ = 0. (6.4.7)

If V is solenoidal then divV = 0. Therefore the equation (6.4.7) can be reduced to

λ = −β3. (6.4.8)

Hence, we obtain the following result:

Corollary 6.4.2. Let (g, V, λ) be a Ricci soliton in a quaternion space form satisfying

semisymmetric condition, if V is solenoidal then it is shrinking.
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6.5 Quaternion space form satisfying R · B = 0

Let M̄(k) be a quaternion space form satisfy (R(U, V ) ·B)(X, Y, Z) = 0, then U, V,X, Y, Z

are any tangent vectors. This equation turns into

R(U, V )B(X, Y )Z − B(R(U, V )X,Y )Z − B(X, R(U, V )Y )Z − B(X, Y )R(U, V )Z = 0.

Taking inner product with T we have

g(R(U, V )B(X, Y )Z, T ) − g(B(R(U, V )X, Y )Z, T ) − g(B(X, R(U, V )Y )Z, T )

−g(B(X,Y )R(U, V )Z, T ) = 0. (6.5.1)

Using equations (6.2.1) and (1.1.15) in (6.5.1) and setting U = Y = ei, further again

setting V = T = ei in the resultant equation we obtain

S(X, Z) =
α4

β4

g(X, Z), (6.5.2)

where α4 = [k(3n − 36)x0 + (2n − 9)4x1r + (2n2 + 6n − 17)8x2r and

β4 = 4((3 − 2n)x0 − n(2n + 7)x1). That is M̄(k) is an Einstein manifold.

Hence we have the following result:

Theorem 6.5.1. A quaternion space form satisfying R · B = 0 is an Einstein manifold.

Using equation (6.5.2) in (1.2.1), we get

(LV g)(X, Z) + 2
α4

β4

g(X, Z) + 2λg(X,Z) = 0, (6.5.3)

setting X = Z = ei in (6.5.3) and taking summation over i (1 ≤ i ≤ n), we obtain

divV +
α4

β4

n + λn = 0. (6.5.4)
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If V is solenoidal then divV = 0. Therefore the equation (6.5.4) can be reduced to

λ = −α4

β4

. (6.5.5)

Thus, we can write the following:

Corollary 6.5.2. Let (g, V, λ) be a Ricci soliton in a quaternion space form satisfying

R · B = 0. If V is solenoidal then it is shrinking.

The particular cases of Theorem (6.5.1) and Corollary (6.5.2) for different curvature

tensors are as follows:

Curvature tensors Einstein Ricci tensor S = α4

β4
Ricci solitons

quasi-conformal α4 = 3(n3 − 13n2 + 12n)a

curvature tensor C∗ Einstein +4br(2n3 − 11n2 + 9n)

+8r(2n2 + 6n − 17)

(a + 2b(n − 1)) shrinking

β4 = 4n(n − 1)((3 − 2n)a

−n(2n + 7)b)

weyl-conformal α4 = k(3n3 − 45n2 + 114n − 72)

curvature tensor C Einstein +4r(17n − 26),

β4 = 4(14n − 6)(n − 1) shrinking

concircular α4 = 2nk(3n2 − 39n + 36)

+8r(2n2 + 6n − 17)

curvature tensor C̃ Einstein β4 = 8(3 − 2n)n(n − 1) shrinking

conharmonic α4 = k(3n2 − 42n + 72) − 4r(2n − 9) shrinking

curvature tensor L∗ Einstein β4 = 4(14n − 16)

6.6 Quaternion space form satisfying B · R = 0

Let B and R be satisfy the equation B · R = 0 in M̄(k). Then for any tangent vectors

U, V,X, Y and Z, the above implies

(B(U, V ) · R)(X, Y, Z) = 0. (6.6.1)
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This implies

B(U, V )R(X,Y )Z − R(B(U, V )X, Y )Z − R(X, B(U, V )Y )Z

− R(X, Y )B(U, V )Z = 0. (6.6.2)

Taking inner product with T we have,

g(B(U, V )R(X, Y )Z, T ) − g(R(B(U, V )X, Y )Z, T ) − g(R(X,B(U, V )Y )Z, T )

− g(R(X, Y )B(U, V )Z, T ) = 0. (6.6.3)

Using equations (6.2.1) and (1.1.15) in (6.6.3) and contracting over U and Y, further again

contracting over V and T in the simplified equation we gain

S(X, Z) =
α2

β2

g(X, Z), (6.6.4)

where α2 = [−3x0k(n + 8) + 16x1r + 16n(1 − n)x2r] and

β2 = 4(−2x0 + 3(2 − n)x1). That is M̄(k) is an Einstein manifold.

Hence we obtain the following result:

Theorem 6.6.1. A quaternion space form satisfying B · R = 0 is an Einstein manifold.

Using equation (6.6.4) in (1.2.1), we get

(LV g)(X, Z) + 2
α2

β2

g(X, Z) + 2λg(X,Z) = 0, (6.6.5)

setting X = Z = ei in (6.6.5) and taking summation over i (1 ≤ i ≤ n), we obtain

divV +
α2

β2

n + λn = 0. (6.6.6)

If V is solenoidal then divV = 0. Therefore the equation (6.6.6) can be reduced to

λ = −α2

β2

. (6.6.7)

Thus, we have state the following:
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Corollary 6.6.2. Let (g, V, λ) be a Ricci soliton in a quaternion space form satisfying

B · R = 0. If V is solenoidal then it is shrinking.

The particular cases of Corollary (6.6.2) for different curvature tensors is as follows:

Corollary 6.6.3. Let (g, V, λ) be a Ricci soliton in a quaternion space form satisfying

C∗ · R = 0, C · R = 0, V · R = 0 and L · R = 0. If V is solenoidal then in all these

conditions the space form is shrinking.

