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Chapter 1

Introduction

Entanglement is a trick that quantum magicians use to produce phenomena that

cannot be imitated by classical magicians.

– A. Peres

A set of postulates that govern the atomic scaled phenomena are the fun-

damental components of the quantum theory. The quantum uncertainty or the

Heisenberg uncertainty is at the core of the quantum theory. This uncertainty is

not due to the loss or lack of information or because of imprecise measurement,

but rather, it is a fundamental uncertainty inherent in the nature itself. The most

accurate and complete description of all known physical systems are affirmed by

the basic mathematical principles of quantum theory. These mathematical princi-

ples form the basis of many new fledgling fields like Quantum Information [1]. The

quantum information theory is the study of the ultimate capability of noisy phys-

ical systems, governed by the laws of quantum mechanics, to preserve information

and correlations. The different branches of sciences like material sciences, theo-

retical and experimental physics, mathematics, computer science provide resource

inputs towards the vast independent research area of quantum information.

At the first sight the quantum information theory may look like the quantum

extension of classical information theory developed by Claude Shannon, with a

groundbreaking paper in the year 1948 [2]. But there exist many fundamental dif-

ferences between them. In some sense, the classical information theory is merely

1
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an application of probability theory. Its main task is to quantify the ultimate

compressibility of information and the ultimate ability for a sender to transmit

information reliably to a receiver. Classical uncertainty, arising from our lack of

total information about any given scenario, omnipresent throughout all informa-

tion processing tasks makes classical information theory to rely upon probability

theory. In classical information theory the uncertainty is due to imprecise knowl-

edge. Whereas the uncertainty in quantum theory is inherent in nature itself and

not intuitive as classical uncertainty. The concepts like single particle interference,

the quantum uncertainty principle, the superposition principle (a consequence of

the linearity of quantum theory) separates the classical information theory from

its quantum counterpart. Apart from the above mentioned concepts a strange

non-classical phenomenon known as quantum entanglement forms the core

of quantum information theory [3]. The quantum entanglement is a phenomenon

that occurs within a system of two or more particles in such a way that the

quantum state of each particle can not be described independently. Even the

large spacial separation between the particles will not destroy the entanglement

of the whole system. Quantum entanglement is seen to be a key resource in many

contemporary research fields like quantum computation [4–7], quantum error cor-

rection [6, 7], quantum communication [8], quantum key distribution [9], quantum

teleportation [10], quantum cryptography [9, 11], quantum dense coding [12] etc.,

1.1 Quantum Entanglement

A ground breaking article [13] published by Albert Einstein, Boris Podolsky and

Nathan Rosen, together known as EPR, in the year 1935 is the usual starting

point for a discussion of the debate on quantum entanglement. This research

article draws attention to a phenomenon predicted by quantum mechanics, in

which measurements on spatially separated quantum systems can instantaneously

influence one another. As a result, quantum mechanics violates the principle of

locality according to which changes performed on one physical system should have

no immediate effect on another spatially separated system. Einstein called it as a

spooky action at a distance [14]. In 1935 itself, Erwin Schrödinger gave the name
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Verschränkung for this strange phenomenon [15–17] and it was then rather loosely

translated to entanglement [18].

The classification of a given state as separable or entangled can be done through

several criteria. First of all, precise mathematical definitions to distinguish be-

tween entangled and separable states are required. This is very simple for pure

states: a pure bipartite state |φab〉 is called separable iff it can be written as

|φab〉 = |a〉⊗ |b〉, otherwise it is entangled. In general a multipartite pure state |ψ〉
(with n subsystems) is separable iff it can be written as the Kronecker product of

its subsystems. That is, |ψ〉 is separable iff

|ψ〉 = |a1〉 ⊗ |a2〉 ⊗ |a3〉 · · · ⊗ |an〉

and it is non-separable (or entangled) iff

|ψ〉 6= |a1〉 ⊗ |a2〉 ⊗ |a3〉 · · · ⊗ |an〉

The symbol⊗ stands forKronecker Product or Tensor Product and |a1〉, |a2〉, . . . |an〉
are respectively pure states of the subsystems 1,2,. . .n.

Example for pure separable states: The product states |00〉, |01〉, |10〉 and
|11〉 of two spin-1/2 particles, expressible in the form .

|00〉 = |0〉 ⊗ |0〉; |01〉 = |0〉 ⊗ |1〉;

|10〉 = |1〉 ⊗ |0〉; |11〉 = |1〉 ⊗ |1〉.

Here

|0〉 = |↑〉 =
(

1

0

)
; |1〉 = |↓〉 =

(
0

1

)

respectively represent the Up and Down states of a spin-1/2 particle. In quantum

information theory this spin-1/2 particle is generally referred to as ‘qubit ’ (Abbre-

viation for Quantum Bit), a quantum counterpart of the classical bit. In general

a d level particle (a particle with spin (d− 1)/2) is referred to as ‘qudit ’.
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Examples for pure entangled states:

|φ1〉 =
1√
2
[|00〉+ |11〉] , |φ2〉 =

1√
2
[|00〉 − |11〉]

(1.1)

|φ3〉 =
1√
2
[|01〉+ |10〉] , |φ4〉 =

1√
2
[|01〉 − |10〉]

The states |φ1〉, |φ2〉, |φ3〉, |φ4〉 are the so-called Bell states [1] and are the

maximally entangled two-qubit pure states.

For a bipartite mixed state, criterion for separability has been proposed by

Reinhard F. Werner in 1989 [19] and is called Werner’s Separability criterion.

According to this criterion, a bipartite state is separable if it can be expressed as

a convex combination of product states i.e.,

ρ
(sep)
AB =

∑

k

pk
(
ρAk ⊗ ρBk

)
; 0 ≤ pk ≤ 1,

∑

k

pk = 1, (1.2)

where ρAk and ρBk , k = 1, 2, . . . are density matrices of the subsystems A and B

respectively. The coefficients pk indicate probabilities. For entangled states such

a convex combination is not possible. That is, one can call a mixed state ρ to be

entangled iff

ρ
(ent)
AB 6=

∑

k

pk
(
ρAk ⊗ ρBk

)
(1.3)

Example for mixed separable state:

ρsep =
1

2
(|00〉〈00|+ |11〉〈11|) .

In fact using the relation

|ab〉〈cd| = |a〉〈c| ⊗ |b〉〈d|
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it can be readily seen that ρsep can be written as

ρsep =
1

2
(|0〉〈0| ⊗ |0〉〈0|+) +

1

2
(|1〉〈1| ⊗ |1〉〈1|)

=
1

2
(ρA1

⊗ ρB1
) +

1

2
(ρA2

⊗ ρB2
)

and it is in the Werner separable form Eq. (1.2) with

ρA1
= ρB1

= |0〉〈0|, ρA2
= ρB2

= |1〉〈1| (1.4)

and p1 = p2 = 1/2.

Example for mixed entangled state: The so-called Werner state [19, 20],

an admixture of a Bell state to the Identity, given by

ρw =
(1− x)I4

4
+ x|φ1〉〈φ1|, |φ1〉 =

1√
2
[|00〉+ |11〉] (1.5)

is entangled when 1
3
< x ≤ 1 and is separable when 0 ≤ x ≤ 1

3
.

The separability criteria defined so far are not so ‘user-friendly’ in identifying

entanglement in the mixed states. In fact, even in composite pure states the

identification of separability is not as trivial as is seen through the examples given

above. For example, the state

|ψ〉 = 1

2
(|00〉+ |01〉+ |10〉+ |11〉)

does not look like a separable pure state at the first instance. But it is a product

state and one can see that

|ψ〉 =
[

1√
2
(|0〉+ |1〉)

]
⊗
[

1√
2
(|0〉+ |1〉)

]

The above form of the state |ψ〉 is obtained through the so-called Schmidt decom-

position [1] which is a useful tool to identify separable/entangled pure states. The

above example thus brings out the need to make use of the so-called operational

criteria in establishing entanglement or separability in composite states. An op-

erational criterion is a recipe that can be applied to an explicit density matrix
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ρ, giving some immediate answer like ρ is entangled, or ρ is separable, or this

criterion is not strong enough to decide whether ρ is separable or entangled. In

1996, Asher Peres [21] proposed an operational criterion for separability in bipar-

tite quantum states. According to him, the act of obtaining the partial transpose

of a density matrix is equivalent to the application of positive trace preserving

map on the original density matrix. If the partially transposed density matrix

is not positive semi-definite it indicates the presence of entanglement. Here, the

partial transpose of a composite density matrix is obtained by transposing only

one of the subsystems. For a bipartite system, the partial transpose, transposed

with respect to the first subsystem1 is given by (ρT )mµ,nν = ρnµ,mν where the

Latin indices refer to the first subsystem and the Greek indices refer to the second

subsystem. It follows from the definition of a separable (mixed) state that the

Partial Transpose (ρT ) (either transposed with respect to first system or second

system) of a separable state is again a density matrix. As the eigenvalues of a

density matrix are non-negative, the partial transpose of a separable state must

have non-negative eigenvalues. In other words, Peres Partial Transpose (PPT)

criterion implies that the negative eigen values of the partially transposed density

matrix necessarily implies entanglement in the bipartite quantum system.

Horodecki et al, [22] in the same year, showed that PPT criterion forms a

necessary and sufficient condition for only (2×2) and (2×3)-dimensional systems.

This implies that if the partial transpose of a qubit-qubit system or a qubit-

qutrit system are non-negative definite, then the states are not entangled and

hence are separable. This combined criterion known as Peres-Horodecki criterion

is extremely useful in deciding whether a quantum system is separable or not. In

higher dimensional quantum systems, negativity under partial transpose is only a

sufficient condition for entanglement. That is, there exist entangled states with

positive partial transpose in higher dimensional systems [23]. The entangled states

with positive partial transpose are referred to as bound entangled states [23, 24].

Using Peres Partial Transpose (PPT) criterion, G. Vidal and R. F. Werner [25]

came up with a computable measure of entanglement which is based on the trace

norm of the partial transpose ρT of the bipartite mixed state ρ.

1The partial transpose of density matrix of any bipartite system transposed with respect to
the second subsystem is given by (ρT )mµ,nν = ρmν,nµ.
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Trace norm of any operator Â is given as ‖Â‖ = Tr
√
Â†Â. The trace norm of

a partially transposed density operator ρTAB can be simplified as follows:

‖ρTAB‖ = Tr
√
ρTAB(ρ

T
AB)

† = Tr
√
(ρTAB)

2 as (ρTAB)
† = ρTAB

= Tr




λ21 0 0 . . .

0 λ22 0 . . .

0 0 λ23 . . .
...

...
...

...




1

2

where λi denotes the eigenvalues of ρTAB. Thus, one can write

‖ρTAB‖ = Tr




|λ1| 0 0 . . .

0 |λ2| 0 . . .

0 0 |λ3| . . .
...

...
...

...




=
∑

i

|λi|

=
∑

k

λpk +
∑

l

|λnl|

where λpk and λnl denotes the positive and negative eigenvalues of ρTAB respectively.

As Tr ρTAB = 1 i.e.,
∑

i |λi| = 1, it can readily be shown that

∑

k

λpk −
∑

l

|λnl| = 1

and this leads to

‖ρTAB‖ = 1 + 2
∑

l

|λnl| = 1 + 2N(ρ)

N(ρ) =
∑

l

|λnl| = Sum of absolute values of negative eigenvalues of ρT .

Here ‖ρT‖ denotes the trace norm of the partial transpose ρT and a useful quantity,
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called negativity of partial transpose is constructed [25]. Negativity of Partial

Transpose measures the degree to which ρT , the partial transpose of the density

matrix of a bipartite system fails to be positive. It is denoted by N(ρ) and is given

by

N(ρ) =
‖ρT‖ − 1

2
. (1.6)

N(ρ) corresponds to the sum of absolute values of negative eigenvalues of the

partially transposed density matrix ρT and is shown to be a good measure of

entanglement [25] for mixed bipartite systems. It can be readily seen that Bell

states are the maximally entangled pure states with N(ρ) = 1/2, the maximum

value of N(ρ) for two qubit states. In this thesis, while evaluating N(ρ) of any

state under consideration, Eq. (1.6) is made use of.

1.2 Entropic Characterization of Separability: A

brief review

In recent years a surge of activity has been noticed towards the characterization of

entanglement in bipartite quantum systems. Among various methods, the entropic

characterization of separability of composite quantum systems has gathered signif-

icant attention [26–41]. In this section, a brief review on entropic characterization

of separability of composite quantum systems is given.

In classical information theory, the uncertainty associated with the values that

a random variable X can take, is given by the Shannon entropy. If X takes values

x1, x2, . . . xn with corresponding probabilities p1, p2, . . . pn, the Shannon entropy

associated with this probability distribution is defined as [1]

H(X) = H(p1, p2 . . . pn) = −
∑

i

pi log2 pi

Here, logarithms are taken to base two and it is defined that 0 log2 0 ≡ 0. The

quantum version of the Shannon entropy, the so-called von-Neumann entropy [8,

42], is described in a similar fashion, with density operators replacing probability

distribution. That is, for a quantum state ρ the von Neumann entropy is defined
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as

S(ρ) = −Tr(ρ log2 ρ) (1.7)

If λi are the eigenvalues of ρ then the von Neumann entropy can be re-expressed

as

S(ρ) = −
∑

i

λi log2 λi (1.8)

and is useful for evaluating the entropy of any given state ρ. For instance, the

completely mixed state Id/d of a qudit, Id being a d × d identity matrix, has all

its d eigenvalues equal, given by λi =
1
d
. Thus, the maximum possible entropy of

a qudit, the entropy of a maximally mixed state Id/d is log2 d

S(Id/d) = −d 1

d
log2

1

d
= − log2

1

d
= log2 d

When d = 2, the maximum possible von-Neumann entropy for a qubit turns out

to be log2 2 = 1.

It is to be observed that a pure state is a perfectly ordered state because

in the density matrix representation of any quantum state, a pure state |ψ〉 is

represented by ρpure = |ψ〉〈ψ| and hence occurs with probability 1. A pure state

therefore has only one non-zero eigenvalue λ = 1. Thus the von Neumann entropy

of a pure state is log2 1 = 0. It can therefore be concluded that the definition of

von-Neumann entropy gives physically intuitive results that a pure state has zero

entropy whereas a totally random state Id/d has maximum entropy of log2 d.

Further for a composite quantum system, by analogy with the Shannon entropy,

it is possible to define quantum joint and conditional entropies. The joint entropy

S(A,B) for a composite system with two components A and B is defined as [1],

S(A, B) ≡ −Tr (ρAB log2 ρAB) (1.9)

where ρAB is the density matrix of the composite system with subsystems ρA, ρB.

S(A, B) quantifies the disorder or randomness in the bipartite state ρAB.

Quite similar to the definitions

H(A|B) = H(A, B)−H(B), H(B|A) = H(A, B)−H(A)
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of conditional Shannon entropies, the corresponding quantum conditional en-

tropies for the composite system AB are defined as [1]

S(A|B) ≡ S(A,B)− S(B) and S(B|A) ≡ S(A,B)− S(A) (1.10)

While S(A|B) quantifies the information content of the composite system ρAB

which is not contained in its subsystem ρB, S(B|A) quantifies the information

content in ρAB not accounted for by the information contained in the subsystem

ρA.

The concept of joint and conditional entropies combined with the definition

of separability leads to a necessary and sufficient criterion for entanglement for

bipartite pure states. In fact, by the definition of bipartite separable pure states

as

|ψsep
AB〉 = |ψA〉 ⊗ |ψB〉

it can be readily seen that the subsystems of a separable pure state also correspond

to pure states thus having zero subsystem entropies. In view of the fact that

S(|ψsep
AB〉) = S(A, B) = 0 and as S(|ψA〉) = S(A) = 0, S(|ψB〉) = S(B) = 0, the

conditional entropies S(A, B)−S(A) = S(A, B)−S(B) of the separable pure state

|ψsep
AB〉 are zero. It can thus be concluded that if the subsystem entropies of a pure

state are non-zero (possible only when the subsystems are mixed states), then

the state is entangled. The conditional entropy S(A, B) − S(A) = S(A, B) −
S(B) of an entangled pure state is therefore negative as S(A, B) = 0, S(A) =

S(B) 6= 0. Here, the fact that S(A) = S(B) follows from the possibility of

Schmidt decomposition for bipartite pure states [1]. Negative conditional entropy

is therefore a necessary and sufficient criterion2 for bipartite pure states to be

entangled.

For instance, consider the Bell state |φ1〉 = 1√
2
(|00〉+ |11〉) and its density

matrix

ρAB = |φ1〉 〈φ1| =
(|00〉+ |11〉) (〈00|+ 〈11|)

2

2The definition of von-Neumann entropy of any of the reduced density matrices of a bipartite
pure state as a measure of entanglement is based on this criterion. More mixedness implies larger
entropy in the subsystem implying larger entanglement in the pure state.
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The partial trace operation over one of the subsystems is nothing but taking inner

product over the basis states of the subsystem being traced out. Explicitly, the

partial trace operation over the first subsystem can be obtained using

Tr1 |aibj〉〈arbs| = 〈ai|ar〉 |bj〉〈bs| = δir |bj〉〈bs|

where |a〉, |b〉 denote the orthonormal basis states of the first, second subsystems

respectively, 〈 | 〉 denotes the inner product and δ denoting the Kronecker delta.

One can readily obtain the reduced density matrix ρB of ρAB as

ρB = TrA ρAB =
1

2
TrA [(|00〉+ |11〉) (〈00|+ 〈11|)]

=
1

2
TrA [|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|]

=
1

2
(〈0|0〉 |0〉〈0|+ 〈0|1〉 |0〉〈1|+ 〈1|0〉 |1〉〈0|+ 〈1|1〉 |1〉〈1|)

=
1

2
(|0〉〈0|+ |1〉〈1|) = 1

2

(
1 0

0 1

)
=
I2
2

One can similarly obtain ρA = I2/2 implying that the subsystems of the Bell state

|φ1〉 correspond to maximally mixed states. In fact, all the four Bell states have

maximally disordered subsystems I2/2. The subsystems of all the Bell states thus

have maximum entropy S(A) = S(B) = 1 leading to the conditional entropies

S(A|B) = S(A, B)− S(B) = −S(B) = −1,

S(B|A) = S(A, B)− S(A) = −S(A) = −1

owing to the fact that S(A, B), the entropy of the pure Bell states are zero. In

general, an arbitrary pure entangled state satisfies the inequality3

S(B|A) = S(A, B)− S(A) ≤ 0 (1.11)

3Notice that S(A|B) = S(B|A) for pure states as S(A, B) = 0 and as S(A) = S(B) owing to
Schmidt decomposition.
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reflecting the remarkable fact that pure entangled states are more disordered lo-

cally than globally.

While the pure separable states have zero conditional entropies, it is of in-

terest to examine the nature of conditional entropies of mixed separable states.

It has been observed that the subsystems of a mixed composite separable state

ρsepAB =
∑

i pi (ρA ⊗ ρB) with 0 ≤ pi ≤ 1,
∑

i pi = 1 are more ordered than the

whole system [40, 43], i.e., S(ρsepAB) ≥ S(ρA), S(ρB) leading to non-negative con-

ditional entropies. This makes intuitive sense because composite separable states

(whether pure or mixed) can be thought of as classical systems with the whole

system having more entropy (global entropy) than its subsystems (local entropy).

But this physical intuition cannot be extended to conclude that all entangled

states must have their subsystem entropies greater than the global system entropy

leading to negative conditional entropies. This is because, though all pure en-

tangled states have negative conditional entropies, not all mixed entangled states

satisfy the relations S(ρentAB) ≤ S(ρA), S(ρB). It is to be observed here that while

negative conditional entropy of a composite state definitely implies that the state

is entangled, it is not possible to conclude that all composite mixed states with

non-negative conditional entropies are separable. Negative conditional entropies,

implied by the inequality Eq.(1.11), provide sufficient (but not necessary) criterion

to characterize mixed entangled states. This fact has been illustrated through the

example of the two-qubit Werner state.

In the case of two qubit Werner state (See Eq. (1.5))

ρw =
(1− x)I4

4
+ x|φ1〉〈φ1|, 0 ≤ x ≤ 1

the conditional entropy is positive when 0 ≤ x ≤ 0.747. But this range of separa-

bility is weaker compared to 0 ≤ x ≤ 1
3
obtained through Peres partial transpose

criterion [21, 23], which is a necessary and sufficient criteria for entanglement in

2 × 2 and 2 × 3 systems. This example brings out the limitation of the entropic

criterion in characterizing entanglement in mixed composite states. Generalized

entropic measures [31–39, 44] provide more sophisticated tools to explore global vs

local disorder in mixed states and lead to more stringent limitation on separability

than that obtained using positivity of the conditional von Neumann entropy. In
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this context, the quantum counterparts of Rényi entropy [31, 32]

SR
q (ρ) =

1

1− q
log2 Tr[ρq] (1.12)

and Tsallis entropy [45, 46]

ST
q (ρ) =

1

1− q
(Tr[ρq]− 1) (1.13)

have often been employed. In the limit q → 1 both these generalized entropies

reduce to the von Neumann entropy. Horodecki et al. [31, 32] recognized that

SR
q (ρ

sep
AB) ≥ SR

q (ρA), S
R
q (ρB) (1.14)

for separable states showing that negative values of the conditional Rényi entropy

SR
q (B|A) = SR

q (ρAB) − SR
q (ρA) is a signature of quantum entanglement in mixed

composite states.

On the other hand, Abe and Rajagopal [33, 44] argued that the limitation

of the von Neumann entropic criterion in characterizing entanglement, in mixed

composite states, is a consequence of direct generalization of the von Neumann

conditional entropy from its classical counterpart, the Shannon conditional en-

tropy. The summary of their argument is as follows.

The definition of classical Shannon conditional entropy is based on classical

conditional probability distribution. That is, the Shannon conditional entropy

H(B|A) ≡ −
∑

j

pij(B|A) log2 pij(B|A) (1.15)

with pij(B|A) = pij(A,B)/pi(A) is the conditional probability of B in its jth state

with A found in its ith state. Here pi(A) is the marginal probability distribution

i.e., pi(A) =
∑

j pij(A,B). From Eq.(1.15) one can obtain the Shannon conditional

entropy H(B|A) = H(A,B)−H(A).

In the particular case when A and B are statistically independent, pij(B|A)
is equal to pj(B) and therefore H(B|A) = H(B), implying the additivity law
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H(A,B) = H(A) +H(B). Notice that

H(A,B) ≡ −
∑

ij

pij(A,B) log2 pij(A, B) (1.16)

and there is a natural correspondence relation between multiplication law and the

additivity law:

pij(A,B) = pi(A) pij(B|A) ⇔ S(A,B) = S(A) + S(B|A). (1.17)

At this point Abe and Rajagopal (in Ref. [33]) argued that there is a profound dif-

ference between classical and quantum probability concepts. They observed that

in the quantum scenario, one of Kolmogorov’s axioms, namely the additivity of

the probability measure, is violated in general [47]. Thus, Abe and Rajagopal sug-

gested that the measure of quantum entanglement may not be additive. Further,

their argument is supported by the theoretical observations [24, 48] that formal

correspondences exist between thermodynamics and quantum entanglement. As

nonadditivity or nonextensivity, is an important concept in the field of statisti-

cal thermodynamics it should also appear in quantum mechanics. A statistical

system is nonextensive if it contains long-range interaction, long-range memory,

or (multi)fractal structure. In such a system, a nonextensive generalization of

Boltzmann-Gibbs statistical mechanics is formulated by Tsallis [45, 46]. In this

formalism, referred to as nonextensive statistical mechanics, the Shannon entropy

in Eq. (1.16) is generalized as follows:

ST
q (A,B) =

1

1− q

{
∑

ij

[pij(A,B)]q − 1

}
(1.18)

where q is a positive parameter. The quantity converges to the Boltzmann Shannon

entropy in the limit q → 1. From this, Tsallis entropy in Eq.(1.18), a nonextensive
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conditional entropy is obtained as follows

Sq(B|Ai) =
1

1− q

[
∑

j

(pij(B|A))q − 1

]

(1.19)

=
1

1− q

[∑
ij(pij(A,B))q
∑

i(pi(A))
q

− 1

]
.

The equation for the joint system entropy is thus obtained as

Sq(A,B) = Sq(A) + Sq(B|A) + (1− q)Sq(A)Sq(B|A), (1.20)

which is nonadditive in nature.

Based on Tsallis entropy and the form invariant structures of Khinchin’s ax-

ioms, Abe and Rajagopal [33, 44] generalized the concept of statistical conditional

entropy in Eq. (1.19) to its quantum version as

ST
q (B|A) = 1

1− q

(
Tr[ρqAB]

Tr[ρqA]
− 1

)
(1.21)

The Abe-Rajagopal (AR) q-conditional entropy, given by Eq.(1.21) is non-negative

for a separable state, but may assume negative value in a quantum entangled

state, suggesting its importance in the characterization of quantum entanglement

in mixed composite states. In fact, the superiority of Abe-Rajagopal q-conditional

entropy in the limit q −→ ∞ over the von-Neumann conditional entropy is seen

through the identification of separability range in the two-qubit Werner state.

While the von-Neumann conditional entropy yielded the weaker separability range

0 ≤ x ≤ 0.747 for two-qubit Werner state, it was found that [33] limq−→∞ ST
q (B|A)

is non-negative in the range 0 ≤ x ≤ 1
3
thus matching with the strictest possible

separability range obtained using Peres-Horodecki criterion.

Prabhu et al. [40] employed Eq.(1.21) to find out the separability range in

N -qubit symmetric one parameter family of noisy states involving W and GHZ

states [49, 50] in their different partitions. The symmetric N -qubit noisy mixed
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states considered by Prabhu et al [40] are given by

ρ
(W/GHZ)
N (x) =

(
1− x

N + 1

)
PN + x|ψW/GHZ〉N〈ψW/GHZ|. (1.22)

where
∣∣ψW/GHZ

〉
is the N qubit W [51] or GHZ state [52, 53] and PN is the

projector onto the symmetric subspace of the collective angular momentum. They

found that the separability range obtained by using AR criterion, in the limit

q → ∞, is stricter compared to the one obtained using traditional von Neumann

entropy. Using the AR criterion it was found that the 1 : N − 1 separability range

of one parameter family of mixed GHZ states

ρGHZ
N (x) =

(
1− x

N + 1

)
PN + x|ψGHZ〉N〈ψGHZ|

matches with the one obtained by employing PPT criterion, the strictest available

separability criterion. But for the one-parameter family of W states

ρWN (x) =

(
1− x

N + 1

)
PN + x|ψW〉N〈ψW|,

the PPT criterion provides a stricter separability range than that through AR

criterion. Thus, for the state ρWN (x), though AR criterion gives a better separability

range than the one obtained using von-Neumann conditional entropy, it is found

to be weaker compared to the PPT criterion [40].

Sumiyoshi Abe [35] also employed AR-criterion to find out the separability

range of one parameter family of asymmetric d-dimensional, N-partite Werner-

Popescu-type of states [19, 20, 35] in their 1 : N − 1 partition. It was observed in

Ref. [35] that the 1 : N − 1 separability range of Werner-Popescu states obtained

by AR-criterion is stricter than that obtained using von Neumann conditional

entropy and matches with the separability range obtained by the algebraic method,

a necessary and sufficient criterion [54, 55].

Recently, a different quantum generalization of Rényi relative entropy was in-

troduced [56, 57], termed sandwiched Rényi relative entropy, and there has been

a surge of activity in establishing several properties of this recent version of Rényi
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entropy [56–60]. The sandwiched Rényi relative entropy is defined as [56, 57]

DR
q (ρ||σ) =

log2

[
Tr
{(
σ

1−q

2q ρ σ
1−q

2q

)q}]

1− q
(1.23)

This generalized Rényi relative entropy of a pair of density operators (ρ, σ) re-

duces to the traditional one when the two density operators commute with each

other [61]. It is thus natural to anticipate that this quantity is more effective than

its traditional version when non-commuting density matrices are involved.

The literature survey on entropic characterization of entanglement summarized

above provided the motivation for the work detailed in this thesis. In fact, the ob-

servation that the AR-criterion defined using traditional Tsallis entropy does not

yield separability ranges matching with that through PPT criterion in symmet-

ric one-parameter families of noisy states involving W states urges one to think

of a better entropic separability criterion than AR criterion. The definition of

non-commuting version of Rényi relative entropy led to the identification of an

analogous non-commuting form of Tsallis relative entropy and its conditional ver-

sion is also arrived at. The entropic separability criterion based on the conditional

version of sandwiched Tsallis relative entropy (CSTRE criterion) forms the ba-

sis of the investigations carried out in the present thesis. Several one parameter

families of N qubit mixed symmetric and nonsymmetric states are investigated

using this newly defined entropic separability criterion. The nonspectral nature

of this criterion is established through identifying entanglement in an isospectral

state [43]. Prompted by the nonspectral nature of the CSTRE criterion, an at-

tempt to identify entanglement in bound entangled states has been carried out.

It has been established in this thesis that the entropic separability criterion based

on conditional version of sandwiched Tsallis relative entropy fares better than the

AR-criterion. It is shown that due to non-commuting nature of a composite density

matrix and its subsystem density matrices, CSTRE criterion is the best available

entropic separability criteria yielding strictest separability ranges in several one

parameter families of noisy states.
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1.3 Outline of thesis

The thesis is divided into seven chapters including the Introductory chapter which

gives the outline of the thesis and concluding chapter which provides a compre-

hensive summary of the results.

The introductory chapter gives an outline of the concept of quantum entan-

glement and its characterization through different criteria. Along with a short

review of literature on entropic separability criteria, a brief outline of the thesis is

provided in this chapter.

In the second chapter, the quantum relative Tsallis entropy of two non-commuting

density matrices is defined and its conditional version is arrived at. It has been es-

tablished that the negative values of the Conditional Sandwiched Tsallis Relative

Entropy (CSTRE) necessarily imply entanglement in bipartite states. The sepa-

rability range in all possible bipartitions of symmetric noisy one-parameter family

of W-, Greenberger-Horne-Zeilinger(GHZ)- and equal superposition of W, obverse

W states (WW̄) with three and four qubits is explored in this chapter. It is shown

that the results inferred from negative values of CSTRE in a particular biparti-

tion matches with that obtained through Peres’s partial transpose criterion. The

non-commuting nature of CSTRE and its supremacy over its commuting version,

the Abe-Rajagopal criterion, is also established.

In Chapter 3, the exploration of bipartite separability ranges in three-, four-

qubit symmetric one parameter families of noisy states involving W-, GHZ-, WW̄

states using CSTRE criterion is extended to corresponding N qubit states, in their

1 : N − 1 partition. It is shown that 1 : N − 1 CSTRE separability range matches

exactly with the range obtained through PPT criterion, for all N . The advantages

of using non-commuting version of q-conditional relative Tsallis entropy are clearly

brought out through the identification of bipartite separability ranges in symmetric

one parameter families of noisy states.

In the fourth chapter, the CSTRE criterion is employed to determine the 1 :

N − 1 separability range in the non-symmetric noisy one-parameter families of

pseudopure and Werner-like N -qubit states containing W-, GHZ- states. For both

these non-symmetric families of N -qubit mixed states, the 1 : N − 1 CSTRE
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separability range is explicitly obtained for any N and it is seen to be in perfect

agreement with the necessary and sufficient criterion as well as PPT separability

range for these states.

In Chapter 5, CSTRE criterion is employed to study the bipartite separability

of one parameter family of Werner-Popescu state containing N - qudits, in its 1 :

N−1 partition. For allN , the 1 : N−1 separability range is found to match exactly

with the corresponding separability range obtained using a necessary and sufficient

condition based on an algebraic method. The superiority of using CSTRE criterion

over Abe-Rajagopal (AR) criterion is shown by comparing the convergence of the

parameter x as q −→ ∞ in the implicit plots of CSTRE and AR- q conditional

entropy.

Chapter 6 gives an account of the non-spectral nature of the CSTRE criterion

which differentiates it from the other entropic criteria. With the knowledge that

only non-spectral witnesses can help in the identification of bound entangled states,

an attempt has been made to identify entanglement in bound entangled states

using CSTRE criterion and the details of this investigation is given in Chapter 6.

Finally, in the seventh chapter, the concluding remarks of the investigations

carried out in the thesis are given along with a lead to future directions of research

in this area.

The end of the thesis contains a Bibliography, the list of Publications and

a list of Seminars/Conferences/Workshops participated during the period of re-

search.The Bibliography contains a list of all reference materials cited in the thesis.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗



Chapter 2

A new entropic separability

criterion using Conditional

version of Sandwiched Relative

Tsallis Entropy

In this chapter, a non-commuting version (the so-called sandwiched version) of

Tsallis relative entropy is introduced [62]. Using this sandwiched Tsallis relative

entropy, its conditional form is identified [62]. It is established that whenever the

conditional version of sandwiched Tsallis relative entropy (CSTRE) is negative,

the state under consideration is entangled [63] indicating its usefulness in detecting

entanglement when a density matrix and its marginals are non-commuting [62].

The CSTRE is shown to reduce to the Abe-Rajagopal (AR) q-conditional entropy

when the reduced density matrix of a state is maximally mixed.

The contents of the chapter are organized into five sections. Sec. 2.1 introduces

the sandwiched relative Tsallis entropy and its conditional version. It is proved

that the negative values of this conditional form necessarily imply quantum en-

tanglement. The various separability ranges in symmetric one parameter families

of three- and four-qubit noisy states involving W-, Greenberger-Horne-Zeilinger

(GHZ) states and an equal superposition of W-, obverse W states are identified

through the conditional form of the sandwiched Tsallis relative entropy in Sections

20
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2.2, 2.3, 2.4. A comparison of these separability ranges with those obtained us-

ing von-Neumann conditional entropy, Abe-Rajagopal q-conditional entropy and

Peres partial transpose criterion is carried out for each state under consideration.

Section 2.5 contains a summary of the results in the chapter.

2.1 Sandwiched Tsallis Relative Entropy and its

Conditional Version

The generalized entropies, the Rényi and Tsallis entropies, denoted respectively

by SR
q (ρ), S

T
q (ρ) are given by [31–33, 45, 46]

SR
q (ρ) =

1

1− q
log Tr[ρq]

ST
q (ρ) =

Tr[ρq]− 1

1− q
.

Here, q is a real positive parameter. Both these reduce to von Neumann entropy

in the limit q → 1.

The traditional quantum relative Rényi entropy for a pair of density operators

ρ and σ is defined, by ignoring the ordering of the density matrices, as [61]

DR
q (ρ||σ) =

log Tr (ρqσ1−q)

q − 1
if q ∈ (0, 1) ∪ (1,∞)

(2.1)

= Tr [ρ(log ρ− log σ)] when q → 1;

Recently a generalized version of quantum relative Rényi entropy was intro-

duced by Wilde et al. [56] and Müller-Lennert et al. [57] independently:

D̃R
q (ρ||σ) =

1

q − 1
log Tr

[(
σ

1−q

2q ρσ
1−q

2q

)q]
when q ∈ (0, 1) ∪ (1,∞). (2.2)
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The quantum relative Rényi entropy in Eq. (2.2) reduces to the traditional one

given in Eq.(2.1) when the density matrices ρ and σ commute and hence the new

version is an extension to non-commutative case.

It can be recalled that the traditional form of Tsallis relative entropy is given

by

DT
q (ρ||σ) =

Tr (ρqσ1−q)− 1

q − 1
, (2.3)

Quite analogous to the non-commuting form of relative Rényi entropy given in Eq.

(2.2), the non-commuting or sandwiched Tsallis relative entropy is defined and is

given by [62],

D̃T
q (ρ||σ) =

Tr
{(
σ

1−q

2q ρ σ
1−q

2q

)q}
− 1

q − 1
(2.4)

It can be verified that when σ = I, I being the identity matrix, the sandwiched

Tsallis relative entropy given in Eq. (2.4) reduces to the Tsallis entropy ST
q (ρ).

Also, in the limit q → 1, it reduces to the von-Neumann relative entropy 1. That

is,

lim
q→1

D̃T
q (ρ||σ) = Tr(ρ(log ρ− log σ)).

In order to make use of the sandwiched Tsallis relative entropy D̃T
q (ρ||σ) to

detect entanglement in a bipartite state ρAB, its conditional version is to be defined.

This can be accomplished by taking ρ = ρAB and σ ≡ IA ⊗ ρB (or ρA ⊗ IB) in Eq.

(2.4) with ρB = TrA[ρAB] (ρA = TrB[ρAB]) being the subsystem density matrices

of the bipartite state ρAB [62]. The conditional versions of sandwiched Tsallis

relative entropy (CSTRE) are given by [62]

D̃T
q (ρAB||ρB) =

Tr
{[

(IA ⊗ ρB)
1−q

2q ρAB(IA ⊗ ρB)
1−q

2q

]q}
− 1

1− q
(2.5)

D̃T
q (ρAB||ρA) =

Tr
{[

(ρA ⊗ IB)
1−q

2q ρAB(ρA ⊗ IB)
1−q

2q

]q}
− 1

1− q
(2.6)

1It may be noted that when q = 1/2, Eq. (2.4) reduces to D̃T
1

2

(ρ||σ) = 2(F (ρ|σ) − 1), the

negative of the Bures metric, with F (ρ|σ) = Tr

[(
σ

1

2 ρσ
1

2

) 1

2

]
denoting the fidelity [1].
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In a more concise manner, one can write D̃T
q (ρAB||ρB) as,

D̃T
q (ρAB||ρB) =

Q̃q(ρAB||ρB)− 1

1− q
(2.7)

where

Q̃q(ρAB||ρB) = Tr
{[

(IA ⊗ ρB)
1−q

2q ρAB(IA ⊗ ρB)
1−q

2q

]q}
. (2.8)

While the evaluation of the expression Q̃q(ρAB||ρB) does not seem trivial, con-

struction of the unitary matrix that diagonalizes the subsystem density matrix ρB

makes the calculation a feasible one. The details of evaluation of Q̃q(ρAB||ρB) are
as given below:

Let UB be the unitary matrix that diagonalizes ρB i.e., let

UBρBU
†
B = diag (λ1, λ2, . . . , λn) (2.9)

where λi, i = 1, 2, 3 . . . , n are the eigenvalues of ρB. In view of the fact that

(IA ⊗ ρB)
1−q

2q = I
1−q

2q

A ⊗ ρ
1−q

2q

B = IA ⊗ ρ
1−q

2q

B for any q,

one has,

(IA ⊗ UB)(IA ⊗ ρB)
1−q

2q (IA ⊗ UB)
† = IA ⊗ UBρ

1−q

2q

B U †
B

= IA ⊗ [diag (λ1, λ2, . . . , λn)]
1−q

2q (2.10)

= IA ⊗ diag

(
λ

1−q

2q

1 , λ
1−q

2q

2 , . . . , λ
1−q

2q
n

)
.

On denoting

Γ = (IA ⊗ ρB)
1−q

2q ρAB(IA ⊗ ρB)
1−q

2q (2.11)

one can write

Γ = (IA⊗ρB)
1−q

2q (IA⊗UB)
† (IA⊗UB)ρAB (IA⊗UB)

† (IA⊗UB)(IA⊗ρB)
1−q

2q . (2.12)
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Notice that Γ is unitarily equivalent to ΓU where

ΓU = (IA ⊗ UB)Γ(IA ⊗ UB)
† (2.13)

and Γ, ΓU have same eigenvalues. Observing that

(IA ⊗ UB)(IA ⊗ ρB)
1−q

2q (IA ⊗ UB)
† = IA ⊗ diag

(
λ

1−q

2q

1 , λ
1−q

2q

2 , . . . , λ
1−q

2q
n

)

and in view of Eqs. (2.12), (2.13), it can be seen that

ΓU =

{
IA ⊗ diag

(
λ

1−q

2q

1 , λ
1−q

2q

2 , . . . , λ
1−q

2q
n

)}
(IA ⊗ UB)ρAB (IA ⊗ UB)

†

{
IA ⊗ diag

(
λ

1−q

2q

1 , λ
1−q

2q

2 , . . . , λ
1−q

2q
n

)}
. (2.14)

In fact, the construction of the unitary matrix UB using the orthonormal eigen-

vectors of ρB and knowledge of the eigenvalues λi allows one to evaluate ΓU and

because of the unitary equivalence with Γ, the eigenvalues of ΓU are those of Γ. It

is not difficult to see from Eqs.(2.8), (2.11), (2.13) that

Q̃q(ρAB||ρB) = Tr (Γ)q = Tr (ΓU)
q

Thus an evaluation of the eigenvalues γi of ΓU immediately leads us to the quantity

Q̃q(ρAB||ρB) =
d∑

i=1

γqi , d = dimension of ρAB. (2.15)
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Finally an expression for the conditional form of sandwiched Tsallis relative en-

tropy2 (CSTRE) D̃T
q (ρAB||ρB) is obtained [62] as

D̃T
q (ρAB||ρB) =

∑d
i=1 γ

q
i − 1

1− q
. (2.16)

Having defined the CSTRE D̃T
q (ρAB||ρB) in an operational manner ( Eqs. (2.12),

(2.13), (2.15), (2.16)), the next task is to identify its use in detecting entanglement.

At this juncture, it is important to notice that the sandwiched conditional Tsallis

entropy (See Eq. (2.5)) reduces to AR q-conditional Tsallis entropy [33]

ST
q (A|B) =

1

q − 1

(
1− Tr(ρqAB)

Tr(ρqB)

)

when the subsystem density matrix is a maximally mixed state3. It is well known [33–

40] that negative values of AR q-conditional entropy indicate entanglement in bi-

partite states and the so-called AR-criterion based on this fact has been employed

as a separability criterion for several classes of composite states [33–40]. Thus, for

CSTRE D̃T
q (ρAB||ρB) to be useful in detecting entanglement, one needs to prove

that whenever D̃T
q (ρAB||ρB) is negative, the state ρAB corresponds to an entangled

state. The following theorem establishes this fact.

2The expression for D̃T
q (ρAB ||ρA) can be obtained in an analogous manner and it is given by

D̃T
q (ρAB ||ρA) =

∑d
i=1

ωq
i − 1

1− q

where ωi are the eigenvalues of the matrix

ΩU = (UA ⊗ IB)Ω(UA ⊗ IB)
†

which is unitarily equivalent to

Ω = (ρA ⊗ IB)
1−q

2q ρAB(ρA ⊗ IB)
1−q

2q .

Here UA is the matrix that diagonalizes the subsystem density matrix ρA of ρAB .
3That is, D̃T

q (ρAB ||ρB) ≡ ST
q (A|B) when ρB is maximally mixed and D̃T

q (ρAB ||ρA) ≡
ST
q (B|A) when ρA is maximally mixed.
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2.1.1 Sufficient condition for quantum entanglement in terms

of conditional version of sandwiched Tsallis relative

entropy

Theorem: Negative values of the conditional version of the sandwiched Tsallis

relative entropy (CSTRE) D̃T
q (ρAB||ρB) with q > 1 necessarily imply entan-

glement in the state ρAB [63].

Proof: For any two positive semi-definite operators ρ and σ, the trace func-

tional [64] Q̃q(ρ||σ) = Tr
{[
σ

1−q

2q ρ σ
1−q

2q

]q}
satisfies the inequality [64]

Q̃q(ρ||σ) ≤ Q̃q(ρ||ρ) for q > 1 whenever ρ ≤ σ. (2.17)

Notice that when ρ is a density matrix, Q̃q(ρ||ρ) = Tr ρ = 1 implying that

Q̃q(ρ||σ) ≤ 1 when ρ ≤ σ and q > 1. (2.18)

With ρ = ρAB, σ = IA ⊗ ρB and denoting

Q̃q(ρAB||IA ⊗ ρB) ≡ Q̃q(ρAB||ρB),

Eq. (2.18) gives

Q̃q(ρAB||ρB) = Tr
{[

(IA ⊗ ρB)
1−q

2q ρAB(IA ⊗ ρB)
1−q

2q

]q}
≤ 1 (2.19)

when ρAB ≤ IA ⊗ ρB and q > 1.

It can now be recalled that for all separable states ρAB,

ρAB − (IA ⊗ ρB) ≤ 0 (2.20)

according to reduction criterion [65]. Thus, as ρAB ≤ IA ⊗ ρB for all separable

states ρAB, one has

Q̃q(ρAB||ρB) ≤ 1 whenever q > 1. (2.21)
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It can now be readily seen that

D̃T
q (ρAB||ρB) =

Q̃q(ρAB||ρB)− 1

1− q

with q > 1 is non-negative for all separable states. In other words, negative

values of the conditional version of sandwiched Tsallis relative entropy (CSTRE)

D̃T
q (ρAB||ρB) (q > 1) indicate entanglement in the state ρAB thus proving the

theorem4.

Through Theorem 1, it is established that ‘negativity ’ of CSTRE (D̃T
q (ρAB||ρB)

(q > 1)) is a ‘sufficient criterion’ for the bipartite state ρAB to be entangled . This

fact is used in one-parameter family of mixed symmetric states to identify the

value of the parameter x at which D̃T
q (ρAB||ρB) (q > 1) changes from positive

to negative or vice versa in the limit q → ∞. In other words, identification of

the ‘zeroes ’ of D̃T
q (ρAB||ρB) when q → ∞ lead to the separability range(s), the

range(s) of the parameter x in which limq→∞ D̃T
q (ρAB||ρB) ≥ 0.

2.2 Symmetric one-parameter family of noisy

W states

The symmetric one parameter family of N -qubit mixed states, involving a W-state

is given by

ρWN (x) =

(
1− x

N + 1

)
PN + x|WN〉〈WN | (2.22)

Here 0 ≤ x ≤ 1 and

PN =
∑

M

∣∣∣∣
N

2
, M

〉〈
N

2
, M

∣∣∣∣ , M =
N

2
,
N

2
− 1, · · · ,−N

2
(2.23)

denotes the projector onto the symmetric subspace of N -qubits spanned by the

N + 1 angular momentum states
∣∣N
2
, M

〉
, M = N

2
, N

2
− 1, · · · ,−N

2
belonging to

the maximum value J = N
2
of total angular momentum. In fact PN/(N +1) is the

4In an analogous manner it can be shown that D̃T
q (ρAB ||ρA) ≥ 0 for separable states ρAB for

all q > 1.
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identity operator in the N + 1 dimensional maximal multiplicity space and hence

the name ‘noisy state’ is justified for the family of states in Eq. (2.22). Notice

that as x = 1, the noisy state becomes the pure symmetric N qubit W-state [51]

|WN〉 =
1√
N

[|1102 · · · 0N〉+ |0112 · · · 0N〉+ · · ·+ · · ·+ |010203 · · · 1N〉] (2.24)

and when x = 0, the state becomes a completely noisy state PN/(N + 1) in

the symmetric subspace. It is not difficult to notice that |WN〉 ≡
∣∣N
2
, N

2
− 1
〉
is

one among the basis states of the N + 1 dimensional symmetric subspace. As

the maximal multiplicity subspace is spanned by the angular momentum states

|N
2
, M〉, M = N

2
, N

2
− 1, · · · ,−N

2
is a symmetric subspace (states belonging to it

are invariant under interchange of qubits) the states in Eq. (2.22) are symmetric

states.

A systematic attempt to examine the separability ranges of the noisy one pa-

rameter family of W states using the AR-criterion has been carried out in Ref. [40].

While they could obtain a result matching with that of positive partial transpose

(PPT) criterion [21] for the 2-qubit states ρW2 (x), the range of separability iden-

tified by them is weaker than that through PPT criterion, for the states ρWN (x)

when N ≥ 3. In this section, the separability ranges in different partitions of the

state ρWN (x) are determined using CSTRE criterion when N = 3, N = 4. It is

identified that the non-maximal mixedness of the subsystem states (and hence non-

commuting with the global density matrix) of the density matrix ρW3 (x), ρW4 (x)

plays a major role in the AR-criterion not yielding strictest separability range in

all bipartitions. The separability domain inferred through non-negative values of

CSTRE is shown to be stricter compared to that obtained from AR-criterion and

von-Neumann conditional entropy criterion. It is also shown that in some of the

bipartitions, the CSTRE criterion yields a weaker separability range than that

obtained through PPT criterion. The next two subsections contain the details on

the determination of separability ranges in all possible bipartitions of the states

ρW3 (x), ρW4 (x) through different separability criteria.
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2.2.1 Bipartite separability in one parameter family of three

qubit noisy W-states

The symmetric one parameter family of 3-qubit mixed W-states are defined as

ρW3 (x) =

(
1− x

4

)
P3 + x|W3〉〈W3| (2.25)

Here 0 ≤ x ≤ 1 and P3 =
∑

M

∣∣3
2
, M

〉 〈
3
2
, M

∣∣, with
∣∣3
2
, M

〉
, M = 3

2
, 1
2
,−1

2
,−3

2

being the basis states of the four dimensional symmetric subspace. These states
{∣∣3

2
,M
〉}

are given explicitly in terms of the single qubit basis states |0〉 = | ↑〉,
|1〉 = | ↓〉 as follows,

∣∣∣∣
3

2
,
3

2

〉
= |↑A↑B↑C〉 ,

∣∣∣∣
3

2
,
−3

2

〉
= |↓A↓B↓C〉 ,

∣∣∣∣
3

2
,
1

2

〉
= |W3〉 =

1√
3
(|↓A↑B↑C〉+ |↑A↓B↑C〉+ |↑A↑B↓C〉) , (2.26)

∣∣∣∣
3

2
,
−1

2

〉
= |W̄3〉 =

1√
3
(|↑A↓B↓C〉+ |↓A↑B↓C〉+ |↓A↓B↑C〉) .

The density matrix of the state is explicitly given by

ρW3 (x) =




1−x
4

0 0 0 0 0 0 0

0 (1+3x)
12

(1+3x)
12

0 (1+3x)
12

0 0 0

0 (1+3x)
12

(1+3x)
12

0 (1+3x)
12

0 0 0

0 0 0 1−x
12

0 1−x
12

1−x
12

0

0 (1+3x)
12

(1+3x)
12

0 (1+3x)
12

0 0 0

0 0 0 1−x
12

0 1−x
12

1−x
12

0

0 0 0 1−x
12

0 1−x
12

1−x
12

0

0 0 0 0 0 0 0 1−x
4




(2.27)

The non-zero eigenvalues of ρW3 (x) are seen to be

λ1 = λ2 = λ3 =
1− x

4
and λ4 =

1

4
(1 + 3x)
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2.2.1.1 Separability of ρW3 (x) in its 1 : 2 partition

In the 1 : 2 partition of ρW3 (x), one needs to consider the single qubit marginal as

the first subsystem i.e., ρA = Tr23 ρ
W
3 (x) and the second subsystem denoted by B

is a two-qubit marginal obtained by tracing out the first qubit of ρW3 (x). In fact,

owing to the symmetry of the state ρW3 (x) under interchange of qubits, the single

qubit and two-qubit marginals remain the same irrespective of which qubit/s are

traced out.