6.7 Hypersurface of a quaternion space form

The notion of quasi-Einstein manifold was studied in [15, 16] by Chaki and Maity. Sular

and Özgur [50] have proved that a quasi-umbilical hypersurface of Kenmotsu space forms

is generalized quasi-Einstein hypersurface. Also the authors Bagewadi and Bharathi [6]

have studied hypersurface of complex space form.

Let M be a hypersurface of a quaternion Kähler manifold M̄. If TM̄ and TM denote

the Lie algebra of vector fields on M̄ and M respectively and T⊥M, is the set of all vector

fields normal to M, then Gauss and weingarten formulae are respectively, given by (1.4.1)

and (1.4.2).

The Gauss equation is

R̃(U, V,W, X) = R(U, V,W, X) − g(σ(U,X), σ(V, W )) + g(σ(V, X), σ(U,W )). (6.7.1)

Definition 6.7.1. A hypersurface of a quaternion Kähler manifold M̄ is said to be

• quasi umbilical if its second fundamental tensor has the form

σ(U, V ) = α1g(U, V ) + β1E(U)E(V ), (6.7.2)
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• generalized quasi-umbilical if its second fundamental tensor has the form

σ(U, V ) = α1g(U, V ) + β1E(U)E(V ) + γ1F (U)F (V ), (6.7.3)

where α1, β1 and γ1 are scalars and E, F are 1-forms defined in (1.5.8).

Theorem 6.7.1. Let M̄(k) be a quaternion space form.

1. Let (g, V, λ) be a Ricci soliton in Quasi-umbilical hypersurface of M̄(k) then it is

shrinking if and only if V is solenoidal.

2. Let (g, V, λ) be a Ricci soliton in generalized Quasi-umbilical hypersurface of M̄(k)

then it is shrinking if and only if V is solenoidal.

Proof: 1.

Putting equation (6.7.2) in (6.7.1) and using (6.2.1), we have

k

4
[g(X, Y )U − g(U, Y )X + g(JX, Y )JU − g(JU, Y )JX + 2g(U, JX)JY

+g(KX,Y )KU − g(KU, Y )KX + 2g(U,KX)KY + g(LX, Y )LU − g(LU, Y )LX

+2g(U,LX)LY ] = R(U,X, Y, Z) + α2
1[g(U, Y )g(X, Z) − g(X, Y )g(U,Z)]

+α1β1[g(U, Y )E(X)E(Z) + g(X, Z)E(U)E(Y ) − g(X,Y )E(U)E(Z)

−g(U,Z)E(X)E(Y )]. (6.7.4)

Setting U = Z = ei and taking sum over i(1 ≤ i ≤ n) in equation (6.7.4), where {ei} is

orthonormal basis of the given space form we have

S(X,Y ) = κg(X, Y ) + τE(X)E(Y ), (6.7.5)
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where κ = [(n − 1)α2
1 + k

4
(n + 8) + α1β1] and τ = (n − 2)α1β1.

Equation (6.7.5) in (1.2.1), we get

(LXg)(X, Y ) + 2κg(X, Y ) + 2τE(X)E(Y ) + 2λg(X, Y ) = 0. (6.7.6)

Contracting the above equation, we get

2divV + 2nκ + 2τ + 2λn = 0. (6.7.7)

If V is solenoidal then divV = 0. Therefore the equation (6.7.7) can be reduced to

nκ + τ + λn = 0, (6.7.8)

this implies

λ = −nκ + τ

n
. (6.7.9)

Thus, we have proved the result one.

Proof: 2. Similar proofs for statement (2) is obtained by using equations (6.7.3) and

(6.2.1) in (6.7.1) and putting V = Y = ei we get mixed generalized quasi-Einstein man-

ifold. The use of resulting equation in (1.2.1), contraction and solenoidal property will

give λ is negative.



Ricci Solitons in Quaternion Space Forms 106

6.8 Conclusion

The important results finding of this chapter are as follows:

• A second order parallel tensor in a non-flat quaternion space form is a linear com-

bination (with constant coefficients) of the underlying quaternion Kählerian metric

and quaternion Kählerian 2-forms.

• The only symmetric (anti-symmetric) parallel tensor of type (0, 2) in a non-flat

quaternion space form is the quaternion Kählerian metric (quaternion Kählerian

2-forms) up to a constant multiple.

• The following statements for a non-flat quaternion space form are equivalent.

1) Einstein.

2) Locally Ricci symmetric.

3) Ricci semisymmetric that is R · S = 0.

• Suppose that on a non-flat quaternion space form, the (0,2) type field LV g + 2S is

parallel where V is a given vector field. Then (g, V ) yields a Ricci soliton if JV , KV

and LV are solenoidal. In particular, if the given non-flat quaternion space form is

Ricci semisymmetric with LV g parallel and JV , KV and LV are solenoidal, then it

is also Ricci soliton.

• Let (g, V, λ) be a Ricci soliton in a non-flat quaternion space form. Then V is

solenoidal if and only if it is shrinking, steady and expanding depending upon the

sign of scalar curvature.

• Let (g, V, λ) be a Ricci soliton in an queternion space form satisfying semisymmetric
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conditions like R ·R = 0, R ·B = 0 and B ·R = 0. If V is solenoidal then the space

is shrinking in each case.

• Let M̃(k) be quaternion space form

1. The Ricci soliton (g, V, λ) in quasi-umbilical hypersurface of M̄(k) is shrinking

if and only if V is solenoidal.

2. The Ricci soliton (g, V, λ) in generalized quasi-umbilical hypersurface of M̄(k)

is shrinking if and only if V is solenoidal.

.
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