It can be seen that

ρA = Tr23 ρ
W
3 (x) =

(
3+x
6

0

0 3−x
6

)
(2.28)

with eigenvalues (3± x)/6 and

ρB = Tr1 ρ
W
3 (x) =




1
3

0 0 0

0 1+x
6

1+x
6

0

0 1+x
6

1+x
6

0

0 0 0 1−x
3



, (2.29)

with non-zero eigenvalues

µ1 =
1

3
, µ2 =

1− x

3
, µ3 =

1 + x

3
.

With the knowledge of the eigenvalues of ρB, ρ
W
3 (x), the respective von-Neumann

entropies

S(B) = −
∑

i

µi log2 µi, S(A, B) = −
∑

i

λi log2 λi

are given by

S(A, B) = −3
(1− x)

4
log2

1− x

4
− 1 + 3x

4
log2

1 + 3x

4
(2.30)

S(B) = −1

3
log2

1

3
− (1− x)

3
log2

1− x

3
− 1 + x

3
log2

1 + x

3
(2.31)
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The von-Neumann conditional entropy for the state ρW3 (x) in its 1 : 2 partition is

given by S(A|B) = S(A, B)−S(B) and can be readily evaluated using Eqs. (2.30),

(2.31). The plot of S(A|B), as a function of x, is shown in Fig. 2.1. Identifying the

zero of the curve S(A|B) = 0 the separability range of ρW3 (x), in its 1 : 2 partition

is obtained as (0, 0.5695).

0.2 0.4 0.6 0.8 1.0
x

-0.2

0.2

0.4

SHAÈBL

Figure 2.1: The von-Neumann conditional entropy S(A|B) as a function of x,
for the state ρW3 (x), in its 1 : 2 partition.

In order to evaluate the 1 : 2 separability range of ρW3 (x) using AR-criterion,

one needs to evaluate the Abe-Rajagopal (AR) q-conditional entropy

ST
q (A|B) =

1

q − 1

[
1− Tr (ρAB)

q

Tr (ρB)q

]

as a function of x and identify its zero/s. Knowing the eigenvalues λi of ρ
W
3 (x)

and µi of ρB one has

Tr ρqAB =
∑

i

λqi = 3

(
1− x

4

)q

+

(
1 + 3x

4

)q

(2.32)

Tr ρqB =
∑

i

µq
i =

(
1

3

)q

+

(
1− x

3

)q

+

(
1 + x

3

)q

which facilitates the evaluation of ST
q (A|B) as a function of x and q. The plot

of ST
q (A|B), as a function of x, for different values of q is shown in Fig. 2.2. It

can be seen that in the limit q → 1, ρW3 (x) is separable in the range (0, 0.5695)

which is the 1 : 2 von-Neumann separability range obtained earlier. As q → ∞,

the 1 : 2 separability range of ρW3 (x) is seen to be (0, 0.2) [40]. It is clear that
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the 1 : 2 AR-separability range of ρW3 (x) is stricter than the 1 : 2 von-Neumann

separability range.

0.2 0.4 0.6 0.8 1.0
x

-0.2

-0.1

0.1

0.2

0.3

0.4

0.5
Sq

THAÈBL
q=1000
q=100
q=10
q=1

Figure 2.2: The AR q-conditional entropy ST
q (A|B) as a function of x for

different values of q, in the 1 : 2 partition of the state ρW3 (x).

It is to be noticed that the subsystems ρA, ρB are not maximally mixed implying

that the conditional version of sandwiched relative entropy (CSTRE) will not

match with the AR q-conditional entropy. In order to evaluate CSTRE (See Eq.

(2.5)) for ρW3 (x) in its 1 : 2 partition, one has to find out

Q̃q(ρAB||ρB) = Tr
{(

(IA ⊗ ρB)
1−q

2q ρAB(IA ⊗ ρB)
1−q

2q

)q}
.

with ρAB = ρW3 (x) and

ρB = TrA ρ
W
3 (x) = Tr1 ρ

W
3 (x)

being the two-qubit marginal of ρW3 (x). Also, IA = I2 is a 2× 2 unit matrix in the

subsystem space A. To make this calculation feasible, one needs to construct the
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unitary operator UB that diagonalizes ρB. It can be seen that

UB =




1 0 0 0

0 1√
2

−1√
2

0

0 0 0 1

0 1√
2

1√
2

0




and facilitates in the evaluation of ΓU = (I2 ⊗ UB)Γ(I2 ⊗ UB)
† where

Γ = (I2 ⊗ ρB)
1−q

2q ρW3 (x)(I2 ⊗ ρB)
1−q

2q

is the sandwiched matrix. The non-zero eigenvalues of ΓU and Γ are found to be,

γ1 =

(
1− x

4

)(
1− x

3

) 1−q

q

, γ2 =

(
1− x

4

)(
1

3

) 1−q

q

(2.33)

γ3 =

(
1− x

4

)(
1

3

) 1

q [
(1− x)

1−q

q + 2(1 + x)
1−q

q

]

γ4 =

(
1 + 3x

4

)(
1

3

) 1

q [
1 + 2(1 + x)

1−q

q

]

One can now readily evaluate the expression for CSTRE (See Eq.(2.16))

D̃T
q (ρAB||ρB) =

∑
i γ

q
i − 1

1− q

for different values of q and obtain D̃T
q (ρ

W
3 (x)||ρB) as a function of x and q. The

plots (Figs. 2.3 and 2.4) illustrate the variation of D̃T
q (ρ

W
3 (x)||ρB) with respect to

x for different values of q.

It can be seen through Figs. 2.3, 2.4 and the identification of zeroes of D̃T
q (ρ

W
3 (x)||ρB)

in the limit q −→ ∞ that, the 1 : 2 separability range in the one-parameter family

of 3-qubit W states is 0 ≤ x ≤ 0.1547 through CSTRE approach [62]. It is to

be recalled (See Fig. 2.4) that AR criterion yields a weaker separability range [40]

0 ≤ x ≤ 0.2.
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Figure 2.3: The CSTRE D̃T
q (ρ

W
3 (x)||ρB) as a function of x for different values

of q, in the 1 : 2 partition of the state ρW3 (x).

Having determined the 1 : 2 separability range in ρW3 (x) through different en-

tropic criteria, it would be of interest to evaluate this separability range through

Peres Partial Transpose criteria. Towards this end, we evaluate the partially trans-

posed density matrix of ρW3 (x) in its 1 : 2 partition. The 1 : 2 partially transposed

density matrix of ρW3 (x) is explicitly given by

ρT =




1−x
4

0 0 0 0 (1+3x)
12

(1+3x)
12

0

0 (1+3x)
12

(1+3x)
12

0 0 0 0 1−x
12

0 (1+3x)
12

(1+3x)
12

0 0 0 0 1−x
12

0 0 0 1−x
12

0 0 0 0

0 0 0 0 (1+3x)
12

0 0 0
(1+3x)

12
0 0 0 0 1−x

12
1−x
12

0
(1+3x)

12
0 0 0 0 1−x

12
1−x
12

0

0 1−x
12

1−x
12

0 0 0 0 1−x
4




(2.34)
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Figure 2.4: Implicit plot of D̃T
q (ρ

W
3 (x)||ρB) = 0 as a function of q (solid line)

indicating that x → 0.1547 as q → ∞ in the 1 : 2 partition of the state ρW3 (x).
In contrast, for the same partition of ρW3 (x), the implicit plot of Abe-Rajagopal
q-conditional entropy ST

q (A|B) = 0(dashed line), leads to x → 0.2 as q → ∞.

On evaluating the eigenvalues α2
i of (ρT )2, the trace norm ||ρT || =∑i αi and the

negativity N(ρ) is calculated using the relation N(ρ) = ||ρT ||−1
2

.

α1 =
1− x

12
, α2 =

1 + 3x

12
,

(2.35)

α3/4 =
1

12
√
2

√
17− 2x+ 49x2 ± 5(1− x)

√
9 + 46x+ 73x2,

α5/6 =
1

12
√
2

√
17− 2x+ 49x2 ± (5 + 3x)

√
9− 34x+ 89x2.

The plot of negativity N(ρ) as a function of x is shown in Fig. 2.5. One can observe

through Fig. 2.5 that N(ρ) remains zero till x = 0.1547 and its value increases

monotonically with x. Thus, according to PPT criterion, in the 1 : 2 partition

of ρW3 (x), it is separable in the range 0 ≤ x ≤ 0.1547 and entangled in the range

0.1547 < x ≤ 1.
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Figure 2.5: The plot of negativity of partial transpose as a function of x, for
ρW3 (x) in its 1 : 2 partition.

2.2.1.2 Separability of ρW3 (x) in its 2 : 1 partition

In the 2 : 1 partition, the two qubit and single qubit marginals of ρW3 (x) form

the first and second parts A, B respectively. Owing to the symmetry of the state

ρW3 (x) under interchange of qubits, it can be seen that

ρA = Tr1 ρ
W
3 (x) = Tr2 ρ

W
3 (x) = Tr3 ρ

W
3 (x)

and is given in Eq. (2.29). Similarly,

ρB = Tr12 ρ
W
3 (x) = Tr23 ρ

W
3 (x) =

1

6
diag (3 + x, 3− x)

The eigenvalues of ρB being µ1 = (3 + x)/6, µ2 = (3 − x)/6, the entropy of the

subsystem B is given by

S(B) = −3 + x

6
log2

3 + x

6
− 3− x

6
log2

3− x

6
(2.36)

With the entropy of the global state ρW3 (x) given in Eq. (2.30), and S(B) given

in Eq. (2.36), the von-Neumann conditional entropy S(A|B) of the state ρW3 (x)

in its 2 : 1 partition can be readily evaluated as

S(A|B) = −3

(
1− x

4

)
log2

1− x

4
− 1 + 3x

4
log2

1 + 3x

4

+
3 + x

6
log2

3 + x

6
+

3− x

6
log2

3− x

6
(2.37)
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Through the identification of the zero of S(A|B) given in Eq. (2.37), one can

obtain (0, 0.7645) as the 2 : 1 von-Neumann separability range of ρW3 (x).

The AR q-conditional entropy of ρW3 (x) in its 2 : 1 partition can be readily

obtained as

ST
q (A|B) =

1

q − 1

[
1− 3

(
1−x
4

)q
+
(
1+3x
4

)q
(
3+x
6

)q
+
(
3−x
6

)q

]
(2.38)

The plot of ST
q (A|B) in Eq. (2.38), as a function of x, for different values of q

is shown in Fig. 2.6. From Fig. 2.6, it is evident that limq→1 S
T
q (A|B) = S(A|B)

yielding the separability range (0, 0.7645) as obtained through von-Neumann con-

ditional entropy. But as q → ∞ the AR q-conditional entropy ST
q (A|B) changes

sign from positive to negative at x = 0.4286 yielding the 2 : 1 separability range of

ρW3 (x) as (0, 0.4286). The 2 : 1 AR-separability range is thus seen to be stricter

than the 2 : 1 von-Neumann separability range.
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Figure 2.6: The AR q-conditional entropy ST
q (A|B) as a function of x for

different values of q, for ρW3 (x), in its 2 : 1 partition.

In order to employ CSTRE criterion to obtain the 2 : 1 separability range in

ρW3 (x), recall that

D̃T
q (ρAB||ρB) =

∑
i γ

q
i − 1

1− q
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with γi being the eigenvalues of

Γ = (I4 ⊗ ρB)
1−q

2q ρW3 (x)(I4 ⊗ ρB)
1−q

2q

The single qubit marginal ρB being diagonal, the eigenvalues of Γ can readily be

evaluated thus facilitating the evaluation of the CSTRE D̃T
q (ρAB||ρB) of the state

ρW3 (x) in its 2 : 1 partition. Now on evaluating D̃T
q (ρAB||ρB) for different values

of q, one can find its variation with respect to the parameter x for each value of

q. Fig. 2.7 illustrates that, in the limit q → 1, the CSTRE criterion gives the

2 : 1 von-Neumann separability range (0, 0.7645) but in the limit q → ∞ one can

obtain (0, 0.3509) as the 2 : 1 CSTRE separability range. Though (0, 0.3509) is

stricter than von-Neumann and AR-separability ranges, it is found to be weaker

than the corresponding 1 : 2 separability range. Also, it is noticed that ρW3 (x)

being a symmetric state, the 1 : 2 and 2 : 1 separability ranges of the state must

be the same. But none of the entropic separability criteria are able to capture

the symmetry of the state as they are yielding different 1 : 2, 2 : 1 separability

ranges. But the PPT criteria accommodates the symmetry of the state and yields

the equal separability ranges in the 1 : 2, 2 : 1 partition of the symmetric state

ρW3 (x). This is evident from the fact that the partial transpose of the state ρW3 (x)

in both the partitions match with each other.

2.2.2 Bipartite separability in one parameter family of four

qubit noisy W-states

The symmetric one parameter family of noisy mixed states involving four-qubit

W-states are given by

ρW4 (x) =

(
1− x

5

)
P4 + x|W4〉〈W4|, 0 ≤ x ≤ 1 (2.39)

where

P4 =
∑

M

|2, M〉〈2, M |
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Figure 2.7: The CSTRE D̃T
q (ρ

W
3 (x)||ρB) as a function of x for different values

of q, for ρW3 (x), in its 2 : 1 partition.

is the projector onto the symmetric subspace of four-qubits spanned by the five

angular momentum states |2, M〉, M = 2, 1, 0,−1,−2 which are basis states of

the maximal multiplicity subspace with J = 2.

There are only two distinct non zero eigenvalues for the state ρW4 (x) and they

are given by

λ1 = λ2 = λ3 = λ4 =
1− x

5
, λ5 =

1

5
(1 + 4x). (2.40)

In the following, the separability of ρW4 (x) in its different partitions, is investigated

through various separability criteria.

2.2.2.1 Separability of ρW4 (x) in its 1 : 3 partition

In the 1 : 3 partition, the single qubit marginal of ρW4 (x) forms the first part A

and is given by

ρA = Tr234 ρ
W
4 (x) =

(
2+x
4

0

0 2−x
4

)
(2.41)
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whereas the subsystem corresponding to the remaining three qubits corresponds

to the second part B. It can be seen that

ρB =




1
4

0 0 0 0 0 0 0

0 1+2x
12

1+2x
12

0 1+2x
12

0 0 0

0 1+2x
12

1+2x
12

0 1+2x
12

0 0 0

0 0 0 1−x
12

0 1−x
12

1−x
12

0

0 1+2x
12

1+2x
12

0 1+2x
12

0 0 0

0 0 0 1−x
12

0 1−x
12

1−x
12

0

0 0 0 1−x
12

0 1−x
12

1−x
12

0

0 0 0 0 0 0 0 1−x
4




(2.42)

The nonzero eigenvalues of ρB are given by

µ1 =
1

4
, µ2 = µ3 =

1− x

4
, µ4 =

1

4
(1 + 2x). (2.43)

The entropy S(B) of subsystem ρB and S(A, B) of the global state ρW4 (x) are

obtained respectively as

S(B) = −1

4
log2

1

4
− 2

(
1− x

4

)
log2

1− x

4
− 1 + 2x

4
log2

1 + 2x

4
(2.44)

S(A, B) =
−4(1− x)

5
log2

1− x

5
− 1 + 4x

5
log2

1 + 4x

5
(2.45)

and the conditional entropy S(A|B) = S(A, B) − S(B) in the 1 : 3 partition of

the state can readily be evaluated. The plot of S(A|B) as a function of x is as

shown in Fig. 2.8. As S(A|B) becomes negative when x > 0.5193, (0, 0.5193) is

the 1 : 3 von-Neumann separability range of ρW4 (x).

The evaluation of AR q-conditional entropy in the 1 : 3 partition of ρW4 (x) leads

to [40]

ST
q (A|B) =

1

q − 1

[
1− 4

(
1−x
5

)q
+
(
1+4x
5

)q
(
1
4

)q
+ 2

(
1−x
4

)q
+
(
1+2x
4

)q

]
(2.46)

The plot of ST
q (A|B) in (2.46), as a function of x, for different values of q is as shown

in Fig. 2.9. It can be seen that in the limit q → 1, the state ρW4 (x) is separable in

the range (0, 0.5193) which equals the 1 : 3 von-Neumann separability range. But
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as q → ∞ the 1 : 3 separability range of ρW4 (x) is found to be (0, 0.1666) [40].
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Figure 2.8: The von-Neumann conditional entropy S(A|B) as a function of x,
for the state ρW4 (x), in its 1 : 3 partition.
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Figure 2.9: The AR q-conditional entropy ST
q (A|B) of ρW4 (x), in its 1 : 3

partition, as a function of x for different values of q.

In view of the fact that ρB given in Eq. (2.42) is not a diagonal matrix,

one needs a unitary matrix UB which diagonalizes ρB so that the eigenvalues of

ΓU = (I2 ⊗ UB)Γ(I2 ⊗ UB)
† unitarily equivalent to

Γ = (I2 ⊗ ρB)
1−q

2q ρW4 (x)(I2 ⊗ ρB)
1−q

2q
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can be found out. The eigenvectors of ρB in Eq. (2.42) facilitate us to find out

UB and it is given by

UB =




1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 1√
3

0 1√
3

1√
3

0

0 1√
3

1√
3

0 1√
3

0 0 0

0 1√
2

−1√
2

0 0 0 0 0

0 0 0 1√
2

0 −1√
2

0 0

0 −1√
6

−1√
6

0
√

2
3

0 0 0

0 0 0 −1√
6

0 −1√
6

√
2
3

0




With µi, i = 1, 2, 3, 4 being the eigenvalues of ρB (See Eq. (2.43)), the non-zero

eigenvalues γi of the matrix ΓU = (I2⊗UB)Γ(I2⊗UB)
† unitarily equivalent to the

sandwiched matrix

Γ = (I2 ⊗ ρB)
1−q

2q ρW4 (x)(I2 ⊗ ρB)
1−q

2q ,

are given by,

γ1 =

(
1− x

5

)(
1− x

4

) 1−q

q

, γ2 =

(
1− x

5

)(
1

4

) 1−q

q

γ3 =

(
1− x

5

)(
1

4

) 1

q [
2(1− x)

1−q

q + 2(1 + 2x)
1−q

q

]

γ4 =

(
1 + 4x

5

)(
1

4

) 1

q [
1 + 3(1 + 2x)

1−q

q

]

One can now readily evaluate the expression for CSTRE D̃T
q (ρ

W
4 (x)||ρB) in its 1 : 3

partition as

D̃T
q (ρ

W
4 (x)||ρB) =

∑
i γ

q
i − 1

1− q

Fig. 2.10 indicates the variation of the CSTRE D̃T
q (ρ

W
4 (x)||ρB) with x for increasing

values of q ≥ 1. The 1 : 3 separability range of the state ρW4 (x) is obtained as 0 ≤
x ≤ 0.1123 through identifying the zero of the function limq→∞ D̃T

q (ρ
W
4 (x)||ρB) [62].
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Figure 2.10: The CSTRE D̃T
q (ρ

W
4 (x)||ρB) as a function of x for different values

of q, in the 1 : 3 partition of the state ρW4 (x).
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Figure 2.11: The implicit plots of D̃T
q (ρ

W
4 (x)||ρB) = 0 (solid line) and

ST
q (A|B) = 0 (dashed line) as a function of q for the state ρW4 (x), in its 1 : 3

partition.

Notice that x → 0.1124 according to the implicit plot D̃T
q (ρ

W
4 (x)||ρB) = 0

while x → 0.1666 in the implicit plot of AR q-conditional entropy, both in the

limit q → ∞.

To obtain the 1 : 3 separability range in ρW4 (x) through PPT criterion, the

eigenvalues α2
i of ρT

(
ρT
)†

=
(
ρT
)2

with ρT being the partially transposed density

matrix of ρW4 (x) transposed either with respect to the first subsystem (single qubit
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marginal ρA) or with respect to the second subsystem (three-qubit marginal ρB)

are required. On an explicit evaluation of the eigenvalues α2
i of

(
ρT
)2
, one gets

α1 = α2 =
1− x

20
, α3 =

1 + 4x

20
, α4 =

1− x

4
(2.47)

α5/6 =
1

20

√
13 + 4x+ 58x2 ± 6(1− x)

√
4 + x(22 + 49x),

α7/8 =
1

20
√
2

√
26 + x(38 + 161x)± 3(2 + 3x)

√
16 + x(241x− 32).

thereby leading to the evaluation of N(ρ) = 1
2
(
∑

i αi − 1). The plot of N(ρ) as

a function of x is shown in Fig. 2.12. The negativity remains zero till x = 0.1123

and increases thereon. Thus, according to partial transpose criterion the 1 : 3

separability range of the state ρW4 (x) is seen to be 0 ≤ x ≤ 0.1123. It can be seen

that 1 : 3 CSTRE separability range matches with that obtained through PPT

criterion, for the noisy state ρW4 (x).
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Figure 2.12: The plot of negativity of partial transpose as a function of x, for
the state ρW4 (x), in its 1 : 3 partition.

2.2.2.2 Separability of ρW4 (x) in its 3 : 1 partition

In the 3 : 1 partition the three qubit marginal of ρW4 (x) forms the first part A and

the single qubit marginal of ρW4 (x) forms the second part B. Due to the symmetry

of the state,

ρA = Tr4 ρ
W
4 (x) = Tri ρ

W
4 (x), i = 1, 2, 3 (2.48)
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and is as given in Eq. (2.42). Also,

ρB = Tr123 ρ
W
4 (x) = Tr234 ρ

W
4 (x) =

1

4
diag (2 + x, 2− x) (2.49)

and the entropy of ρB is given by

S(B) = −2 + x

4
log2

2 + x

4
− 2− x

4
log2

2− x

4
(2.50)

With S(A, B) given in Eq. (2.45), the conditional entropy S(A|B) = S(A, B) −
S(B) in the 3 : 1 partition of ρW4 (x) can be evaluated. One can also obtain

(0, 0.8222) as the 3 : 1 von-Neumann separability range of ρW4 (x).

With the knowledge of eigenvalues of the single qubit marginal ρB and that of

ρW4 (x), the AR q-conditional entropy for ρW4 (x) in its 3 : 1 partition is given by

ST
q (A|B) =

1

q − 1

(
1− 4

(
1−x
5

)q
+
(
1+4x
5

)q
(
2+x
4

)q
+
(
2−x
4

)q

)
(2.51)

The plot of ST
q (A|B) as a function of x, for different values of q is shown in Fig. 2.13.

From Fig. 2.13 one can observe that in the limit q → 1, ST
q (A|B) ≥ 0 when

0 ≤ x ≤ 0.8222 leading to the 3 : 1 von-Neumann separability range (0, 0.8222)

for ρW4 (x). But as q → ∞, ST
q (A|B) ≥ 0 when 0 ≤ x ≤ 0.5454, yielding (0, 0.5454)

as the 3 : 1 AR separability range for the state ρW4 (x).

The second subsystem ρB, the single qubit marginal of ρW4 (x) in its 3 : 1

partition being diagonal, one can readily evaluate the eigenvalues γi of

Γ = (I8 ⊗ ρB)
1−q

2q ρW4 (x)(I8 ⊗ ρB)
1−q

2q

can readily be evaluated. Using Eq.(2.16), one can obtain D̃T
q (ρ

W
4 (x)||ρB) as a

function of x and q. The variation of D̃T
q (ρ

W
4 (x)||ρB) with x for different values

of q is as shown in Fig. 2.14. While the zero of limq→1 D̃
T
q

(
ρW4 (x)||ρB

)
yields the

3 : 1 von-Neumann separability range (0, 0.8222), the CSTRE separability range

is found to be (0, 0.4174) through identifying the zero of D̃T
q (ρ

W
4 (x)||ρB) in the

limit q −→ ∞. This range is weaker than the 1 : 3 CSTRE separability range and

the symmetry of the state is not obeyed in CSTRE approach. But PPT criteria

respects the symmetry of the state ρW4 (x) under interchange of qubits and it is
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Figure 2.13: The AR q-conditional entropy ST
q (A|B) of the state ρW4 (x), in

its 3 : 1 partition, as a function of x for different values of q.

observed that the tracenorm of partially transposed density matrix of ρW4 (x) in its

1 : 3 and 3 : 1 partitions are same. Thus (0, 0.1123) is the 3 : 1 as well as 1 : 3

PPT separability range for the symmetric state ρW4 (x).

2.2.2.3 Separability in ρW4 (x) in its 2 : 2 partition

In the 2 : 2 partition of ρW4 (x) both ρA, ρB are two-qubit marginals and due to

the symmetry of the state ρA = ρB given by

ρA = ρB =




2+x
6

0 0 0

0 2+x
12

2+x
12

0

0 2+x
12

2+x
12

0

0 0 0 1−x
3




(2.52)

The nonzero eigenvalues of ρB are

µ1 = µ2 =
2 + x

6
, µ3 =

1− x

3
. (2.53)
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Figure 2.14: The CSTRE D̃T
q (ρ

W
4 (x)||ρB) as a function of x for different values

of q, in the 3 : 1 partition of ρW4 (x).

The von-Neumann conditional entropy S(A|B) in the 2 : 2 partition of ρW4 (x) is

explicitly given by

S(A|B) = −4(1− x)

5
log2

1− x

5
− 1 + 4x

5
log2

1 + 4x

5

+
1− x

3
log2

1− x

3
+

2(2 + x)

6
log2

2 + x

6

It can be identified that (0, 0.6560) is the 2 : 2 von-Neumann separability range

of ρW4 (x).

The AR q-conditional entropy for ρW4 (x) in its 2 : 2 partition is explicitly given

by

ST
q (A|B) =

1

q − 1

(
1− 4

(
1−x
5

)q
+
(
1+4x
5

)q
(
1−x
3

)q
+ 2

(
2+x
6

)q

)
(2.54)

The plot of ST
q (A|B) with respect to x, for different values of q is shown in Fig. 2.15.

It can be seen that in the limit q → 1, ST
q (A|B) is non-negative in the range

[0, 0.6560] verifying that limq→1 S
T
q (A|B) = S(A|B). In the limit q → ∞, the

2 : 2 AR-separability range is obtained as (0, 0.2105) [40].

In order to employ the CSTRE approach to obtain the 2 : 2 separability range
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Figure 2.15: The AR q-conditional entropy ST
q (A|B) as a function of x for

different values of q, in the 2 : 2 partition of the state ρW4 (x).

of ρW4 (x), it is necessary to find out the unitary matrix UB which diagonalizes

the two qubit marginal ρB. With the knowledge of eigenvectors of ρB one can

construct UB as

UB =




1 0 0 0

0 1√
2

1√
2

0

0 1√
2

−1√
2

0

0 0 0 1




(2.55)

The unitary matrix UB that diagonalizes ρB leads to ΓU = (I4 ⊗ UB)Γ(I4 ⊗ UB)
†,

the unitary equivalent of the sandwiched matrix

Γ = (I4 ⊗ ρB)
1−q

2q ρW4 (x)(I4 ⊗ ρB)
1−q

2q .

Through the determination of eigenvalues γi of ΓU , one can evaluate the expres-

sion for CSTRE D̃T
q (ρ

W
4 (x)||ρB) in Eq.(2.16) as a function of x and q. Fig. 2.16

illustrates that in the limit q → 1, the CSTRE gives the 2 : 2 von-Neumann sepa-

rability range. The identification of zeroes of D̃T
q (ρ

W
4 (x)||ρB) in the limit q → ∞,

leads to (0, 0.2105) as the 2 : 2 CSTRE separability range of the state ρW4 (x).

On an explicit evaluation of the partially transposed density matrix ρT of ρW4 (x)
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Figure 2.16: The CSTRE D̃T
q (ρ

W
4 (x)||ρB) of ρW4 (x), in its 2 : 2 partition. as

a function of x for different values of q.

in its 2 : 2 partition, the tracenorm ||ρT || and the negativity N(ρ) are obtained

as functions of x. The variation of N(ρ) with respect to x is shown in Fig. 2.17.

The negativity remains zero till x = 0.0808. Thus, according to partial transpose

criteria, the state ρW4 (x) is separable in the range 0 ≤ x ≤ 0.0808 and entangled

in the range 0.0808 < x ≤ 1, in its 2 : 2 partition.
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Figure 2.17: The plot of negativity of partial transpose as a function of x, in
the 2 : 2 partition of the state ρW4 (x).
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2.3 Symmetric one-parameter family of noisy GHZ

states

The symmetric one parameter family of N -qubit mixed states, involving a GHZ

state is given by

ρGHZ
N (x) =

(
1− x

N + 1

)
PN + x|GHZN〉〈GHZN |, 0 ≤ x ≤ 1. (2.56)

PN =
∑

M |N/2, M〉〈N/2, M | is the projector onto theN+1 dimensional maximal

multiplicity subspace of the 2N dimensional space of N -qubits. The N -qubit GHZ

state is given [52, 53] by

|GHZN〉 =
1√
2
[|0102 · · · 0N〉+ |1112 · · · 1N〉] (2.57)

2.3.1 Bipartite separability in symmetric one parameter

family of three qubit noisy GHZ states

The symmetric one parameter family of mixed states involving a three-qubit GHZ

state is given by

ρGHZ
3 (x) =

(
1− x

4

)
P3 + x|GHZ3〉〈GHZ3| (2.58)

and its explicit density matrix is as shown below:

ρGHZ
3 (x) =




1+x
4

0 0 0 0 0 0 x
2

0 1−x
12

1−x
12

0 1−x
12

0 0 0

0 1−x
12

1−x
12

0 1−x
12

0 0 0

0 0 0 1−x
12

0 1−x
12

1−x
12

0

0 1−x
12

1−x
12

0 1−x
12

0 0 0

0 0 0 1−x
12

0 1−x
12

1−x
12

0

0 0 0 1−x
12

0 1−x
12

1−x
12

0
x
2

0 0 0 0 0 0 1+x
4




(2.59)
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The non-zero eigenvalues of ρGHZ
3 (x) are seen to be

λ1 = λ2 = λ3 =
1− x

4
, λ4 =

1

4
(1 + 3x). (2.60)

and

S
(
ρGHZ
3 (x)

)
= S(A, B) = −3(1− x)

4
log2

1− x

4
− 1 + 3x

4
log2

1 + 3x

4
(2.61)

is the entropy of the global state ρGHZ
3 (x) with any two subsystems A, B. Quite

similar to the symmetric one parameter family of states involving W states, the

separability of ρGHZ
3 (x) in its 1 : 2, 2 : 1 partitions are investigated here, through

various separability criteria.

2.3.1.1 Separability of ρGHZ
3 (x) in its 1 : 2 partition.

The first subsystem ρA (the single qubit marginal) and the second subsystem ρB

(the two qubit marginal) of ρGHZ
3 (x) are seen to be

ρA = Tr23 ρ
GHZ
3 (x) =

1

2

(
1 0

0 1

)
(2.62)

ρB = Tr1 ρ
GHZ
3 (x) =




2+x
6

0 0 0

0 1−x
6

1−x
6

0

0 1−x
6

1−x
6

0

0 0 0 2+x
6




(2.63)

The nonzero eigenvalues of ρB and its entropy S(B) are respectively given by

µ1 =
1− x

3
, µ2 = µ3 =

2 + x

6
(2.64)

S(B) = −1− x

3
log2

1− x

3
− 2(2 + x)

6
log2

2 + x

6
(2.65)
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The von-Neumann conditional entropy S(A|B) of the state ρGHZ
3 (x) in its 1 : 2

partition is given by

S(A|B) = −3

(
1− x

4

)
log2

(
1− x

4

)
−
(
1 + 3x

4

)
log2

(
1 + 3x

4

)

+

(
1− x

3

)
log2

(
1− x

3

)
+ 2

(
2 + x

6

)
log2

(
2 + x

6

)

The plot of S(A|B) as a function of x is shown in Fig. 2.18. From this plot, one

can obtain (0, 0.5482) as the 1 : 2 von-Neumann separability range of ρGHZ
3 (x).
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Figure 2.18: The von-Neumann conditional entropy S(A|B) of ρGHZ
3 (x) in its

1 : 2 partition, as a function of x.

The AR q-conditional entropy for ρGHZ
3 (x) in its 1 : 2 partition is given by

ST
q (A|B) =

1

q − 1

(
1− 3

(
1−x
4

)q
+
(
1+3x
4

)q
(
1−x
3

)q
+ 2

(
2+x
6

)q

)
(2.66)

(0, 0.1428) as the 1 : 2 AR separability range [40]. From this observation it is

clear that the 1 : 2 AR-separability range is stricter than the 1 : 2 von-Neumann

separability range.

In fact, as the single qubit marginal of the state is maximally mixed thus com-

muting with the global density matrix ρGHZ
3 (x), the CSTRE separability range

should match with the AR-separability range. To check this, we employ the

CSTRE criteria to obtain the 1 : 2 separability range in ρGHZ
3 (x) and compare

the results.
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The unitary operator UB which diagonalizes ρB is as follows

UB =




1 0 0 0

0 0 0 1

0 1√
2

1√
2

0

0 1√
2

−1√
2

0




This unitary matrix leads us to the evaluation of ΓU = (I2⊗UB)Γ(I2⊗UB)
† where

Γ = (I2 ⊗ ρB)
1−q

2q ρGHZ
3 (x)(I2 ⊗ ρB)

1−q

2q

is the sandwiched matrix of ρGHZ
3 (x) in its 1 : 2 partition.

The non-zero eigenvalues of ΓU (and of Γ) are found to be,

γ1 =

(
1− x

4

)(
2 + x

6

) 1−q

q

, γ2 =

(
1 + 3x

4

)(
2 + x

6

) 1−q

q

γ3 =

(
1− x

4

)(
1

3

) 1

q
[
2(1− x)

1−q

q + 2
(
1 +

x

2

) 1−q

q

]
(2-fold degenerate)

One can now readily evaluate the expression for CSTRE in Eq.(2.16) for different

values of q and obtain D̃T
q (ρ

GHZ
3 (x)||ρB) as a function of x. Fig. 2.19 illustrates

the stricter 1 : 2 separability range in ρGHZ
3 (x), for increasing values of q.
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Figure 2.19: The CSTRE D̃T
q (ρ

GHZ
3 (x)||ρB) of ρGHZ

3 (x), in its 1 : 2 partition,
as a function of x for different values of q.
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It can be seen through Fig. 2.19 that 0 ≤ x ≤ 0.1428 is the 1 : 2 separa-

bility range of the one-parameter family of 3-qubit GHZ states obtained through

CSTRE approach, in the limit q → ∞ [62]. This separability range is in complete

agreement with that obtained through AR criterion, as expected owing to the

maximally mixed and hence commuting nature of ρA.

Now to obtain the 1 : 2 separability range in ρGHZ
3 (x) through PPT criterion,

we consider the partially transposed density matrix of ρGHZ
3 (x) in its 1 : 2 partition.

It is given by

ρT =




1+x
4

0 0 0 0 1−x
12

1−x
12

0

0 1−x
12

1−x
12

0 0 0 0 1−x
12

0 1−x
12

1−x
12

0 0 0 0 1−x
12

0 0 0 1−x
12

x
2

0 0 0

0 0 0 x
2

1−x
12

0 0 0
1−x
12

0 0 0 0 1−x
12

1−x
12

0
1−x
12

0 0 0 0 1−x
12

1−x
12

0

0 1−x
12

1−x
12

0 0 0 0 1+x
4




(2.67)

The square root of the eigenvalues of (ρT )2 are seen to be

α1 =
7x− 1

12
, α2 =

1 + 5x

12
, (2.68)

α3 = α4 =
1√
288

√
17 + 2x+ 17x2 + (5 + x)

√
9 + 3x(11x− 2)

α5 = α6 =
1√
288

√
17 + 2x+ 17x2 − (5 + x)

√
9 + 3x(11x− 2)

allowing for the evaluation of the trace norm ||ρT || =∑i αi. The negativity N(ρ)

is calculated using the relation N(ρ) = ||ρT ||−1
2

.

The plot of negativity of the partially transposed density matrix ρT , as function

of x is shown in Fig. 2.20. The negativity remains zero till x = 0.1428 and

increases thereon. Thus, according to partial transpose criterion, the state ρGHZ
3 (x)
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is separable, in its 1 : 2 partition, in the range 0 ≤ x ≤ 0.1428 and entangled in

the range 0.1428 < x ≤ 1.
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Figure 2.20: The plot of negativity of partial transpose as a function of x, for
the 1 : 2 partition of the state ρGHZ

3 (x).

2.3.1.2 Separability of ρGHZ
3 (x) in its 2 : 1 partition.

In the 2 : 1 partition, the two qubit marginal of ρGHZ
3 (x) forms the first part A

and the single qubit marginal of ρGHZ
3 (x) forms the second part B. The two qubit

marginal ρA of ρGHZ
3 (x) is given by

ρA = Tr3 ρ
GHZ
3 (x) =




2+x
6

0 0 0

0 1−x
6

1−x
6

0

0 1−x
6

1−x
6

0

0 0 0 2+x
6




and its nonzero eigenvalues are

µ1 =
1− x

3
, µ2 = µ3 =

2 + x

6

The density matrix ρB, the single qubit marginal of ρGHZ
3 (x) is maximally mixed

with its entropy being S(B) = 1. That is,

ρB = Tr12 ρ
GHZ
3 (x) = diag

(
1

2
,
1

2

)
,

S(B) = −1

2
log2

1

2
− 1

2
log2

1

2
= 1
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The von-Neumann conditional entropy S(A|B) = S(A, B) − S(B) of the state

ρGHZ
3 (x) in its 2 : 1 partition is given by

S(A|B) = −3

(
1− x

4

)
log2

(
1− x

4

)
−
(
1 + 3x

4

)
log2

(
1 + 3x

4

)
− 1

The identification of the zeroes of S(A|B), one can obtain (0, 0.7476) as the

2 : 1 von-Neumann separability range of ρGHZ
3 (x), which is much greater than the

corresponding 1 : 2 separability range.

The AR q-conditional entropy in the 2 : 1 partition of ρGHZ
3 (x) is obtained after

substituting the eigenvalues corresponding to global and single qubit marginal of

ρGHZ
3 (x) in the expression for ST

q (A|B).

ST
q (A|B) =

1

q − 1

(
1− 3

(
1−x
4

)q
+
(
1+3x
4

)q

2
(
1
2

)q

)
(2.69)

By obtaining the zero of ST
q (A|B) = 0 in the limit q → ∞, the 2 : 1 AR separability

range of ρGHZ
3 (x) is obtained as (0, 0.3333).

Now, the CSTRE criterion is employed to obtain the 2 : 1 separability range

in ρGHZ
3 (x). As the subsystem B, the single qubit marginal of ρGHZ

3 (x) is already

in the diagonal form one can readily evaluate the sandwiched matrix

Γ = (I4 ⊗ ρB)
1−q

2q ρGHZ
3 (x)(I4 ⊗ ρB)

1−q

2q

and determine its eigenvalues γi. On evaluating the expression for CSTRE in

Eq.(2.16), D̃T
q (ρ

GHZ
3 (x)||ρB) is obtained as a function of x and q. Fig. 2.21 illus-

trates that in the limit q → 1, the 2 : 1 von-Neumann separability range (i.e.,

(0, 0.7476)) results and in the limit q → ∞, (0, 0.3333) is obtained as the 2 : 1

CSTRE separability range. Here too, the 2 : 1 CSTRE separability range is weaker

than the corresponding 1 : 2 separability range. This discrepancy between 1 : 2

and 2 : 1 CSTRE separability range again suggests that, to obtain the better sep-

arability range, the global density matrix must be sandwiched between the biggest

marginal of the bipartition under consideration.
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Figure 2.21: The CSTRE D̃T
q (ρ

GHZ
3 (x)||ρB) of ρGHZ

3 (x), in its 2 : 1 partition,
as a function of x for different values of q.

Finally, it can be observed that the 2 : 1 separability range in ρGHZ
3 (x) obtained

through Positive Partial Transpose criterion is the same as the corresponding 1 : 2

separability range. This is expected because PPT criterion respects the symmetry

of a state and hence the 1 : 2, 2 : 1 separability ranges are equal. In fact, though

the 1 : 2 PPT separability range of ρGHZ
3 (x) given by (0, 0.1428) matches with

its 1 : 2 CSTRE separability range, the 2 : 1 CSTRE separability range given by

(0, 0.3333) is much weaker in comparison with the PPT separability range.

2.3.2 Bipartite separability in one parameter family of four

qubit noisy GHZ-state

The symmetric one parameter family of 4-qubit mixed GHZ-states are given by

ρGHZ
4 (x) =

(
1− x

5

)
P4 + x|GHZ4〉〈GHZ4| (2.70)

Here 0 ≤ x ≤ 1 and P4 =
∑

M |2, M〉〈2, M | denotes the projector onto the

symmetric subspace of 4-qubits spanned by the 5 angular momentum states |2, M〉,
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M = 2, 1, 0,−1,−2 belonging to the maximum value J = 2 of total angular

momentum.

The distinct non-zero eigenvalues of ρGHZ
4 (x) are,

λ1 = λ2 = λ3 = λ4 =
1− x

5
, λ5 =

1

5
(1 + 4x).

In the following, the bipartite separability of ρGHZ
4 (x), in its different partitions, is

investigated through various separability criteria,

2.3.2.1 Separability of ρGHZ
4 (x) in its 1 : 3 partition

In the 1 : 3 partition, the single qubit marginal of ρGHZ
4 (x) forms the first part A

and the remaining three qubit marginal of ρGHZ
4 (x) forms its second part B. The

single qubit marginal ρA or the subsystem A of ρGHZ
4 (x), in the 1 : 3 partition, is

a maximally mixed state. That is,

ρA = Tr234 ρ
GHZ
4 (x) =

1

2

(
1 0

0 1

)

The density matrix ρB corresponding to subsystem B is given by

ρB = Tr1 ρ
GHZ
4 (x) =




1+2x
4

0 0 0 0 0 0 0

0 1−x
12

1−x
12

0 1−x
12

0 0 0

0 1−x
12

1−x
12

0 1−x
12

0 0 0

0 0 0 1−x
12

0 1−x
12

1−x
12

0

0 1−x
12

1−x
12

0 1−x
12

0 0 0

0 0 0 1−x
12

0 1−x
12

1−x
12

0

0 0 0 1−x
12

0 1−x
12

1−x
12

0

0 0 0 0 0 0 0 1+2x
4




(2.71)

The distinct nonzero eigenvalues of ρB are

µ1 = µ2 =
1− x

4
, µ3 = µ4 =

1 + x

4
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The von-Neumann conditional entropy of the state ρGHZ
4 (x) in its 1 : 3 partition

is given by

S(A|B) = −
(
4(1− x)

5

)
log2

(
1− x

5

)
−
(
1 + 4x

5

)
log2

(
1 + 4x

5

)

+2

(
1− x

4

)
log2

(
1− x

4

)
+ 2

(
1 + x

4

)
log2

(
1 + x

4

)

The plot of S(A|B) as a function of x is shown in Fig. 2.22. It can be readily

seen that (0, 0.4676) is the 1 : 3 von-Neumann separability range of ρGHZ
4 (x).

The AR q-conditional entropy of the state ρGHZ
4 (x) in its 1 : 3 partition can be
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Figure 2.22: The von-Neumann conditional entropy S(A|B) as a function of
x, for ρGHZ

4 (x) state, in its 1 : 3 partitions.

evaluated as

ST
q (A|B) =

1

q − 1

(
1− 4

(
1−x
5

)q
+
(
1+4x
5

)q

2
(
1−x
4

)q
+ 2

(
1+x
4

)q

)
(2.72)

Identifying the zero of ST
q (A|B) = 0 in the limit q → ∞, the 1 : 3 AR separability

range of the state ρGHZ
4 (x) is obtained as (0, 0.0909).

In order to evaluate the CSTRE for the state ρGHZ
4 (x) in its 1 : 3 partition, it

is necessary to evaluate the unitary matrix UB which diagonalizes the three qubit
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marginal ρB. It can be seen that

UB =




1 0 0 0 0 0 0 0

0 0 1√
6

1√
6

1√
6

1√
2

0 0

0 0 1√
6

1√
6

1√
6

−1√
2

0 0

0 0 −1√
6

1√
6

0 0 1√
6

1√
2

0 0 1√
6

1√
6

−2√
6

0 0 0

0 0 −1√
6

1√
6

0 0 1√
6

−1√
2

0 0 −1√
6

1√
6

0 0 −2√
6

0

0 1 0 0 0 0 0 0




and one can evaluate ΓU = (I2 ⊗ UB)Γ(I2 ⊗ UB)
† which is the unitary equivalent

of

Γ = (I2 ⊗ ρB)
1−q

2q ρGHZ
4 (x)(I2 ⊗ ρB)

1−q

2q

The non-zero eigenvalues of ΓU are found to be,

γ1 =

(
1− x

5

)(
1− x

4

) 1−q

q

, γ2 =

(
1− x

5

)(
1 + x

4

) 1−q

q

γ3 =

(
1 + 4x

5

)(
1 + x

4

) 1−q

q

, γ4 =

(
1− x

5

)(
1

4

) 1

q [
3(1− x)

1−q

q + (1 + x)
1−q

q

]

The expression for CSTRE D̃T
q (ρ

GHZ
4 (x)||ρB) can now be evaluated as a function

of x, q using Eq.(2.16). The plot Fig. 2.23 illustrates the stricter 1 : 3 separability

range of ρGHZ
4 (x), for increasing values of q. The 1 : 3 separability range 0 ≤

x ≤ 0.0909 of the one-parameter family of 4-qubit GHZ states, obtained in the

limit q → ∞ through CSTRE approach [62], is in complete agreement with that

obtained through AR q-conditional entropy.

To obtain the 1 : 3 separability range in ρGHZ
4 (x) through PPT criterion, the
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Figure 2.23: The CSTRE D̃T
q (ρ

GHZ
4 (x)||ρB) as a function of x for different

values of q in the 1 : 3 partition of ρGHZ
4 (x).

partially transposed density matrix
(
ρT
)
of ρGHZ

4 (x) in its 1 : 3 partition is evalu-

ated and the square root of eigenvalues of
(
ρT
)2

are obtained as

α1 =
1− x

20
, α2 =

1 + 9x

20

α3 =
1− x

4
, α4 =

11x− 1

20
, (2.73)

α5 = α6 =
1

20

√
13 + x(14 + 23x) + 2(3 + 2x)

√
4 + x(2 + 19x),

α7 = α8 =
1

20

√
13 + x(14 + 23x)− 2(3 + 2x)

√
(4 + x(2 + 19x)

The plot of negativity of the partially transposed density matrix ρT as a function

of x is shown in Fig. 2.24. One can obtain (0, 0.0909) as the 1 : 3 PPT separability

range of ρGHZ
4 (x).

2.3.2.2 Separability of ρGHZ
4 (x) in its 3 : 1 partition

In the 3 : 1 partition, the three qubit marginal of ρGHZ
4 (x) forms the first part A

and the remaining single qubit marginal of ρGHZ
4 (x) forms the second part B. The
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Figure 2.24: The plot of negativity of partial transpose of the state ρGHZ
4 (x),

in its 1 : 3 partition, as a function of x.

three qubit marginal ρA of ρGHZ
4 (x), in its 3 : 1 partition is given by

ρA = Tr4 ρ
GHZ
4 (x) =




1+2x
4

0 0 0 0 0 0 0

0 1−x
12

1−x
12

0 1−x
12

0 0 0

0 1−x
12

1−x
12

0 1−x
12

0 0 0

0 0 0 1−x
12

0 1−x
12

1−x
12

0

0 1−x
12

1−x
12

0 1−x
12

0 0 0

0 0 0 1−x
12

0 1−x
12

1−x
12

0

0 0 0 1−x
12

0 1−x
12

1−x
12

0

0 0 0 0 0 0 0 1+2x
4




The nonzero eigenvalues of ρA are

µ1 = µ2 =
1− x

4
, µ3 = µ4 =

1 + x

4
.

The density matrix ρB corresponding to subsystem B is a maximally mixed state

I2/2 characteristic of GHZ states and noisy states involving them. Thus, S(B) = 1

and the von-Neumann conditional entropy of the state ρGHZ
4 (x) in its 3 : 1 partition

is given by

S(A|B) = −
(
4(1− x)

5

)
log2

(
1− x

5

)
−
(
1 + 4x

5

)
log2

(
1 + 4x

5

)
− 1

From the identification of the zero of S(A|B), one can obtain (0, 0.7868) as the

3 : 1 von-Neumann separability range of the state ρGHZ
4 (x).
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The AR q-conditional entropy for the state ρGHZ
4 (x) in its 3 : 1 partition is

given by

ST
q (A|B) =

1

q − 1

(
1− 4

(
1−x
5

)q
+
(
1+4x
5

)q

2
(
1
2

)q

)
(2.74)

By obtaining the zero of ST
q (A|B) = 0 in the limit q → ∞, one can obtain

(0, 0.375) as the 3 : 1 AR separability range of the state ρGHZ
4 (x) and it is stricter

than the corresponding von-Neumann separability range.

In view of the fact that the single qubit marginal ρB is in the diagonal form,

the matrix

Γ = (I8 ⊗ ρB)
1−q

2q ρGHZ
4 (x)(I8 ⊗ ρB)

1−q

2q

can readily be evaluated. An explicit evaluation of D̃T
q (ρ

GHZ
4 (x)||ρB) as a function

of x and q can be done with the knowledge of eigenvalues of Γ. Fig. 2.25 illustrates

that in the limit q → 1, CSTRE criterion yields the 3 : 1 von-Neumann separability

range (0, 0.7868) and in the limit q → ∞ it gives the strictest separability range

(0, 0.375). This range matches with the 3 : 1 AR-separability range and this is

due to the fact that CSTRE D̃T
q (ρAB||ρB) reduces to AR q-conditional entropy

when the single qubit marginal ρB is maximally mixed. Notice also that the 3 : 1

CSTRE separability range is weaker than the corresponding 1 : 3 separability

range of the state ρGHZ
4 (x).

It is evident that the 3 : 1 PPT separability range is the same as 1 : 3 PPT

separability range owing to the fact that the eigenvalues of partial transpose of

any density matrix in its a : b partition and b : a partition are same. In fact the

3 : 1 PPT separability range (0, 0.0909) though equivalent to the 1 : 3 CSTRE

separability range, it is much stricter than the 3 : 1 CSTRE separability range

(0, 0.375).

2.3.2.3 Separability of ρGHZ
4 (x) in its 2 : 2 partition.

In the 2 : 2 partition of ρGHZ
4 (x) both the subsystems ρA, ρB contain two qubits

and due to the symmetry of the state, they are identical. On explicit evaluation,
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Figure 2.25: The CSTRE D̃T
q (ρ

GHZ
4 (x)||ρB) as a function of x for different

values of q in the 3 : 1 partition of ρGHZ
4 (x).

one gets,

ρA = ρB = Tr12 ρ
GHZ
4 (x) =




2+x
6

0 0 0

0 1−x
6

1−x
6

0

0 1−x
6

1−x
6

0

0 0 0 2+x
6




The nonzero eigenvalues of ρA, ρB are

µ1 = µ2 =
2 + x

6
, µ3 =

1− x

3

The von-Neumann conditional entropy of the state ρGHZ
4 (x) in its 2 : 2 partition

is given by

S(A|B) = −4

(
(1− x)

5

)
log2

(
1− x

5

)
−
(
1 + 4x

5

)
log2

(
1 + 4x

5

)

+

(
(1− x)

3

)
log2

(
1− x

3

)
+ 2

(
(2 + x)

6

)
log2

(
2 + x

6

)

The 2 : 2 von-Neumann separability range of ρGHZ
4 (x) is obtained as (0, 0.6560).
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The AR q-conditional entropy for the state ρGHZ
4 (x) in its 2 : 2 partition is

given by

ST
q (A|B) =

1

q − 1

(
1− 4

(
1−x
5

)q
+
(
1+4x
5

)q
(
1−x
3

)q
+ 2

(
2+x
6

)q

)
(2.75)

In the limit q → ∞, ST
q (A|B) changes sign from positive to negative and be-

comes zero when x = 0.2105. Thus the 2 : 2 separability of the state ρGHZ
4 (x) is

(0, 0.2105) [40] according to AR-criterion. It is clear that the 2 : 2 AR-separability

range (0, 0.2105) is stricter than the 2 : 2 von-Neumann separability range.

In order to evaluate CSTRE in the 2 : 2 partition of the state ρGHZ
4 (x), construc-

tion of the unitary UB that diagonalizes the two qubit marginal ρB is necessary

and it is given by

UB =




1 0 0 0

0 1√
2

1√
2

0

0 −1√
2

1√
2

0

0 0 0 1




The unitary equivalent ΓU = (I4 ⊗ UB)Γ(I4 ⊗ UB)
† of the matrix

Γ = (I4 ⊗ ρB)
1−q

2q ρGHZ
4 (x)(I4 ⊗ ρB)

1−q

2q

can now be evaluated and its eigenvalues γi help in the evaluation of CSTRE (See

Eq.(2.16)) D̃T
q (ρ

GHZ
4 (x)||ρB) as a function of x and q. Fig. 2.26 indicates that in

the limit q → ∞, (0, 0.2105) is obtained as the 2 : 2 separability range of ρGHZ
4 (x).

This range is in complete agreement with that obtained through AR criterion. On

an explicit evaluation of the partially transposed density matrix ρT of ρGHZ
4 (x) in

its 2 : 2 partition, the tracenorm ||ρT || and the negativity N(ρ) are obtained as

functions of x. The plot of negativity of a partial transpose as a function of x is

shown in Fig.2.27. N(ρ) remains zero till x = 0.0625 and increases thereon. Thus,

according to partial transpose criteria, the state ρGHZ
4 (x) is separable in the range

0 ≤ x ≤ 0.0625 and entangled in the range 0.0625 < x ≤ 1, in its 2 : 2 partition.
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Figure 2.26: The CSTRE D̃T
q (ρ

GHZ
4 (x)||ρB) of ρGHZ

4 (x), in its 2 : 2 partition,
as a function of x for different values of q.
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Figure 2.27: The plot of negativity of partial transpose in the 2 : 2 partition
of the state ρGHZ

4 (x) as a function of x.
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2.4 Symmetric one parameter family of noisy

states involving equal superposition of W-

and obverse W states |WW̄N〉

The symmetric one-parameter family of noisy N -qubit WW̄-states are defined as

ρWW̄
N (x) =

(
1− x

N + 1

)
PN + x|WW̄N〉〈WW̄N | (2.76)

where

|WW̄N〉 =
1√
2

(
|WN〉+ |W̄N〉

)
(2.77)

and

∣∣W̄N

〉
=

1√
N
[|0112 · · · 1N〉+ |110213 · · · 1N〉+ · · ·+ · · ·+ |111213 · · · 0N〉] (2.78)

is the so-called obverse W state.

2.4.1 Bipartite separability in one parameter family of noisy

states involving the states |WW̄3〉

The three qubit symmetric one parameter family of noisy states involving the

states |WW̄3〉 are given by

ρWW̄
3 (x) =

(
1− x

4

)
P3 + x

∣∣WW̄3

〉 〈
WW̄3

∣∣ ; 0 ≤ x ≤ 1 (2.79)

The state |WW̄3〉 is of the form

∣∣WW̄3

〉
=

1√
6
[|001〉+ |010〉+ |100〉+ |110〉+ |101〉+ |011〉] (2.80)
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and its density matrix is explicitly given by

ρWW̄
3 (x) =




1−x
4

0 0 0 0 0 0 0

0 1+x
12

1+x
12

x
6

1+x
12

x
6

x
6

0

0 1+x
12

1+x
12

x
6

1+x
12

x
6

x
6

0

0 x
6

x
6

1+x
12

x
6

1+x
12

1+x
12

0

0 1+x
12

1+x
12

x
6

1+x
12

x
6

x
6

0

0 x
6

x
6

1+x
12

x
6

1+x
12

1+x
12

0

0 x
6

x
6

1+x
12

x
6

1+x
12

1+x
12

0

0 0 0 0 0 0 0 1−x
4




(2.81)

The distinct non-zero eigenvalues of ρWW̄
3 (x) are

λ1 = λ2 = λ3 =
1− x

4
, λ4 =

(1 + 3x)

4
. (2.82)

The entropy of the state ρWW̄
3 (x) is given by

S(A,B) = −3

(
1− x

4

)
log2

(
1− x

4

)
−
(
1 + 3x

4

)
log2

(
1 + 3x

4

)
(2.83)

2.4.1.1 Separability of ρWW̄
3 (x) in its 1 : 2 partition

The single qubit marginal of ρWW̄
3 (x) is given by

ρA = Tr23 ρ
WW̄
3 (x) =

(
1
2

x
3

x
3

1
2

)
(2.84)

The two qubit marginal of ρWW̄
3 (x) is seen to be

ρB =




2−x
6

x
6

x
6

0
x
6

1+x
6

1+x
6

x
6

x
6

1+x
6

1+x
6

x
6

0 x
6

x
6

2−x
6




(2.85)
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The non-zero eigenvalues of ρB are

η1 =
1− x

3
, η2 =

2− x

6
, η3 =

2 + 3x

6
. (2.86)

The entropy of the subsystem ρB is given by

S(B) = −(1− x)

3
log2

(1− x)

3
− (2− x)

6
log2

(2− x)

6
− (2 + 3x)

6
log2

(2 + 3x)

6
(2.87)

With the entropy of the global state ρWW̄
3 (x) given in Eq. (2.83) and S(B) given

in Eq. (2.87), the von-Neumann conditional entropy S(A|B) of the state ρWW̄
3 (x)

in its 1 : 2 partition can be readily evaluated.

S(A|B) = −3

(
1− x

4

)
log2

(
1− x

4

)
−
(
1 + 3x

4

)
log2

(
1 + 3x

4

)

+
(1− x)

3
log2

(1− x)

3
+

(2− x)

6
log2

(2− x)

6

+
(2 + 3x)

6
log2

(2 + 3x)

6
(2.88)

Through the identification of the zero of S(A|B), one can obtain (0, 0.6530) as

the 1 : 2 von-Neumann separability range of ρWW̄
3 (x).

One can now readily evaluate AR q-conditional entropy to find the 1 : 2 sepa-

rability range in ρWW̄
3 (x) as

ST
q (A|B) =

1

q − 1

(
1− 3

(
1−x
4

)q
+
(
1+3x
4

)q
(
2−x
6

)q
+
(
1−x
3

)q
+
(
2+3x
6

)q

)

The plot of ST
q (A|B) as a function of x, for different values of q is shown in

Fig. 2.28. From the Fig. 2.28, in the limit q → ∞, one can obtain (0, 0.3333) as

the 1 : 2 AR separability range of ρWW̄
3 (x).

To employ the CSTRE criterion to obtain the 1 : 2 separability range in ρWW̄
3 (x)

one needs to diagonalize the two qubit marginal ρB. The unitary matrix which
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Figure 2.28: The AR q-conditional entropy ST
q (A|B) in the 1 : 2 partition of

the state ρWW̄
3 (x), as a function of x for different values of q.

diagonalizes the two qubit marginal ρB is given by

UB =




0 −1√
2

1√
2

0√
2
5

−1√
10

−1√
10

√
2
5

−1√
2

0 0 1√
2

1√
10

2√
10

2√
10

1√
10




This unitary operator UB leads to ΓU = (I2 ⊗ UB)Γ(I2 ⊗ UB)
† with

Γ = (I2 ⊗ ρB)
1−q

2q ρWW̄
3 (x)(I2 ⊗ ρB)

1−q

2q .

From the non-zero eigenvalues γi’s of sandwiched matrix Γ one can evaluate the

expression for CSTRE of the form

D̃T
q (ρ

WW̄
3 (x)||ρB) =

∑d
i=1 γ

q
i − 1

1− q
. (2.89)

The plot of D̃T
q (ρ

WW̄
3 (x)||ρB) as a function of x, for different values of q is shown

in Fig. 2.29. It can be readily seen through Fig. 2.29 that the state ρWW̄
3 (x) is

separable in the range 0 ≤ x ≤ 0.1896, in its 1 : 2 partition [63]. It is to be noticed

(See Fig. 2.28) that AR q-conditional entropy yields a weaker separability range

0 ≤ x ≤ 0.3333 for the 1 : 2 partition of ρWW̄
3 (x).
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Figure 2.29: The CSTRE D̃T
q (ρ

WW̄
3 (x)||ρB) as a function of x for different

values of q, in the 1 : 2 partition of ρWW̄
3 (x).

To find the 1 : 2 separability range in ρWW̄
3 (x) through PPT criterion, the

partially transposed density matrix ρT of ρWW̄
3 (x) in its 1 : 2 partition is evaluated

and it is given by

ρT =




1−x
4

0 0 0 0 1+x
12

1+x
12

x
6

0 1+x
12

1+x
12

x
6

0 x
6

x
6

1+x
12

0 1+x
12

1+x
12

x
6

0 x
6

x
6

1+x
12

0 x
6

x
6

1+x
12

0 0 0 0

0 0 0 0 1+x
12

x
6

x
6

0
1+x
12

x
6

x
6

0 x
6

1+x
12

1+x
12

0
1+x
12

x
6

x
6

0 x
6

1+x
12

1+x
12

0
x
6

1+x
12

1+x
12

0 0 0 0 1−x
4




(2.90)

On explicit evaluation of the eigenvalues α2
i of (ρ

T )2 one can obtain the tracenorm

||ρT || = ∑
i αi and the negativity N(ρ) = (||ρT || − 1)/2. The plot of N(ρ) as a

function of x is shown in Fig. 2.30. From the Fig 2.30 one can obtain (0, 0.1895)

as the 1 : 2 PPT separability range which exactly matches with the 1 : 2 CSTRE

separability range.
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Figure 2.30: The plot of negativity of partial transpose in the 1 : 2 partition
of the state ρWW̄

3 (x) as a function of x.

2.4.1.2 Separability of ρWW̄
3 (x) in its 2 : 1 partition

In the 2 : 1 partition of ρWW̄
3 (x), its two qubit marginal is considered as the first

subsystem ρA and the single qubit marginal is the second subsystem ρB. It can

be seen, due to the symmetry of the state ρWW̄
3 (x), that

ρA = Tr1 ρ
WW̄
3 (x) = Tr2 ρ

WW̄
3 (x) = Tr3 ρ

WW̄
3 (x)

and is given in Eq. (2.85). Similarly,

ρB = Tr12 ρ
WW̄
3 (x) = Tr23 ρ

WW̄
3 (x) = Tr13 ρ

WW̄
3 (x)

and is given in Eq.(2.84) The eigenvalues of ρB being µ1 =
(3−2x)

6
, µ2 =

(3+2x)
6

, the

entropy of the subsystem ρB is given by

S(B) = −(3 + 2x)

6
log2

(3 + 2x)

6
− (3− 2x)

6
log2

(3− 2x)

6
(2.91)

With the entropy of the global state ρWW̄
3 (x) given in Eq. (2.83) and S(B) given

in Eq. (2.91), the von-Neumann conditional entropy S(A|B) of the state ρWW̄
3 (x)

in its 2 : 1 partition can be readily evaluated.

S(A|B) = −3

(
1− x

4

)
log2

(
1− x

4

)
−
(
1 + 3x

4

)
log2

(
1 + 3x

4

)

+

(
3 + 2x

6

)
log2

(
3 + 2x

6

)
+

(
3− 2x

6

)
log2

(
3− 2x

6

)
(2.92)
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Through the identification of the zero of S(A|B), one can obtain (0, 0.8248) as

the 2 : 1 von-Neumann separability range of ρWW̄
3 (x).

The AR q-conditional entropy of ρWW̄
3 (x) in its 2 : 1 partition is obtained as

ST
q (A|B) =

1

q − 1

[
1− 3

(
1−x
4

)q
+
(
1+3x
4

)q
(
3+2x
6

)q
+
(
3−2x
6

)q

]
(2.93)

It can be seen that limq→1 S
T
q (A|B) = S(A|B) yielding the separability range

(0, 0.8248) as obtained through von-Neumann conditional entropy. But as q → ∞
the ST

q (A|B) changes sign from positive to negative at x = 0.6 yielding the 2 : 1

separability range of ρWW̄
3 (x) as (0, 0.6). The 2 : 1 AR-separability range is thus

seen to be stricter than the 2 : 1 von-Neumann separability range.

In order to employ CSTRE to obtain the 2 : 1 separability range in ρWW̄
3 (x),

the eigenvalues γi of the sandwiched matrix

Γ = (I4 ⊗ ρB)
1−q

2q ρWW̄
3 (x) (I4 ⊗ ρB)

1−q

2q

is to be determined and that can be done through evaluation of the eigenvalues of

the unitarily equivalent matrix ΓU = (I4 ⊗ UB)Γ(I4 ⊗ UB)
†. The unitary matrix

UB that diagonalizes the single qubit marginal ρB is given by

UB =

(
1√
2

−1√
2

1√
2

1√
2

)

and the CSTRE D̃T
q (ρ

WW̄
3 (x)||ρB) given by

D̃T
q (ρ

WW̄
3 (x)||ρB) =

∑
i γ

q
i − 1

1− q

is readily evaluated.

Fig. 2.31 illustrates that in the limit q → ∞, the zero of D̃T
q (ρ

WW̄
3 (x)||ρB)

occurs at x = 0.4104 yielding (0, 0.4104) as the 2 : 1 CSTRE separability range.

Though this is stricter than von-Neumann and AR-separability ranges, it is found

to be weaker than the corresponding 1 : 2 separability range. Also, it is noticed

that ρWW̄
3 (x) being a symmetric state, the 1 : 2 and 2 : 1 separability ranges of
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the state must be the same. But none of the entropic separability criteria are able

to capture the symmetry of the state as they are yielding different 1 : 2, 2 : 1

separability ranges. But the PPT criteria accommodates the symmetry of the

state and the 1 : 2, 2 : 1 PPT separability ranges of ρWW̄
3 (x) are same. This is

evident from the fact that the partial transpose of the state ρWW̄
3 (x) in both the

partitions match with each other.
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Figure 2.31: The CSTRE D̃T
q (ρ

WW̄
3 (x)||ρB) as a function of x for different

values of q in the 2 : 1 partition of ρWW̄
3 (x).

2.4.2 Bipartite separability in one parameter family of noisy

states involving the states |WW̄4〉

The four qubit symmetric one parameter family of noisy states involving the state

|WW̄4〉 are given by

ρWW̄
4 (x) =

(
1− x

5

)
P4 + x

∣∣WW̄4

〉 〈
WW̄4

∣∣ ; 0 ≤ x ≤ 1 (2.94)

The state |WW̄4〉 is explicitly seen as

∣∣WW̄4

〉
=

1√
8
[|0001〉+ |0010〉+ |0100〉+ |1000〉+ |1110〉+ |1101〉+ |1011〉+ |0111〉]
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The distinct non-zero eigenvalues of ρWW̄
4 (x) are

λ1 = λ2 = λ3 = λ4 =
1− x

5
, λ5 =

1

5
(1 + 4x). (2.95)

2.4.2.1 Separability of ρWW̄
4 (x) in its 1 : 3 partition

To find the 1 : 3 separability range in ρWW̄
4 (x) one has to obtain its single qubit and

three qubit marginal. The single qubit marginal of ρWW̄
4 (x) is maximally mixed

and is given by

ρA =
1

2

(
1 0

0 1

)
(2.96)

The three qubit marginal of ρWW̄
4 (x) is given by

ρB =




2−x
8

0 0 x
8

0 x
8

x
8

0

0 2+x
24

2+x
24

0 2+x
24

0 0 x
8

0 2+x
24

2+x
24

0 2+x
24

0 0 x
8

x
8

0 0 2+x
24

0 2+x
24

2+x
24

0

0 2+x
24

2+x
24

0 2+x
24

0 0 x
8

x
8

0 0 2+x
24

0 2+x
24

2+x
24

0
x
8

0 0 2+x
24

0 2+x
24

2+x
24

0

0 x
8

x
8

0 x
8

0 0 2−x
8




(2.97)

The eigenvalues of ρB are

η1 = η2 =
1− x

4
, η3 = η4 =

1 + x

4
. (2.98)

In order to find the 1 : 3 separability range in ρWW̄
4 (x) through AR criterion, the

AR q-conditional entropy for ρWW̄
4 (x) in its 1 : 3 partition is evaluated and it is

given by

ST
q (A|B) =

1

q − 1

(
1− 4

(
1−x
5

)q
+
(
1+4x
5

)q

2
(
1−x
4

)q
+ 2

(
1+x
4

)q

)
(2.99)

Identifying the zero of the AR q-conditional entropy ST
q (A|B), in the limit q → ∞,

one can obtain (0, 0.0909) as the 1 : 3 AR separability range in ρWW̄
4 (x).
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In order to obtain the separability range through CSTRE criterion one needs

to diagonalize the three qubit marginal ρB. The unitary matrix which diagonalizes

the three qubit marginal ρB is given by

UB =




√
3
2

0 0 −1
2
√
3

0 −1
2
√
3

−1
2
√
3

0

0 −1
2
√
3

−1
2
√
3

0 −1
2
√
3

0 0
√
3
2

0 0 0 1√
2

0 −1√
2

0 0

0 1√
2

−1√
2

0 0 0 0 0

0 −1√
6

−1√
6

0
√

2
3

0 0 0

0 0 0 −1√
6

0 −1√
6

√
2
3

0

0 1
2

1
2

0 1
2

0 0 1
2

1
2

0 0 1
2

0 1
2

1
2

0




Using UB and with the knowledge of eigenvalues of ρB, one can evaluate the

diagonal matrix ΓU = (I2 ⊗ UB)Γ(I2 ⊗ UB)
† unitarily equivalent to

Γ = (I2 ⊗ ρB)
1−q

2q ρWW̄
4 (x)(I2 ⊗ ρB)

1−q

2q .

Now the expression for CSTRE D̃T
q (ρ

WW̄
4 (x)||ρB) in its 1 : 3 partition can be

evaluated as

D̃T
q (ρ

WW̄
4 (x)||ρB) =

∑
i γ

q
i − 1

1− q

The Fig. 2.32 illustrates the behavior of D̃T
q (ρ

WW̄
4 (x)||ρB) as a function of x, for

different values of q. From Fig. 2.32 one can get (0, 0.0909) as the separability

range for ρWW̄
4 (x), in its 1 : 3 partition [63]. It is to be noticed that 1 : 3 AR sep-

arability range is also same as that of the one obtained through the CSTRE. This

again supports the fact that whenever a marginal is maximally mixed, the CSTRE

reduces to AR q-conditional entropy and hence both the separability ranges match

with each other.

The 1 : 3 separability range in ρWW̄
4 (x) through PPT criterion is evaluated

through explicit evaluation of the partially transposed density matrix of ρWW̄
4 (x)

and determination of its trace norm. The plot of negativity of partial transpose of

ρWW̄
4 (x), in its 1 : 3 partition, as a function of x is shown in Fig. 2.33. From the

Fig. 2.33, one obtain (0, 0.0909) as the 1 : 3 PPT separability range of ρWW̄
4 (x).



Chapter 2. Sandwiched Relative Tsallis Entropy and its conditional version 77

0.2 0.4 0.6 0.8 1.0
x

-0.2

-0.1

0.1

0.2

0.3

D
�

q
T
HΡ4

W W HxLÈÈΡBL

q=1000
q=100
q=10
q=1

Figure 2.32: The CSTRE D̃T
q (ρ

WW̄
4 (x)||ρB) as a function of x for different

values of q in the 1 : 3 partition of ρWW̄
4 (x).
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Figure 2.33: The plot of negativity of partial transpose in the 1 : 3 partition
of the state ρWW̄

4 (x) as a function of x.

It is exactly seen to match with the 1 : 3 CSTRE separability range for the family

of states ρWW̄
4 (x).

2.4.2.2 Separability of ρWW̄
4 (x) in its 3 : 1 partition

In the 3 : 1 partition, the three qubit marginal is considered as the first subsystem

ρA and the single qubit marginal the second subsystem ρB. It can be seen that,

due to the symmetry of the state ρWW̄
4 (x),

ρA = Tr4 ρ
WW̄
4 (x) = Tr1 ρ

WW̄
4 (x)
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and is given in Eq. (2.97). Similarly,

ρB = Tr123 ρ
WW̄
4 (x) = Tr234 ρ

WW̄
4 (x) = diag

(
1

2
,
1

2

)

The entropy of the subsystem ρB is given by

S(B) = −2

(
1

2

)
log2

(
1

2

)
(2.100)

Through the identification of the zero of S(A|B) = S(A, B) − S(B), (0, 0.7868)

is obtained as the 3 : 1 von-Neumann separability range of ρWW̄
4 (x). The AR

q-conditional entropy of ρWW̄
4 (x) in its 3 : 1 partition is given by

ST
q (A|B) =

1

q − 1

[
1− 4

(
1−x
5

)q
+
(
1+4x
5

)q

2
(
1
2

)q

]
(2.101)

It is seen that in the limit q → ∞, the monotonically decreases function ST
q (A|B)

becomes zero at x = 0.375 yielding the 3 : 1 separability range of ρWW̄
4 (x) as

(0, 0.375).

In view of the fact that the single qubit marginal of ρWW̄
4 (x) being diagonal,

one can readily evaluate the eigenvalues γi of the sandwiched matrix

Γ =

(
I8 ⊗ diag

[(
1

2

) 1−q

2q

,

(
1

2

) 1−q

2q

])
ρWW̄
4 (x)

(
I8 ⊗ diag

[(
1

2

) 1−q

2q

,

(
1

2

) 1−q

2q

])
.

On evaluating the expression for the CSTRE D̃T
q (ρ

WW̄
4 (x)||ρB) =

∑

i γq
i
−1

1−q
its varia-

tion with respect to the parameter x is plotted for different values of q in Fig. 2.34.

It is seen that in the limit q → ∞, (0, 0.375) is obtained as the 3 : 1 CSTRE

separability range. Though this is stricter than von-Neumann separability ranges,

it is found to be weaker than the corresponding 1 : 3 PPT separability range.
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Figure 2.34: The CSTRE D̃T
q (ρ

WW̄
4 (x)||ρB) as a function of x for different

values of q in the 3 : 1 partition of ρWW̄
4 (x).

2.4.2.3 Separability of ρWW̄
4 (x) in its 2 : 2 partition

In the 2 : 2 partition of ρWW̄
4 (x) both ρA, ρB are two-qubit marginals and due to

the symmetry of the state ρA = ρB given by

ρA = ρB =




4−x
12

0 0 0

0 2+x
12

2+x
12

0

0 2+x
12

2+x
12

0

0 0 0 4−x
12




(2.102)

The non-zero eigenvalues of ρB and its entropy S(B) are respectively given by

µ1 = µ2 =
2 + x

6
, µ3 =

1− x

3
.

S(B) = −2

(
2 + x

6

)
log2

(
2 + x

6

)
−
(
1− x

3

)
log2

(
1− x

3

)

The von-Neumann conditional entropy S(A|B) in the 2 : 2 partition of ρWW̄
4 (x)

can be explicitly evaluated and it is seen that the 2 : 2 von-Neumann separability

range of ρWW̄
4 (x) is (0, 0.6560).
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The AR q-conditional entropy for ρWW̄
4 (x) in its 2 : 2 partition is given by

ST
q (A|B) =

1

q − 1

(
1− 4

(
1−x
5

)q
+
(
1+4x
5

)q

2
(
2+x
6

)q
+
(
1−x
3

)q

)

By obtaining the zero of of ST
q (A|B) = 0 in the limit q → ∞ one can obtain

(0, 0.2105) as the 2 : 2 AR separability range in ρWW̄
4 (x).

To employ the CSTRE criterion to obtain the 2 : 2 separability range in ρWW̄
4 (x)

one needs to diagonalize the two qubit marginal ρB. The unitary matrix which

diagonalizes the two qubit marginal ρB is given by

UB =
1√
2




1 0 0 1

0 1 1 0

0 1 −1 0

1 0 0 −1




(2.103)

The unitarily equivalent matrix ΓU = (I4 ⊗ UB)Γ(I4 ⊗ UB)† of the sandwiched

matrix

Γ = (I4 ⊗ ρB)
1−q

2q ρWW̄
4 (x)(I4 ⊗ ρB)

1−q

2q

allows for the evaluation of the eigenvalues γi of Γ and thereby the evaluation of

the CSTRE D̃T
q (ρ

WW̄
4 (x)||ρB) in its 2 : 2 partition through

D̃T
q (ρ

WW̄
4 (x)||ρB) =

∑
i γ

q
i − 1

1− q
.

Fig. 2.35 illustrates the behavior of D̃T
q (ρ

WW̄
4 (x)||ρB) as a function of x, for different

values of q. The 2 : 2 CSTRE separability range of ρWW̄
4 (x) is obtained to be

(0, 0.2105). On an explicit evaluation of the partially transposed density matrix

ρT of ρWW̄
4 (x) in its 2 : 2 partition, the tracenorm ||ρT || and the negativity N(ρ)

are obtained as functions of x. The variation of N(ρ) with respect to x is shown

in Fig. 2.36. The negativity remains zero till x = 0.0625 and increases thereafter.

Thus, according to partial transpose criteria, the state ρWW̄
4 (x) is separable in the

range 0 ≤ x ≤ 0.0625 and entangled in the range 0.0625 < x ≤ 1, in its 2 : 2

partition.
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Figure 2.35: The CSTRE D̃T
q (ρ

WW̄
4 (x)||ρB) as a function of x in the 2 : 2

partition of ρWW̄
4 (x)
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Figure 2.36: The plot of negativity of partial transpose of ρWW̄
4 (x), in its 2 : 2

partition as a function of x

Table 2.1 summarizes the results of the analysis carried out on the one param-

eter family of W-, GHZ-, WW̄ states.
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Table 2.1: Comparison of separability range of one parameter families of states through positivity of conditional entropies
S(A|B), limq→∞ ST

q (A|B), limq→∞ D̃T
q (ρAB||ρB) and Peres’ PPT criterion

Quantum Von-Neumann AR
State conditional q-conditional CSTRE PPT

entropy entropy

ρW3 (x)
1 : 2 partition {0, 0.5695} {0, 0.2} {0, 0.1547} {0, 0.1547}
2 : 1 partition {0, 0.7645} {0, 0.4286} {0, 0.3509} {0, 0.1547}
ρGHZ
3 (x)

1 : 2 partition {0, 0.5482} {0, 1/7} {0, 1/7} {0, 1/7}
2 : 1 partition {0, 0.7476} {0, 1/3} {0, 1/3} {0, 1/7}

ρWW̄
3 (x)

1 : 2 partition {0, 0.6530} {0, 0.3333} {0, 0.1895} {0, 0.1895}
2 : 1 partition {0, 0.8248} {0, 0.6} {0, 0.4104} {0, 0.1895}

ρW4 (x)
1 : 3 partition {0, 0.5193} {0. 0.1666} {0, 0.1123} {0, 0.1123}
2 : 2 partition {0, 0.6560} {0, 0.2105} {0, 0.2105} {0, 0.0808}
3 : 1 partition {0, 0.8222} {0, 0.5454} {0, 0.4174} {0, 0.1123}
ρGHZ
4 (x)

1 : 3 partition {0, 0.4676} {0, 0.0909} {0, 0.0909} {0, 0.0909}
2 : 2 partition {0, 0.6560} {0, 0.2105} {0, 0.2105} {0, 0.0625}
3 : 1 partition {0, 0.7868} {0, 0.375} {0, 0.375} {0, 0.0909}

ρWW̄
4 (x)

1 : 3 partition {0, 0.4675} {0. 0.0909} {0, 0.0909} {0, 0.0909}
2 : 2 partition {0, 0.6560} {0, 0.2105} {0, 0.2105} {0, 0.0625}
3 : 1 partition {0, 0.7868} {0, 0.375} {0, 0.375} {0, 0.0909}
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It is to be recalled here that the conditional entropies used hitherto, in the

analysis of symmetric one parameter families of states, are

S(A|B) = S(A, B)− S(B)

ST
q (A|B) =

1

q − 1

(
1− Tr(ρAB)

q

Tr(ρB)q

)

D̃T
q (ρAB||ρB) =

Q̃q(ρAB||ρB)− 1

1− q
,

and the conditional entropies

S(B|A) = S(A, B)− S(A)

ST
q (B|A) =

1

q − 1

(
1− Tr(ρAB)

q

Tr(ρA)q

)

D̃T
q (ρAB||ρA) =

Q̃q(ρAB||ρA)− 1

1− q
,

could as well have been used for the present analysis. In fact, Table 2.2 gives

the results of the analysis carried out using the positivity of conditional entropies

S(B|A), limq→∞ ST
q (B|A), limq→∞ D̃T

q (ρAB||ρA) on the one parameter family of

W-, GHZ-, WW̄ states.

It can be readily seen that the separability ranges in the 1 : 2, 1 : 3 partitions

given in Table 2.1 are equivalent to the corresponding 2 : 1, 3 : 1 separability

ranges given in Table 2.2. As 1 : 2 separability of a state must be equivalent to

its 2 : 1 state for a symmetric state, one can conclude that suitable conditional

entropies (either A|B or B|A) are to be chosen in discerning the A : B, B : A

separability ranges using entropic criteria.

Through Table 2.1 (and Table 2.2) it can be concluded that the CSTRE ap-

proach yields a separability range that is either equal to or stricter than the range

obtained through AR criterion and it matches with PPT criterion in 1 : 2, 1 : 3

bipartitions.
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2.5 Summary

In this chapter, motivated by the recently introduced sandwiched Rényi relative

entropy [56, 57], the corresponding version of Quantum Tsallis relative entropy

for a pair of non-commuting density matrices is defined. The CSTRE is seen to

reduce to the traditional form of Tsallis conditional entropy (AR q-conditional en-

tropy) developed by Abe and Rajagopal [33] when the subsystem density matrix

under consideration is a maximally mixed state. A theorem which states that the

negative values of CSTRE necessarily imply entanglement is proved. Using the

result of this theorem, the CSTRE is employed to investigate bipartite separabil-

ity of symmetric noisy one parameter family involving 3 and 4 qubit W, GHZ,

WW̄ states when q → ∞. For the case of one parameter family of 3-, 4-qubit W

states, CSTRE criterion yields the 1 : 2, 1 : 3 separability ranges stricter than

that obtained using AR criterion and matching with the PPT separability range.

For the case of one parameter family of 3-, 4- qubit GHZ states, the 1 : 2, 1 : 3

separability ranges obtained using CSTRE-, AR- and PPT criteria match with

one another. While the 1 : 2 CSTRE separability range of one parameter family

of 3-qubit WW̄ state is stricter than the corresponding AR-separability range and

matches with the PPT separability range, the 1 : 3 CSTRE separability range

of the one parameter family of 4-qubit WW̄ states is seen to be equivalent to

the corresponding AR-, PPT separability range. It is also observed that for the

one parameter family of 4-qubit WW̄ states, separability ranges in all bipartitions

match with the corresponding separability ranges of the one parameter family of

4-qubit GHZ states. The results of this chapter clearly identify that the new en-

tropic separability criterion using conditional version of sandwiched Tsallis relative

entropy is superior to the AR-criterion. The separability ranges obtained using

Peres’ PPT criterion in some bipartitions of the symmetric one parameter families

of states considered here are seen to be either equivalent or stricter than the ones

obtained using CSTRE criterion thus implying the superiority of PPT criterion

over entropic criteria.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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Table 2.2: Comparison of separability ranges of one parameter families of states through positivity of conditional entropies
S(B|A), limq→∞ ST

q (B|A), limq→∞ D̃T
q (ρAB||ρA) and Peres’ PPT criterion

Quantum Von-Neumann AR
State conditional q-conditional CSTRE PPT

entropy entropy

ρW3 (x)
1 : 2 partition {0, 0.7645} {0, 0.4286} {0, 0.3509} {0, 0.1547}
2 : 1 partition {0, 0.5695} {0, 0.2} {0, 0.1547} {0, 0.1547}
ρGHZ
3 (x)

1 : 2 partition {0, 0.7476} {0, 1/3} {0, 1/3} {0, 1/7}
2 : 1 partition {0, 0.5482} {0, 1/7} {0, 1/7} {0, 1/7}
ρWW̄
3 (x)

1 : 2 partition {0, 0.8248} {0, 0.6} {0, 0.4104} {0, 0.1895}
2 : 1 partition {0, 0.6530} {0, 0.3333} {0, 0.1895} {0, 0.1895}

ρW4 (x)
1 : 3 partition {0, 0.8222} {0, 0.5454} {0, 0.4174} {0, 0.1123}
2 : 2 partition {0, 0.6560} {0, 0.2105} {0, 0.2105} {0, 0.0808}
3 : 1 partition {0, 0.5193} {0. 0.1666} {0, 0.1123} {0, 0.1123}
ρGHZ
4 (x)

1 : 3 partition {0, 0.7868} {0, 0.375} {0, 0.375} {0, 0.0909}
2 : 2 partition {0, 0.6560} {0, 0.2105} {0, 0.2105} {0, 0.0625}
3 : 1 partition {0, 0.4676} {0, 0.0909} {0, 0.0909} {0, 0.0909}
ρWW̄
4 (x)

1 : 3 partition {0, 0.7868} {0, 0.375} {0, 0.375} {0, 0.0909}
2 : 2 partition {0, 0.6560} {0, 0.2105} {0, 0.2105} {0, 0.0625}
3 : 1 partition {0, 0.4675} {0. 0.0909} {0, 0.0909} {0, 0.0909}



Chapter 3

Bipartite separability of

symmetric N-qubit noisy states

using conditional quantum

relative Tsallis entropy

The present chapter (Chapter 3) is an extension of the analysis carried out on the

bipartite separability of one-parameter families of symmetric noisy states involving

3-, 4-qubit W-, GHZ, WW̄ states to their N -qubit counterparts. In particular,

the 1 : N −1 separability ranges of the symmetric one parameter families of states

involving N -qubit W, GHZ and WW̄ states are obtained using CSTRE criterion.

A comparison of the result obtained using CSTRE criterion is compared with that

due to other entropic and Peres’ PPT criteria.

Chapter 3 is organized as under. In Sec. 3.1, the symmetric one parameter

family of states involving a symmetric N -qubit pure state is defined. In Sec.

3.2, the eigenvalues of the sandwiched matrix of the one parameter family of

states involving 5-, 6- qubit W states in their respective 1 : 4, 1 : 5 partitions

are evaluated (Secs. 3.2.1, 3.2.2). Sec. 3.2.3 details the generalization of these

eigenvalues for arbitrary N ≥ 3 and obtaining the 1 : N − 1 separability range

for the symmetric one parameter family of states containing N -qubit W states.

Secs. 3.3, 3.4 outline similar procedure carried out for the one parameter family

86
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of states involving N -qubit GHZ, WW̄ states respectively. In Sec.3.5, the CSTRE

criterion is made use of, to find out the separability range in higher dimensional

systems such as qubit-qutrit and qutrit-qutrit systems. Sec. 3.6 gives a summary

of the results in this Chapter.

3.1 Symmetric one parameter families of noisy

N-qubit mixed states

The symmetric one parameter family of noisy N -qubit mixed states are given by

ρN(x) =

(
1− x

N + 1

)
PN + x|ΦN〉〈ΦN | (3.1)

with PN =
∑N

2

M=−N
2

∣∣N
2
, M

〉 〈
N
2
, M

∣∣ being the projector onto the N + 1 dimen-

sional maximal multiplicity subspace of the collective angular momentum of N -

qubits spanned by the basis states |N
2
, M〉, M = N

2
to −N

2
in unit steps. |ΦN〉 is

any pure state belonging to this symmetric subspace. Notice that x is a parame-

ter lying in the range [0, 1] and when x = 0 the state ρN(x) is maximally mixed

(in the symmetric subspace) whereas it is a pure state |ΦN〉 when x = 1. The

separability range of one parameter family of mixed states refers to the

range of values of the parameter x in which the state ρN(x) is separable,

in a chosen bipartition of the state. The separability ranges differ for each

bipartition and the 1 : N − 1 bipartition of the state ρN(x) is analyzed in this

section.
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3.2 1 : N−1 separability in symmetric one-parameter

family of noisy W-states

It can be recalled here that the symmetric one-parameter family of noisy W states

are defined in Sec. 2.2 (See Eq. (2.22)) and are of the form

ρWN (x) =

(
1− x

N + 1

)
PN + x|WN〉〈WN |, 0 ≤ x ≤ 1

PN =
∑

M

∣∣∣∣
N

2
, M

〉〈
N

2
, M

∣∣∣∣ , M =
N

2
,
N

2
− 1, · · · ,−N

2

where |WN〉 ≡
∣∣N
2
, N

2
− 1
〉
is one among the basis states of the N +1 dimensional

symmetric subspace of collective angular momentum of N -qubits. In Sec. 2.2.1

it has been shown that using the Abe-Rajagopal q-conditional entropy [33], the

1 : 2 separability range of the 3-qubit state ρW3 (x), is found to be [0, 0.2] while

the PPT criterion gives the stricter separability range [0, 0.1547] [40, 62]. In the

1 : 3 partition of the 4-qubit state ρW4 (x) also, the AR-criterion leads to the weaker

separability range [0, 0.1666] compared to the range [0, 0.1123] obtained through

PPT criterion. An observation of the fact that the single qubit density matrix

of ρWN (x) is not maximally mixed led Rajagopal et.al., [62] to make use of the

non-commuting version of the Tsallis relative entropy [56, 57] to obtain a better

separability range for the case under examination. They proposed the conditional

version of the sandwiched relative entropy [62] (CSTRE) D̃T
q (ρAB||ρB) and showed

that the negative values of D̃T
q (ρAB||ρB) indicate entanglement in the state ρAB.

Quite in accordance with the expectations, the CSTRE criterion resulted in a

better separability range [62] than that through AR-criterion and it even matched

with the 1 : 2, 1 : 3 separability ranges of ρW3 (x), ρW4 (x) obtained through PPT

criterion. Continuing further with the use of AR criterion, the 1 : N−1 separability

range of the one-parameter family of noisy W states has been obtained in Ref. [40]

and it is found to be

0 ≤ x ≤ 1

N + 2
(3.2)

for any N ≥ 3. This has been a generalization of their result for ρW3 (x), ρW4 (x),

in their respective 1 : N − 1 partitions, to ρWN (x). As it is seen that [62] for
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3- and 4-qubit noisy W-states the CSTRE criterion yields a stricter 1 : 2, 1 : 3

separability range than that obtained through AR criterion, the immediate interest

is to generalize the 1 : N − 1 CSTRE separability range to N-qubit states ρWN (x),

for any N ≥ 3. This is carried out in the following.

In Sec. 2.1, the conditional version of Tsallis relative entropy (CSTRE) of a

bipartite state ρAB, corresponding to its A : B partition is given by (See Eqs.

(2.7), (2.8))

D̃T
q (ρAB||ρB) =

Q̃q(ρAB||ρB)− 1

1− q

where

Q̃q(ρAB||ρB) = Tr
{(

(I ⊗ ρB)
1−q

2q ρAB(I ⊗ ρB)
1−q

2q

)q}
.

In order to find the 1 : N − 1 separability range of the state ρWN (x), one need to

evaluate the eigenvalues λi of the sandwiched matrix,

Γ = (IA ⊗ ρB)
1−q

2q ρWN (x)(IA ⊗ ρB)
1−q

2q ,

with ρB being the subsystem density matrix of ρWN (x) corresponding to N − 1

qubits, so that (See Eqs. (2.12), (2.15))

Q̃q(ρ
W
N (x)||ρB) =

N+1∑

i=1

λqi (3.3)

and

D̃T
q (ρ

W
N (x)||ρB) =

∑N+1
i=1 λqi − 1

1− q
. (3.4)

Here, as the interest is to find out the 1 : N −1 separability range, it is considered

that the subsystems A, B to correspond respectively to a single qubit and the

remaining N−1 qubits (as the state ρWN (x) is symmetric, it does not matter which

qubit is taken as subsystem A).

According to CSTRE criterion, the 1 : N − 1 separability range of ρWN (x) is the

range in which the parameter x gives non-negative values for D̃T
q (ρ

W
N (x)||ρB), in

the limit q → ∞.

The non-zero eigenvalues λi, i = 1, 2, . . . , N +1 being crucial in the evaluation

of D̃T
q (ρ

W
N (x)||ρB), the form of these eigenvalues is examined when N = 3, 4, 5, 6
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to analyze whether a generalization to the case of any N is possible. An explicit

evaluation of the eigenvalues λi of the sandwiched matrix (IA⊗ρB)
1−q

2q ρWN (x)(IA⊗
ρB)

1−q

2q is carried out when N = 3, 4, 5, 6. In fact, as the detailed evaluation

of the eigenvalues λi of the corresponding sandwiched matrices in the 1 : 2, 1 : 3

partitions of 3 and 4 qubits has been carried out, the eigenvalues of the sandwiched

matrices in the 1 : 4, 1 : 5 partition of ρW5 (x), ρW6 (x) are evaluated here.

3.2.1 1 : 4 separability in symmetric one-parameter family

of noisy W-states with 5 qubits

The 5 qubit symmetric one parameter family of noisy W-states is given by

ρW5 (x) =

(
1− x

6

)
P5 + x |W5〉 〈W5| ; 0 ≤ x ≤ 1

Here,

P5 =

5

2∑

M=− 5

2

∣∣∣∣
5

2
,M

〉〈
5

2
,M

∣∣∣∣

is the projector onto the symmetric subspace of 5-qubits spanned by the six angular

momentum states |5
2
, M〉, which are the basis states of the maximal multiplicity

subspace with J = 5/2.

The distinct non-zero eigenvalues of the state ρW5 (x) are given by

λ1 = λ2 = λ3 = λ4 = λ5 =
1− x

6
, λ6 =

(1 + 5x)

6
. (3.5)

In the 1 : 4 partition, the single qubit marginal of ρW5 (x) forms the first part A

and is given by

ρA = Tr2345 ρ
W
5 (x) =

(
5+3x
10

0

0 5−3x
10

)
(3.6)

The four qubit marginal of ρW5 (x) forms the second part B.

The non-zero eigenvalues of ρB are given by

η1 =
1

5
, η2 = η3 = η4 =

1− x

5
, η5 =

1 + 3x

5
.
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With the knowledge of the eigenvalues of ρB and that of ρW5 (x) both the von-

Neumann conditional entropy S(A|B) and the AR q-conditional entropy of ρW5 (x)

in its 1 : 4 partition are evaluated. The AR q-conditional entropy is explicitly

given by

ST
q (A|B) =

1

q − 1

[
1− Tr [(ρAB)

q]

Tr [(ρB)q]

]

=
1

q − 1

(
1− 5

(
1−x
6

)q
+
(
1+5x
6

)q
(
1
5

)q
+ 3

(
1−x
5

)q
+
(
1+3x
5

)q

)

The 1 : 5 AR separability range of ρW5 (x) is obtained as (0, 0.1428) whereas the

von-Neumann conditional entropy yields the 1 : 5 separability range as (0, 0.4854).

It is observed that ρB is not a diagonal matrix but it can be diagonalized by

a unitary matrix UB, which is constructed using the orthonormal eigenvectors of

ρB. The unitary matrix UB is given by

UB =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1
2

1
2

0 1
2

0 0 0 1
2

0 0 0 0 0 0 0

0 1
2

1
2

0 −1
2

0 0 0 −1
2

0 0 0 0 0 0 0

0 0 0 1√
6

0 1√
6

1√
6

0 0 1√
6

1√
6

0 1√
6

0 0 0

0 1√
2

−1√
2

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1√
2

0 0 0 −1√
2

0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
2

0 0 0 1
2

0 1
2

1
2

0

0 0 0 0 0 0 0 1
2

0 0 0 1
2

0 −1
2

−1
2

0

0 0 0 0 0 0 0 1√
2

0 0 0 −1√
2

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1√
2

−1√
2

0

0 0 0 1√
2

0 −1√
2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1√
2

0 0 −1√
2

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1√
2

0 1√
2

0 0 0

0 0 0 1
2

0 1
2

0 0 0 0 −1
2

0 −1
2

0 0 0

0 0 0 −1√
12

0 −1√
12

2√
12

0 0 2√
12

−1√
12

0 −1√
12

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



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The unitary equivalent matrix of

Γ = (I2 ⊗ ρB)
1−q

2q ρW5 (x)(I2 ⊗ ρB)
1−q

2q

is given by ΓU = (I2⊗UB)Γ(I2⊗UB)
† and the non-zero eigenvalues γi of ΓU (hence

of Γ) are given by

γ1 =

(
1− x

6

)(
1− x

5

) 1−q

q

(3-fold degenerate),

γ2 =

(
1− x

6

)(
1

5

) 1−q

q

(3.7)

γ3 =

(
1− x

6

)(
1

5

) 1

q [
3(1− x)

1−q

q + 2(1 + 3x)
1−q

q

]

γ4 =

(
1 + 5x

6

)(
1

5

) 1

q [
1 + 4(1 + 3x)

1−q

q

]

One can now readily evaluate the expression for CSTRE D̃T
q (ρ

W
5 (x)||ρB) in its 1 : 4

partition as

D̃T
q (ρ

W
5 (x)||ρB) =

∑
i γ

q
i − 1

1− q

The zero of the function limq→∞ D̃T
q (ρ

W
5 (x)||ρB) = 0 gives 0 ≤ x ≤ 0.0883 as

the 1 : 4 separability range of the state ρW5 (x) [63]. Fig. 3.1 illustrates the 1 : 4

separability range of ρW5 (x) when different conditional entropies are used to discern

its separability. To obtain the 1 : 4 separability range in ρW5 (x) through PPT

criterion, the eigenvalues α2
i of

(
ρT
)2

with ρT being the partially transposed density
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Figure 3.1: Plot of conditional entropies, limq→∞ D̃T
q (ρ

W
5 (x)||ρB),

limq→∞ ST
q (A|B), S(A|B) of ρW5 (x), in its 1 : 4 partition, as a function of

x.

matrix of ρW5 (x) is evaluated. From the eigenvalues α2
i of

(
ρT
)2
,

α1 = α2 = α3 =
(1− x)

30
,

α4 =
(1 + 5x)

30
,

α5 = α6 =
(1− x)

5
, (3.8)

α7/8 =

(
37 + x(22 + 229x)± 7(x− 1)

√
25 + x(142 + 409x)

30
√
2

)
,

α9/10 =

(
37 + x(118 + 421x)± (7 + 17x)

√
25 + x(553x− 2)

30
√
2

)
.

the trace norm ||ρT || =
∑

i αi and the negativity N(ρ) is evaluated using the

relation N(ρ) = ||ρT ||−1
2

. The plot of N(ρ) as a function of x, is shown in Fig. 3.2.

It can be seen that, according to PPT criterion, the state ρW5 (x) is separable in

the range 0 ≤ x ≤ 0.0883 and entangled in the range 0.0883 < x ≤ 1, in its 1 : 4

partition. Here it can be noted that the 1 : 5 CSTRE separability range (0, 0.0883)

matches with the PPT separability range, whereas the 1 : 5 AR separability range
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Figure 3.2: The variation of negativity of partial transpose of the state ρW5 (x),
as a function of x.

(0, 0.1428) is weaker than both PPT and CSTRE separability range.

3.2.2 1 : 5 separability in symmetric one-parameter family

of noisy W-states with 6 qubits

The symmetric one parameter family of noisy W-states with 6 qubits is given by

ρW6 (x) =

(
1− x

7

)
P6 + x |W6〉 〈W6| ; 0 ≤ x ≤ 1 (3.9)

where

P6 =
3∑

M=−3

|3, M〉 〈3, M |

is the projector onto the symmetric subspace of 6 qubits spanned by the angular

momentum states |3, M〉 which are basis states of the maximal multiplicity sub-

space with J = 3. There are only two distinct non zero eigenvalues for the state

ρW6 (x) and they are given by

λ1 = λ2 = λ3 = λ4 = λ5 = λ6 =
1− x

7
, λ7 =

(1 + 6x)

7
.
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The single qubit marginal of ρW6 (x) is given by

ρA = Tr23456 ρ
W
6 (x) =

1

6

(
3 + 2x 0

0 3− 2x

)
(3.10)

The non-zero eigenvalues of ρB, the five-qubit marginal of ρW6 (x), are given by

η1 =
1

6
, η2 = η3 = η4 = η5 =

1− x

6
, η6 =

1 + 4x

6
.

The AR q-conditional entropy for the state ρW6 (x), in its 1 : 5 partition is given by

ST
q (A|B) =

1

q − 1

(
1− 6

(
1−x
7

)q
+
(
1+6x
7

)q
(
1
6

)q
+ 4

(
1−x
6

)q
+
(
1+4x
6

)q

)

The identification of the zero of the monotonically decreasing function ST
q (A|B), in

the limit q → ∞ occurs at x = 0.125 yielding (0, 0.125) as the 1 : 5 AR separability

range. In order to evaluate the conditional sandwiched Tsallis relative entropy of

ρW6 (x) in its 1 : 5 partition, the eigenvalues γi of the matrix

Γ = (I2 ⊗ ρB)
1−q

2q ρW6 (x) (I2 ⊗ ρB)
1−q

2q

are to be evaluated. Towards this, it is necessary to construct the unitary matrix

UB which diagonalizes ρB. On constructing UB using the orthonormal eigenvectors

of ρB the eigenvalues γi of the sandwiched matrix Γ can be evaluated as the

eigenvalues of the unitary equivalent matrix ΓU = (I2⊗UB)Γ(I2⊗UB)
†. Explicitly,

γ1 =

(
1− x

7

)(
1− x

6

) 1−q

q

, 4− fold degenerate

γ2 =

(
1− x

7

)(
1

6

) 1−q

q

γ3 =

(
1− x

7

)(
1

6

) 1

q [
4(1− x)

1−q

q + 2(1 + 4x)
1−q

q

]
(3.11)

γ4 =

(
1 + 6x

7

)(
1

6

) 1

q [
1 + 5(1 + 4x)

1−q

q

]
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The expression for CSTRE D̃T
q (ρ

W
6 (x)||ρB) in its 1 : 5 partition is evaluated using

the expression

D̃T
q (ρ

W
6 (x)||ρB) =

∑
i γ

q
i − 1

1− q

Fig. 3.3 shows the variation of von-Neumann conditional entropy S(A|B) and the

q-conditional entropies limq→∞ ST
q (A|B), limq→∞ D̃T

q (ρ
W
6 (x)||ρB) of ρW6 (x), in its

1 : 5 partition. The zero of the monotonically decreasing function D̃T
q (ρ

W
6 (x)||ρB)
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Figure 3.3: Plot of conditional entropies, limq→∞ D̃T
q (ρ

W
6 (x)||ρB) ,

limq→∞ ST
q (A|B), S(A|B) of ρW6 (x), in its 1 : 5 partition.

is identified at x = 0.0727, in the limit q → ∞. The 1 : 5 separability range of

ρW6 (x) is thus obtained as (0, 0.0727). It is seen that the 1 : 5 PPT separability

range of the state ρW6 (x) is also (0, 0.0727) while the corresponding AR-separability

range (0, 0.125) is weaker. The plot of negativity of partial transpose of ρW6 (x) as

a function of x is shown in Fig. 3.4.

3.2.3 Eigenvalues of the sandwiched matrix in the 1 : N−1

partition of ρWN (x) and its 1 : N − 1 separability

The Table 3.1 provides the non-zero eigenvalues of the sandwiched matrix

Γ = (IA ⊗ ρB)
1−q

2q ρWN (x)(IA ⊗ ρB)
1−q

2q

when N = 3, 4, 5, 6 [63] .
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Table 3.1: The non-zero eigenvalues γi of the sandwiched matrix (IA ⊗ ρB)
1−q

2q ρWN (x)(IA ⊗ ρB)
1−q

2q for N = 3 to 6

Number γ1
of (N − 2) fold γ2 γ3 γ4

qubits (N) degenerate

N = 3
(
1−x
4

) (
1−x
3

) 1−q

q
(
1−x
4

) (
1
3

) 1−q

q
(
1−x
4

) (
1
3

) 1

q

[
(1− x)

1−q

q + 2(1 + x)
1−q

q

] (
1+3x
4

) (
1
3

) 1

q

[
1 + 2(1 + x)

1−q

q

]

N = 4
(
1−x
5

) (
1−x
4

) 1−q

q
(
1−x
5

) (
1
4

) 1−q

q
(
1−x
5

) (
1
4

) 1

q

[
2(1− x)

1−q

q + 2(1 + 2x)
1−q

q

] (
1+4x
5

) (
1
4

) 1

q

[
1 + 3(1 + 2x)

1−q

q

]

N = 5
(
1−x
6

) (
1−x
5

) 1−q

q
(
1−x
6

) (
1
5

) 1−q

q
(
1−x
6

) (
1
5

) 1

q

[
3(1− x)

1−q

q + 2(1 + 3x)
1−q

q

] (
1+5x
6

) (
1
5

) 1

q

[
1 + 4(1 + 3x)

1−q

q

]

N = 6
(
1−x
7

) (
1−x
6

) 1−q

q
(
1−x
7

) (
1
6

) 1−q

q
(
1−x
7

) (
1
6

) 1

q

[
4(1− x)

1−q

q + 2(1 + 4x)
1−q

q

] (
1+6x
7

) (
1
6

) 1

q

[
1 + 5(1 + 4x)

1−q

q

]
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Figure 3.4: The plot of negativity of partial transpose of the state ρW6 (x) in
its 1 : 5 partition as a function of x.

On observing the nature of each eigenvalue presented in Table 3.1 one can

obtain the eigenvalues γi of the sandwiched matrix Γ for arbitrary N and they are

explicitly given below.

γ1 =

(
1− x

N + 1

)(
1− x

N

) 1−q

q

, (N − 2) fold degenerate;

γ2 =

(
1− x

N + 1

)(
1

N

) 1−q

q

, (3.12)

γ3 =

(
1− x

N + 1

)(
1

N

) 1

q [
(N − 2)(1− x)

1−q

q + 2(1 + (N − 2)x)
1−q

q

]
,

γ4 =

(
1 +Nx

N + 1

)(
1

N

) 1

q [
1 + (N − 1) (1 + (N − 2)x)

1−q

q

]
.

On making use of the values of γi, i = 1, 2, 3, 4, the zero of CSTRE D̃T
q (ρ

W
N (x)||ρB)

(See Eq.( 2.7)) can be identified for any N in the limit q → ∞. It can be seen that

D̃T
q (ρ

W
N (x)||ρB) is a monotonically decreasing function for all values of N when

q > 1. In the limit q → ∞, D̃T
q (ρ

W
N (x)||ρB) changes sign from positive to negative
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at its only zero which occurs at

x =
−N +

√
2N(N − 1)

N(N − 2)
. (3.13)

Thus, the 1 : N − 1 separability range of the state ρWN (x) (N ≥ 3), obtained using

CSTRE criterion is found to be [63]

0 ≤ x ≤ −N +
√
2N(N − 1)

N(N − 2)
. (3.14)

Note that Eq.( 3.14) is different from the AR result in Eq.(3.2). One can assert

here that it is the non-commutativity of the single qubit marginal given by

ρ1 = ρ2 = · · · = ρN = diag

(
N + (N − 2)x

2N
,
N − (N − 2)x

2N

)

with ρWN (x) that results in a stricter separability range through CSTRE criterion

compared to its commuting version, the AR criterion. Notice also that one can

immediately recover the range (0, 0.1547), (0, 0.1123) respectively for the states

ρW3 (x), ρW4 (x) using the relation Eq.( 3.14) and this is in accordance with the

range obtained using the CSTRE criterion directly for the 3-, 4- qubit states

ρW3 (x), ρW4 (x) in Ref. [62]. One can also obtain the separability ranges (0, 0.0883),

(0, 0.07275) in the 1 : 4, 1 : 5 partitions respectively for the 5- and 6- qubit states

of the family of noisy W-states. It is verified that these separability ranges (for

N = 3, 4, 5, 6) match with those obtained through PPT criterion. One can thus

conjecture that the CSTRE separability range in Eq. ( 3.14) for the 1 : N − 1

partition of the states ρWN (x) is also the PPT separability range.

Fig. 3.5 illustrates the relatively rapid convergence of the value of x to 0.1

for AR q-conditional entropy in comparison with the convergence of x to 0.0538

for the CSTRE D̃T
q (ρ

W
8 (x)||ρB). From Eq. (3.14) and the discussion following

it, it can be readily seen that the 1 : N − 1 separability range of ρWN (x) reduces

considerably with the increase in N . Thus, for large N (macroscopic limit), one

can expect that a single qubit and its remaining N − 1 qubits are entangled for

the whole range 0 ≤ x ≤ 1 in the state ρWN (x) (See Fig. 3.6).
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Figure 3.5: Implicit plot of D̃T
q (ρ

W
8 (x)||ρB) = 0 as a function of q (solid line)

indicating that x → 0.0538 as q → ∞. In contrast, the implicit plot of Abe-
Rajagopal q-conditional entropy ST

q (A|B) = 0 of the state ρW8 (x), in its 1 : 7
partition(dashed line), leads to x → 0.1 as q → ∞.
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Figure 3.6: Illustration of the reduction of 1 : N − 1 CSTRE separability
range in ρWN (x) with increase in the number of qubits N from N = 5 to N = 8
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3.3 1 : N−1 separability in symmetric one-parameter

family of noisy GHZ-states

The symmetric one-parameter family of noisy GHZ states with N -qubits is given

by (See Eq. (2.56))

ρGHZ
N (x) =

(
1− x

N + 1

)
PN + x|GHZ〉N〈GHZ|, 0 ≤ x ≤ 1.

In chapter 2 it has been shown that for the 3-, 4-qubit states ρGHZ
3 (x), ρGHZ

4 (x),

their respective 1 : N − 1 separability ranges obtained using CSTRE criterion

matched exactly with that through AR- and PPT-criteria [62]. Here, this result

is generalized to N -qubit states ρGHZ
N (x) and the 1 : N − 1 separability range of

ρGHZ
N (x) is explicitly obtained.

3.3.1 1 : 4 separability in symmetric one-parameter family

of noisy GHZ states with 5 qubits

The symmetric one parameter family of noisy GHZ-state with 5 qubits is given by

ρGHZ
5 (x) =

(
1− x

6

)
P5 + x |GHZ5〉 〈GHZ5| ; 0 ≤ x ≤ 1 (3.15)

There are only two distinct non zero eigenvalues for the state ρGHZ
5 (x) and they

are given by

λ1 = λ2 = λ3 = λ4 = λ5 =
1− x

6
, λ6 =

(1 + 5x)

6
. (3.16)

The single qubit marginal ρA of ρGHZ
5 (x) is a maximally mixed state

ρA = Tr2345 ρ
GHZ
5 (x) =

1

2

(
1 0

0 1

)
= I2/2
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The remaining four qubit marginal of ρB has only two non-zero distinct eigenvalues

and they are

η1 = η2 = η3 =
1− x

5
, η4 = η5 =

2 + 3x

10

The AR q-conditional entropy for the state ρGHZ
5 (x) is seen to be

ST
q (A|B) =

1

q − 1

[
1− 5

(
1−x
6

)q
+
(
1+5x
6

)q

3
(
1−x
5

)q
+ 2

(
2+3x
10

)q

]
(3.17)

As the 4-qubit marginal ρB of ρGHZ
5 (x) is not in the diagonal form, one needs

the unitary matrix which diagonalizes ρB so that the eigenvalues of ΓU = (I2 ⊗
UB)Γ(I2 ⊗ UB)

† which is unitarily equivalent to the sandwiched matrix

Γ = (I2 ⊗ ρB)
1−q

2q ρGHZ
5 (x) (I2 ⊗ ρB)

1−q

2q

can be readily evaluated. In order to employ the CSTRE criterion to obtain the

1 : 4 separability range in ρGHZ
5 (x) . The explicit form of the unitary matrix is

given by

UB =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1
2

1
2

0 1
2

0 0 0 1
2

0 0 0 0 0 0 0

0 0 0 1√
6

0 1√
6

1√
6

0 0 1√
6

1√
6

0 1√
6

0 0 0

0 0 0 0 0 0 0 1
2

0 0 0 1
2

0 1
2

1
2

0

0 1
2

1
2

0 −1
2

0 0 0 −1
2

0 0 0 0 0 0 0

0 1√
2

−1√
2

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1√
2

0 0 0 −1√
2

0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
2

0 0 0 1
2

0 −1
2

−1
2

0

0 0 0 0 0 0 0 1√
2

0 0 0 −1√
2

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1√
2

−1√
2

0

0 0 0 1√
2

0 −1√
2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1√
2

0 0 −1√
2

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1√
2

0 1√
2

0 0 0

0 0 0 1
2

0 1
2

0 0 0 0 −1
2

0 −1
2

0 0 0

0 0 0 −1√
12

0 −1√
12

2√
12

0 0 2√
12

−1√
12

0 −1√
12

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



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The non-zero eigenvalues of ΓU and hence of Γ are found to be,

γ1 =

(
1− x

6

)(
1− x

5

) 1−q

q

(2-fold degenerate),

γ2 =

(
1− x

6

)(
2 + 3x

10

) 1−q

q

γ3 =

(
1 + 5x

6

)(
2 + 3x

10

) 1−q

q

(3.18)

γ4 =

(
1− x

6

)(
1

5

) 1

q

[
4(1− x)

1−q

q +

(
1 +

3

2
x

) 1−q

q

]
(2-fold degenerate)

One can now evaluate the expression for CSTRE D̃T
q (ρ

GHZ
5 (x)||ρB) in its 1 : 4

partition as

D̃T
q (ρ

GHZ
5 (x)||ρB) =

∑
i γ

q
i − 1

1− q

Fig. 3.7 indicates the decreasing 1 : 4 separability range of ρGHZ
5 (x) when the von-

Neumann conditional entropy, CSTRE D̃T
q (ρ

GHZ
5 (x)||ρB) are respectively employed

to discern the separability. One can obtain (0, 0.0625) as the 1 : 4 separability

range of ρGHZ
5 (x) which matches with the AR separability range. In order to obtain

0.2 0.4 0.6 0.8 1.0
x

-4.´10-7

-2.´10-7

2.´10-7

4.´10-7
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HxLÈÈΡBL

SHAÈBL

Figure 3.7: The variation of von-Neumann conditional entropy S(A|B) and
limq→∞ D̃T

q (ρ
GHZ
5 (x)||ρB) as a function of x for the state ρGHZ

5 (x), in its 1 : 4
partition.
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the PPT separability range of ρGHZ
5 (x), in its 1 : 4 partition, the negativity of the

1 : 4 partially transposed density matrix of ρGHZ
5 (x) is evaluated. The graph of

negativity as a function of x is as shown in Fig. 3.8. One can obtain (0, 0.0625)

as the 1 : 4 PPT separability range and it matches with both AR and CSTRE

separability range of ρGHZ
5 (x), in its 1 : 4 partition.

0.2 0.4 0.6 0.8 1.0
x

0.1

0.2

0.3

0.4

0.5
NHΡL

Figure 3.8: The graph of negativity of partial transpose of the state ρGHZ
5 (x)

as a function of x

3.3.2 1 : 5 separability in symmetric one-parameter family

of noisy GHZ-states with 6 qubits

The symmetric one parameter family of noisy GHZ states with 6-qubits are given

by

ρGHZ
6 (x) =

(
1− x

7

)
P6 + x |GHZ6〉 〈GHZ6| ; (3.19)

where 0 ≤ x ≤ 1 and |GHZ6〉 is the six qubit GHZ state.

There are only two distinct non-zero eigenvalues for ρGHZ
6 (x) and they are given

by

λ1 = λ2 = λ3 = λ4 = λ5 = λ6 =
1− x

7
, λ7 =

(1 + 6x)

7
.
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The single qubit marginal ρA of ρGHZ
6 (x) is a maximally mixed state I2/2 and the

non-zero eigenvalues of ρB, the 5- qubit marginal of ρGHZ
6 (x) are

η1 = η2 = η3 = η4 =
1− x

6
, η5 = η6 =

1 + 2x

6
.

With the knowledge of λi, ηj, The AR q-conditional entropy of the state ρGHZ
6 (x),

in its 1 : 5 partition is evaluated as

ST
q (A|B) =

1

q − 1

(
1− 6

(
1−x
7

)q
+
(
1+6x
7

)q

4
(
1−x
6

)q
+ 2

(
1+2x
6

)q

)
(3.20)

One can obtain (0, 0.0454) as the 1 : 5 AR separability range, through the iden-

tification of the zero of ST
q (A|B) in the limit q −→ ∞.

In order to make use of CSTRE criterion to obtain the 1 : 5 separability range

in ρGHZ
6 (x) the 5-qubit marginal ρB is to be diagonalized by the unitary matrix

UB. On constructing the unitary matrix UB through the orthonormal eigenvectors

of the 5-qubit marginal ρB, one can obtain ΓU = (I2 ⊗ UB) Γ (I2 ⊗ UB)
† where

Γ = (I2 ⊗ ρB)
1−q

2q (I2 ⊗ UB)ρ
GHZ
6 (x)(I2 ⊗ UB)

† (I2 ⊗ ρB)
1−q

2q .

The non-zero eigenvalues of ΓU which are the eigenvalues of the unitarily equivalent

sandwiched matrix Γ are found to be,

γ1 =

(
1− x

7

)(
1− x

6

) 1−q

q

(3-fold degenerate),

γ2 =

(
1− x

7

)(
1 + 2x

6

) 1−q

q

(3.21)

γ3 =

(
1 + 6x

7

)(
1 + 2x

6

) 1−q

q

γ4 =

(
1− x

7

)(
1

6

) 1

q [
5(1− x)

1−q

q + (1 + 2x)
1−q

q

]
(2-fold degenerate)
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The expression for CSTRE D̃T
q (ρ

GHZ
6 (x)||ρB) in its 1 : 5 partition can be ex-

plicitly evaluated through

D̃T
q (ρ

GHZ
6 (x)||ρB) =

∑
i γ

q
i − 1

1− q
.

It can be seen through Fig. 3.9 that the state ρGHZ
6 (x) is separable in the range 0 ≤

x ≤ 0.0454, in its 1 : 5 partition and this range is much stricter than 0 ≤ 0.3601,

the separability range obtained using von-Neumann conditional entropy. Note

that the CSTRE separability range matches with the AR separability range [63]

here and this is expected because whenever ρA is maximally mixed, D̃T
q (ρAB||ρB)

reduces to the AR q-conditional entropy ST
q (A|B). The 1 : 5 separability range
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x
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Figure 3.9: The variation of von-Neumann conditional entropy S(A|B) and
CSTRE limq→∞ D̃T

q (ρ
GHZ
6 (x)||ρB) as a function of x for ρGHZ

6 (x), in its 1 : 5
partition.

of ρGHZ
6 (x) through PPT criterion is also evaluated through determination of the

negativity of its partial transpose. The graph of negativity of partial transpose of

ρGHZ
6 (x), in its 1 : 5 partition, as a function of x is shown in Fig. 3.10. It can be

seen that the 1 : 5 PPT separability range of ρGHZ
6 (x) is (0, 0.0454) and it matches

with that obtained through AR- and CSTRE criteria. Here, one can observe that

all the three separability criteria that is PPT, AR and CSTRE yields the same

separability range (0, 0.0454).
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Figure 3.10: The graph of negativity of partial transpose of ρGHZ
6 (x), in its

1 : 5 partition, versus x.

3.3.3 Eigenvalues of the sandwiched matrix in the 1 : N−1

partition of ρGHZ
N (x) and its 1 : N − 1 separability

The Table 3.2 provides the non-zero eigenvalues of the sandwiched matrix (IA ⊗
ρB)

1−q

2q ρGHZ
N (x)(IA ⊗ ρB)

1−q

2q when N = 3, 4, 5, 6 [63].

The eigenvalues γi of the sandwiched matrix (IA ⊗ ρB)
1−q

2q ρGHZ
N (x)(IA ⊗ ρB)

1−q

2q

for N = 3, 4, 5, 6 are given in Table 3.2. Here too, there are only four distinct

non-zero eigenvalues of the sandwiched matrix, two of which have N−3 and 2-fold

degeneracies respectively. As in the case of ρWN (x), here too the calculation of the

eigenvalues for general N is obtained by observing the trends of each column in

Table 3.2 for N = 3, 4, 5, 6. This leads to the four non-zero eigenvalues for all N

and they are given below;

γ1 =

(
1− x

N + 1

)(
1− x

N

) 1−q

q

, (N − 3)-fold degenerate;

γ2 =

(
1− x

N + 1

)(
2 + x(N − 2)

2N

) 1−q

q

,

γ3 =

(
1 +Nx

N + 1

)[
2 + x(N − 2)

2N

] 1−q

q

, (3.22)

γ4 = γ5 =

(
1− x

N + 1

)(
1

N

) 1

q

[
(N − 1) (1− x)

1−q

q +

(
1 +

(
N

2
− 1

)
x

) 1−q

q

]
;
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Table 3.2: The eigenvalues γi of the sandwiched matrix (IA ⊗ ρB)
1−q

2q ρGHZ
N (x)(IA ⊗ ρB)

1−q

2q for N = 3, 4, 5, 6

Number γ1 γ4
of (N − 3)-fold γ2 γ3 2-fold

qubits (N) degenerate degenerate

N = 3 –
(
1−x
4

) (
2+x
6

) 1−q

q
(
1+3x
4

) (
2+x
6

) 1−q

q
(
1−x
4

) (
1
3

) 1

q

[
2(1− x)

1−q

q + (1 + x/2)
1−q

q

]

N = 4
(
1−x
5

) (
1−x
4

) 1−q

q
(
1−x
5

) (
1+x
4

) 1−q

q
(
1+4x
5

) (
1+x
4

) 1−q

q
(
1−x
5

) (
1
4

) 1

q

[
3(1− x)

1−q

q + (1 + x)
1−q

q

]

N = 5
(
1−x
6

) (
1−x
5

) 1−q

q
(
1−x
6

) (
2+3x
10

) 1−q

q
(
1+5x
6

) (
2+3x
10

) 1−q

q
(
1−x
6

) (
1
5

) 1

q

[
4(1− x)

1−q

q + (1 + 3x/2)
1−q

q

]

N = 6
(
1−x
7

) (
1−x
6

) 1−q

q
(
1−x
7

) (
1+2x
6

) 1−q

q
(
1+6x
7

) (
1+2x
6

) 1−q

q
(
1−x
7

) (
1
6

) 1

q

[
5(1− x)

1−q

q + (1 + 2x)
1−q

q

]
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The eigenvalues γi in Eq.(3.22) allow for the evaluation of D̃T
q (ρ

GHZ
N (x)||ρB) =

∑N+1

i=1
γq
i
−1

1−q
and the zero of the monotonically decreasing function D̃T

q (ρ
GHZ
N (x)||ρB)

is found to be at x = 2
N2+N+2

when q → ∞. One can thus obtain the 1 : N − 1

separability range of the state ρGHZ
N (x) using CSTRE criterion as [63]

0 ≤ x ≤ 2

N2 +N + 2
(3.23)

for any N ≥ 3. One can recall here that, in Ref. [40], the separability range in the

1 : N −1 partition of the one parameter family of GHZ states was found using AR

q-conditional entropy criterion and it matches exactly with Eq. (3.23). This is to

be expected as, the CSTRE criterion and AR criterion give the same results when

the single qubit reduced density matrix turns out be a maximally mixed state thus

commuting with its original density matrix [62]. Such a situation occurs in the

case of one parameter family of noisy GHZ states [62] as the single qubit density

matrix turns out to be I2
2
1. Thus the results of CSTRE criterion match exactly

with that of AR criterion in the case of one parameter family of noisy GHZ states.

But the difference between the CSTRE and AR criteria even in this case lies in the

different modes of convergence of the parameter x with the increase of q. In fact,

x converges slowly to the limit 2
N2+N+2

when CSTRE criterion is used whereas

the convergence of x is relatively fast for AR criterion. This feature for ρGHZ
6 (x)

is illustrated in Fig. 3.11.

Quite similar to the case of ρWN (x) (See Fig. 3.6), the 1 : N − 1 separability

range in the family of states ρGHZ
N (x) decreases with increasing N and this fact is

illustrated through Fig. 3.12.

It is to be noticed that PPT criterion also gives the same 1 : N −1 separability

range for N = 3, 4, 5, 6 for one-parameter family of GHZ states. Therefore, one

can conjecture that Eq. (3.23) gives the PPT separability range in the 1 : N − 1

partition of the one parameter family of noisy GHZ states ρGHZ
N (x). It is also

1It is to be noticed here that if the CSTRE D̃T
q (ρ

GHZ

N (x)||ρA) with respect to the subsystem

A is evaluated in the 1 : N − 1 partition of the state ρGHZ

N (x), then ρA = I2
2

is the single qubit
marginal. Thus, the sandwiched matrix is given by

(ρA ⊗ IB)
1−q

2q ρGHZ

N (x)(ρA ⊗ IB)
1−q

2q = (
I2
2

⊗ IB)
1−q

2q ρGHZ

N (x)(
I2
2

⊗ IB)
1−q

2q

and it can be seen that D̃T
q (ρ

GHZ

N (x)||ρA) = ST
q (B|A)
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Figure 3.11: Implicit plots of D̃T
q (ρ

GHZ
6 (x)||ρB) = 0 as a function of q (solid

line) and Abe-Rajagopal q-conditional entropy ST
q (A|B) = 0 (dashed line) of

the state ρGHZ
6 (x), in its 1 : 5 partition. The relatively slow convergence of the

parameter x to 0.04545 with the increase of q in the case of CSTRE criterion is
readily seen.
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Figure 3.12: Illustration of the reduction of 1 : N − 1 CSTRE separability
range in ρGHZ

N (x) with increase in the number of qubits N from N = 5 to N = 8

observed that for large N (macroscopic limit), x ≈ 2
N2 for ρGHZ

N (x) and x ≈
√
2−1
N

for ρWN (x). Thus with the increase of N , the 1 : N − 1 separability range decreases

much faster for one parameter family of GHZ states than for one parameter family

of W states.
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3.4 1 : N−1 separability in symmetric one-parameter

family involving the states |WW̄N〉

Having examined the 1 : N − 1 separability of the state ρN(x) (See Eq. (3.1))

when |ΦN〉 corresponds to the N -qubit W-, or GHZ- state, it would be of interest

to evaluate 1 : N − 1 separability range of the state ρN(x) when |ΦN〉 corresponds
to another symmetric N -qubit state |WW̄N〉, the equal superposition of the states

|W〉N and its obverse counterpart |W̄〉.

3.4.1 1 : 4 separability in symmetric one-parameter family

of noisy WW̄-states with 5 qubits

The five qubit symmetric one parameter family of mixed WW̄-state are defined as

ρWW̄
5 (x) =

(
1− x

6

)
P5 + x

∣∣WW̄5

〉 〈
WW̄5

∣∣ ; 0 ≤ x ≤ 1 (3.24)

The distinct non-zero eigenvalues of the state ρWW̄
5 (x) are

λ1 = λ2 = λ3 = λ4 = λ5 =
1− x

6
, λ6 =

(1 + 5x)

6
. (3.25)

The single qubit marginal of ρWW̄
5 (x) is a maximally mixed state I2/2. The non-

zero eigenvalues of the remaining four qubit marginal ρB are

η1 = η2 = η3 =
1− x

5
, η4 = η5 =

2 + 3x

10
. (3.26)

The AR q-conditional entropy for the state ρWW̄
5 (x)in its 1 : 4 partition is given

by

ST
q (A|B) =

1

q − 1

(
1− 5

(
1−x
6

)q
+
(
1+5x
6

)q

3
(
1−x
5

)q
+ 2

(
2+3x
10

)q

)
(3.27)

Identifying the zero of ST
q (A|B) in the limit q → ∞, one can obtain (0, 0.0625)

as the 1 : 4 AR separability range.
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The unitary matrix

UB =




0 0 0
√

5

6
0 −1

√

30

−1
√

30
0 0 −1

√

30

−1
√

30
0 −1

√

30
0 0 0

0 0 0 0 0 2
√

5

−1

2
√

5
0 0 −1

2
√

5

−1

2
√

5
0 −1

2
√

5
0 0 0

0 0 0 0 0 0
√

3

2
0 0 −1

2
√

3

−1

2
√

3
0 −1

2
√

3
0 0 0

0 0 0 0 0 0 0 0 0
√

2

3

−1
√

6
0 −1

√

6
0 0 0

0 0 0 0 0 0 0 0 0 0 1
√

2
0 −1

√

2
0 0 0

0
√

3

2

−1

2
√

3
0 −1

2
√

3
0 0 0 −1

2
√

3
0 0 0 0 0 0 0

0 0
√

2

3
0 −1

√

6
0 0 0 −1

√

6
0 0 0 0 0 0 0

0 0 0 0 1
√

2
0 0 0 −1

√

2
0 0 0 0 0 0 0

0 0 0 0 0 0 0
√

3

2
0 0 0 −1

2
√

3
0 −1

2
√

3

−1

2
√

3
0

0 0 0 0 0 0 0 0 0 0 0
√

2

3
0 −1

√

6

−1
√

6
0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
√

2

−1
√

2
0

0 −1

2
√

5

−1

2
√

5
0 −1

2
√

5
0 0 0 −1

2
√

5
0 0 0 0 0 0 2

√

5

2
√

5
0 0 0 0 0 0 −1

2
√

5
0 0 0 −1

2
√

5
0 −1

2
√

5

−1

2
√

5
0

0 0 0 1
√

6
0 1

√

6

1
√

6
0 0 1

√

6

1
√

6
0 1

√

6
0 0 0

0 1
√

5

1
√

5
0 1

√

5
0 0 0 1

√

5
0 0 0 0 0 0 1

√

5
1
√

5
0 0 0 0 0 0 1

√

5
0 0 0 1

√

5
0 1

√

5

1
√

5
0




which diagonalizes the four qubit marginal ρB leads to the evaluation of ΓU =

(I2 ⊗ UB) Γ (I2 ⊗ UB)
† where the sandwiched matrix Γ is given by

Γ = (I2 ⊗ ρB)
1−q

2q (I2 ⊗ UB)ρ
WW̄
5 (x)(I2 ⊗ UB)

† (I2 ⊗ ρB)
1−q

2q .

One can now readily evaluate the expression for CSTRE D̃T
q (ρ

WW̄
5 (x)||ρB) in its

1 : 4 partition as

D̃T
q (ρ

WW̄
5 (x)||ρB) =

∑
i γ

q
i − 1

1− q

Fig. 3.13 indicates the variation of the von-Neumann conditional entropy S(A|B)

and CSTRE limq→∞ D̃T
q (ρ

WW̄
5 (x)||ρB) with x. The 1 : 4 separability range of

the state ρWW̄
5 (x) is obtained as 0 ≤ x ≤ 0.0625 through identifying the zero of

the function limq→∞ D̃T
q (ρ

WW̄
5 (x)||ρB) [63]. To find the PPT separability range of

ρWW̄
5 (x), in its 1 : 4 partition, the negativity of partially transposed density matrix

of ρWW̄
5 (x) is explicitly evaluated. The plot of negativity of partially transposed

matrix ρT as a function of x is as shown in Fig. 3.14. It can be seen that (0, 0.0625)

is the 1 : 4 PPT separability range of ρWW̄
5 (x) which matches with that obtained

using CSTRE criterion.
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Figure 3.13: Both von-Neumann conditional entropy S(A|B) and CSTRE
limq→∞ D̃T

q (ρ
WW̄
5 (x)||ρB) varying as a function of x for ρWW̄

5 (x) in its 1 : 4
partition. It can be readily seen that the 1 : 4 separability range obtained
through von-Neumann conditional entropy is weaker than the corresponding

CSTRE separability range.
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Figure 3.14: The plot of negativity as a function of x for the state ρWW̄
5 (x).

3.4.2 1 : 5 separability in symmetric one-parameter family

of noisy WW̄-states with 6 qubits

The six qubit symmetric one parameter family of mixed WW̄ states are given by

ρWW̄
6 (x) =

(
1− x

7

)
P6 + x

∣∣WW̄6

〉 〈
WW̄6

∣∣ ; 0 ≤ x ≤ 1 (3.28)
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The distinct non-zero eigenvalues of the state ρWW̄
6 (x) are

λ1 = λ2 = λ3 = λ4 = λ5 = λ6 =
1− x

7
, λ7 =

(1 + 6x)

7
.

The single qubit marginal of ρWW̄
6 (x) is a maximally mixed state I2/2. The non-

zero eigenvalues of the 5-qubit marginal of ρWW̄
6 (x) are

η1 = η2 = η3 = η4 =
1− x

6
, η5 = η6 =

1 + 2x

6
.

The AR q-conditional entropy for the state ρWW̄
6 (x), in its 1 : 5 partition can be

evaluated readily as

ST
q (A|B) =

1

q − 1

(
1− 6

(
1−x
7

)q
+
(
1+6x
7

)q

4
(
1−x
6

)q
+ 2

(
1+2x
6

)q

)
(3.29)

In order to employ the CSTRE approach to obtain the 1 : 5 separability range in

ρWW̄
6 (x), it is necessary to find out the unitary matrix UB which diagonalizes the

five qubit marginal ρB. The unitary matrix UB that diagonalizes ρB leads to the

evaluation of the eigenvalues γi of the sandwiched matrix

Γ = (I2 ⊗ ρB)
1−q

2q ρWW̄
6 (x)(I2 ⊗ ρB)

1−q

2q

through its unitarily equivalent matrix ΓU = (I2 ⊗ UB)Γ(I2 ⊗ UB)
†. One can now

evaluate the expression for CSTRE D̃T
q (ρ

WW̄
6 (x)||ρB) in its 1 : 5 partition as

D̃T
q (ρ

WW̄
6 (x)||ρB) =

∑
i γ

q
i − 1

1− q

Fig. 3.15 indicates the values of the parameter x at which the von-Neumann con-

ditional entropy S(A|B) and the q-conditional entropy limq→∞ D̃T
q (ρ

WW̄
6 (x)||ρB)

change values from positive to negative. Whereas the von-Neumann separability

range is obtained as (0, 0.3601), the much stricter (0, 0.0454) is the 1 : 5 sepa-

rability range of ρWW̄
6 (x) obtained through both the q-entropic criteria [63]. The

matching of the AR- and CSTRE separability ranges can be attributed to the

maximally mixed nature of the single qubit marginal of ρWW̄
6 (x). The 1 : 5 separa-

bility range in ρWW̄
6 (x) through PPT criterion is also evaluated explicitly through
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Figure 3.15: A plot illustrating the variation of conditional entropies S(A|B),
limq→∞ D̃T

q (ρ
WW̄
6 (x)||ρB) of ρWW̄

6 (x), in its 1 : 5 partition as a function of x.

the evaluation of the trace norm, negativity of the partially transposed density

matrix of ρWW̄
6 (x), in its 1 : 5 partition. The plot of negativity of partial transpose

as a function of x is as shown in Fig. 3.16. One can readily obtain (0, 0.0454) as

the 1 : 5 PPT separability range of ρWW̄
6 (x).
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Figure 3.16: The plot of negativity of partial transpose of the state ρWW̄
6 (x)

in its 1 : 5 partition, as a function of x.

At this juncture some important points are to be noticed. One of them is that

the 3-qubit GHZ state |GHZ3〉 and |WW̄3〉 are convertible into one another through
Stochastic Local Operations and Classical Communications (SLOCC). Both these

states belong to the family of three distinct Majorana spinors whereas the W-

state |W3〉 belongs to the family of two distinct Majorana spinors [66]. In spite
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of belonging to the same SLOCC family, the entanglement features of |GHZ3〉
and |WW̄3〉 are shown to be quite different in Ref. [66]. Such a feature is also

reflected in the symmetric noisy states containing these states. While the single

qubit marginal of ρGHZ
3 (x) is maximally mixed thereby yielding the strictest 1 : 2

separability range through AR-criterion itself, the corresponding ρA ⊗ I4 does not

commute with ρWW̄
3 (x) hence requiring CSTRE criterion for proper identification

of its 1 : 2 separability range. In fact,

ρA =
1

6

(
3 2x

2x 3

)
⇒ ρ1 ⊗ I4 does not commute with ρWW̄

3 (x).

The 1 : 2 separability range (0, 0.3333) of the state ρWW̄
3 (x) identified through

AR-criterion is evidently weaker compared to (0, 0.1896) the separability range

obtained through CSTRE- as well as PPT criteria [63]. But the 1 : N−1 separabil-

ity range of the N -qubit state ρWW̄
N (x) where N ≥ 4, carried out through a similar

analysis as that for ρWN (x), ρGHZ
N (x) is found to be 0 ≤ x ≤ 2

N2+N+2
for N ≥ 4. It

can be readily seen that this is identical to the 1 : N − 1 separability range for

the state ρGHZ
N (x) (See Eq.(3.23)). The AR-criterion is also found to give the same

1 : N−1 separability range 0 ≤ x ≤ 2
N2+N+2

(N ≥ 4) for ρWW̄
N (x). It is verified that

the equivalence of the 1 : N − 1 separability ranges for ρWW̄
N (x) through CSTRE-

and AR-criteria when N ≥ 4 is due to the maximally mixed (hence commuting)

nature of single qubit density matrix of ρWW̄
N (x) for N ≥ 4 [63]. Thus one can

conclude that the 3-qubit symmetric noisy state ρWW̄
3 (x) stands out in showing

different entanglement features than its higher qubit counterparts ρWW̄
N (x), N ≥ 4.

Having used the conditional version of sandwiched relative Tsallis entropy to

find the separability range in symmetric one parameter family of noisy W-, GHZ

and WW̄ states, the utility of conditional version of sandwiched Rényi relative

entropy in finding whether a bipartite state is entangled or not is also examined.

It is found that both Tsallis and Rényi entropies play the same role in the detection

of bipartite entanglement in a quantum state.

The conditional version of sandwiched Rényi relative entropy is given by

D̃R
q (ρAB||ρB) =

log
[
Q̃q(ρAB||ρB)

]

1− q
(3.30)
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where Q̃q(ρAB||ρB) is as shown in Eq.( 2.8). The range of the parameter x is

evaluated where D̃R
q (ρAB||ρB) is greater than zero and observed that the same

result as obtained through CSTRE is obtained for ρWN (x), ρGHZ
N (x) and ρWW̄

N (x).

This implies that Rényi entropy which is additive plays the same role as the non-

additive Tsallis entropy in the identification of entanglement in the symmetric one-

parameter families of N -qubit states. One can expect that this feature remains

true for all bipartite states and one can either choose D̃R
q (ρAB||ρB) (Eq. (3.30))

or D̃T
q (ρAB||ρB) (Eqs.( 2.7), ( 2.8)) for detecting bipartite entanglement.

3.5 Separability of qutrit-qutrit and qubit-qutrit

states using CSTRE criterion

In this section, an effort is made to illustrate that the applicability of CSTRE

is not restricted to symmetric one-parameter family of noisy states involving W,

GHZ and WW̄ states. In fact, the CSTRE criterion is applicable for identifying

any bipartite entangled state and one can use it for obtaining the separability

ranges in chosen bipartitions of several one-parameter, two-parameter families of

states including X states, cluster/graph states. An example of the use of CSTRE

in identifying entanglement in an isospectral family of 2-qubit X states is illus-

trated in Ref. [62]. Also the applicability of CSTRE is not restricted to composite

quantum states with two level systems (qubits) alone and it encompasses mixed

composite states with qudits also. For instance, let us consider the one parameter

family of 3× 3 isotropic state given by [67]

ρab(x) =

(
1− x

8

)
I9 +

(
9x− 1

8

)
|Φ〉 〈Φ| , |Φ〉 = 1√

3
(|00〉+ |11〉+ |22〉) ,

(3.31)

with 0 ≤ x ≤ 1, I9 is 32 × 32 identity matrix,

|0〉 = (1, 0, 0) , |1〉 = (0, 1, 0) , |2〉 = (0, 0, 1) (3.32)
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are the basis states in the qutrit space. The density matrix of ρab(x) is given as

follows

ρab(x) =




1+3x
12

0 0 0 −1+9x
24

0 0 0 −1+9x
24

0 1−x
8

0 0 0 0 0 0 0

0 0 1−x
8

0 0 0 0 0 0

0 0 0 1−x
8

0 0 0 0 0
−1+9x

24
0 0 0 1+3x

12
0 0 0 −1+9x

24

0 0 0 0 0 1−x
8

0 0 0

0 0 0 0 0 0 1−x
8

0 0

0 0 0 0 0 0 0 1−x
8

0
−1+9x

24
0 0 0 −1+9x

24
0 0 0 1+3x

12




The distinct eigenvalue of ρab(x) are

λ1 = λ2 = · · ·λ8 =
1− x

8
, λ9 = x.

The single qutrit reduced subsystems ρa, ρb turn out to be I3/3 thereby commuting

with ρab. The CSTRE criterion thus reduces to AR-criterion.

The AR q-conditional entropy for the state ρab(x) is given as follows

ST
q (a|b) =

1

q − 1

(
1− 8

(
1−x
8

)q
+ (x)q

3
(
1
3

)q

)

The plot of ST
q (a|b) as a function of x, for different values of q is shown in Fig. 3.17.

From this plot one can obtain (0, 0.3333) as the AR separability range, in the limit

q → ∞. As the single qutrit density matrix of ρab(x) is already in the diagonal

form, one can directly evaluate the sandwiched matrix Γ = σ ρab(x) σ, where

σ = I3 ⊗ diag

((
1

3

) 1−q

2q

,

(
1

3

) 1−q

2q

,

(
1

3

) 1−q

2q

)

The non-zero eigenvalues of Γ are found to be,

γ1 =

(
1− x

8

)(
1

3

) 1−q

q

(8-fold degenerate), γ2 =

(
1

3

) 1−q

q
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Figure 3.17: The AR q-conditional entropy ST
q (a|b) as a function of x for

different values of q.

One can now readily evaluate the expression for CSTRE D̃T
q (ρab||ρa)

(
≡ D̃T

q (ρab||ρb)
)

for different values of q, as

D̃T
q (ρab(x)||ρa) =

∑
i γ

q
i − 1

1− q

a function of x, as shown in the Fig. 3.18. From Fig. 3.18 one can obtain (0, 0.3333)

as the CSTRE separability range [63]. Clearly the AR separability range matches

with the CSTRE separability range.
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Figure 3.18: The CSTRE D̃T
q (ρab(x)||ρa) as a function of x for different values

of q.
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The partial transposed density matrix of ρab(x) is given by

ρT (x) =




1+3x
12

0 0 0 0 0 0 0 0

0 1−x
8

0 −1+9x
24

0 0 0 0 0

0 0 1−x
8

0 0 0 −1+9x
24

0 0

0 −1+9x
24

0 1−x
8

0 0 0 0 0

0 0 0 0 1+3x
12

0 0 0 0

0 0 0 0 0 1−x
8

0 −1+9x
24

0

0 0 −1+9x
24

0 0 0 1−x
8

0 0

0 0 0 0 0 −1+9x
24

0 1−x
8

0

0 0 0 0 0 0 0 0 1+3x
12




The distinct eigenvalues of
(
ρT (x)2

)
being α2

i , one has,

α1 =
(1 + 3x)

12
(6-fold degenerate), α2 =

(1− 3x)

6
(3-fold degenerate).

On evaluating the negativity of partial transpose using αi and identifying the value

of x at which N(ρ) > 0, one can obtain (0, 0.3333) as the PPT separability range

of ρab(x).
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Figure 3.19: The plot of negativity as a function of x, for the state ρab(x).

The CSTRE criterion is also useful in identifying entanglement in d1 × d2

dimensional states as can be seen through the example of a qubit-qutrit (2× 3) X
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state [67, 68]. The state ρXab(x) is given by [67, 68]

ρXab(x) =
1

8




2 0 0 0 0 8x

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

8x 0 0 0 0 2




where 0 ≤ x ≤ 1/4 and its subsystem ρb = Tra(ρ
X
ab(x)) corresponding to the qutrit

is found to be 1
8
diag(3, 2, 3). The subsystem ρa = Trb(ρ

X
ab(x)) corresponding to

the qubit is found to be 1
2
diag(1, 1).

The distinct eigenvalues of the the state ρXab(x) are

λ1 = λ2 = λ3 = λ4 =
1

8
, λ5 =

1− 4x

4
, λ6 =

1 + 4x

4

The partially transposed density matrix of the state ρXab(x), is given as follows

ρT =




1
4

0 0 0 0 0

0 1
8

0 0 0 0

0 0 1
8

x 0 0

0 0 x 1
8

0 0

0 0 0 0 1
8

0

0 0 0 0 0 1
4




Denoting the eigenvalues of (ρT )2 as α2
i , one gets

α1 = α2 =
1

4
, α3 = α4 =

1

8

α5 =
(8x− 1)

8
, α6 =

(1 + 8x)

8
. (3.33)

and the negativity of partial transpose N(ρ) = (
∑

i αi − 1)/2 can be readily

evaluated. The variation of N(ρ) with x is as shown in the Fig. 3.20. The PPT

separability range of the state ρXab(x) is obtained as (0, 0.125).
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Figure 3.20: The plot of negativity of partial transpose of the state ρXab(x) as
a function of x.

The AR criterion to evaluate the separability range in ρXab(x), with respect to

qutrit, is given by

ST
q (a|b) =

1

q − 1

[
1− Tr [(ρab)

q]

Tr [(ρb)q]

]

=
1

q − 1

[
1−

(
1−4x
4

)q
+
(
1+4x
4

)q
+ 4

(
1
8

)q

2
(
3
8

)q
+
(
2
8

)q

]

One can readily obtain (0, 0.125) as the AR separability range, in the limit q → ∞.

This AR separability range clearly matches with the PPT separability range.

Now the CSTRE criterion is employed to obtain the separability range in ρXab(x).

As the single qutrit density matrix of ρXab(x) is already in the diagonal form, one

can directly evaluate the matrix

Γ =

(
I2 ⊗ diag

((
3

8

) 1−q

2q

,

(
1

4

) 1−q

2q

,

(
3

8

) 1−q

2q

))
ρXab(x)

×
(
I2 ⊗ diag

((
3

8

) 1−q

2q

,

(
1

4

) 1−q

2q

,

(
3

8

) 1−q

2q

))
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The non-zero eigenvalues of Γ are found to be,

γ1 = γ2 = 2−
2+q

q , γ3 = γ4 = 3
1−q

q 8
−1

q

γ5 = (1− 4x) 2
q−3

q 3
1−q

q , γ6 = (1 + 4x) 2
q−3

q 3
1−q

q .

The expression for CSTRE D̃T
q (ρ

X
ab(x)||ρb) can be evaluated as

D̃T
q (ρab||ρb) =

∑
i γ

q
i − 1

1− q

The variation of D̃T
q (ρ

X
ab(x)||ρb) as a function of x, for different values of q is shown

by the Fig. 3.21.
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Figure 3.21: The CSTRE D̃T
q (ρ

X
ab(x)||ρb) as a function of x for ρXab(x).

From Fig. 3.21 one can obtain (0, 0.125) as the CSTRE separability range [63].

This matches exactly with that obtained through PPT criterion and AR-criterion.

As the single qubit density matrix ρa of ρ
X
ab(x) is already in the diagonal form, the

sandwiched matrix

Γ =

(
diag

((
1

2

) 1−q

2q

,

(
1

2

) 1−q

2q

)
⊗ I3

)
ρXab(x)

(
diag

((
1

2

) 1−q

2q

,

(
1

2

) 1−q

2q

)
⊗ I3

)
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The eigenvalues of Γ are given by

γ1 = 2−
1+2q

q ; (4-fold degenerate)

γ2 = (1− 4x) 2−
1+q

q , γ3 = (1 + 4x) 2−
1+q

q .

One can now readily evaluate the expression for CSTRE D̃T
q (ρ

X
ab(x)||ρa) as

D̃T
q (ρ

X
ab(x)||ρa) =

∑
i γ

q
i − 1

1− q

The variation of D̃T
q (ρ

X
ab(x)||ρa) as a function of x, for different values of q is shown

by Fig. 3.22. From Fig. 3.22 one can observe that D̃T
q (ρ

X
ab(x)||ρa) ≥ 0 for all values
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Figure 3.22: The CSTRE D̃T
q (ρ

X
ab(x)||ρa) as a function of x for ρXab(x).

of x ∈ (0, 1/4) thus failing to capture the entanglement in the state [63]. This

example illustrates the need for suitable choice of marginals in making effective

use of CSTRE criterion.
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3.6 Summary

In this chapter, using the result that negative values of the conditional version of

sandwiched Tsallis relative entropy necessarily imply quantum entanglement in a

bipartite state and considering the limit q → ∞ in Tsallis entropy, the separability

range of the symmetric one-parameter family of noisy N-qubit W, GHZ, WW̄

states is obtained, in their 1 : N − 1 partition. For the symmetric one-parameter

family of noisy W-states it is shown that the CSTRE criterion provides a stricter

1 : N − 1 separability range when compared to that obtained through AR q-

conditional entropy approach. The non-commutativity of the single qubit marginal

with the original density matrix of the noisy N-qubit W states is seen to be the

reason behind the supremacy of CSTRE criterion over AR criterion. The 1 : N−1

separability range, obtained using CSTRE criterion, for the one-parameter family

of noisy GHZ states is shown to match with that through AR criterion. This

is due to the maximally mixed, thereby commuting nature of the single qubit

density matrix with the original density matrix in the symmetric one parameter

family of noisy N-qubit GHZ states. It is thus illustrated that CSTRE criterion

is a non-commuting generalization of the AR criterion and its equivalence with

the results of AR criterion in the commuting cases, wherein the marginals are

maximally mixed. In view of the fact that the 1 : N − 1 separability ranges

through CSTRE and PPT criterion match with each other, the work here has

provided the 1 : N − 1 PPT separability range for the symmetric one-parameter

families of states considered here. The analysis, using AR- and CSTRE criteria,

of the symmetric one parameter family of noisy state involving the state |WW̄〉,
an equal superposition of W, obverse W states, has revealed an interesting feature

that the 3-qubit state of this family shows a different entanglement feature than

its higher qubit counterparts. Further illustrations on the applicability of CSTRE

criterion to d × d as well as d1 × d2 states is given by considering a two qutrit

isotropic state and a qubit-qutrit X state.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗



Chapter 4

Biseparability of noisy

pseudopure and Werner-like one

parameter families of states using

conditional quantum relative

Tsallis entropy

In this Chapter, the CSTRE criterion is used to witness entanglement in noisy

one parameter families of N -qubit pseudopure states [69] and the N -qubit gener-

alizations of Werner-like one parameter states [19] involving W, GHZ states. It is

shown that the non-commutative CSTRE criterion is both necessary and sufficient

to detect entanglement in the (1 : N − 1) partitions of the one parameter families

of noisy multiqubit states explored here.

Chapter 4 is organized as under: Sec. 4.1 defines the Pseudopure family of

states and in Secs. 4.1.1–4.1.4, the CSTRE criterion is employed to identify 1 : 2,

1 : 3, 1 : 4, 1 : 5 separability range respectively in the psuedopure family of

states involving 3-, 4-, 5-, 6-qubit W states. In Sec. 4.1.5, using the results

of Secs. 4.1.1–4.1.4, the 1 : N − 1 CSTRE separability range for any N ≥ 3 is

obtained for pseudopure family of states involving N -qubit W states. The 1 : N−1

CSTRE separability range obtained is shown to be necessary and sufficient for the

126
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pseudopure family of W states, in Sec. 4.1.6. Similar analysis to obtain the

1 : N − 1 separability range of Pseudopure family containing GHZ states, and

establish its necessary and sufficient status is carried out in Sec. 4.2. Werner-like

family of noisy states involving W- or GHZ states is defined in Sec. 4.3 and their

1 : N − 1 separability range is obtained using CSTRE criterion. The necessity

and sufficiency of the separability ranges for Werner-like family of states involving

W-, GHZ states is established in Secs. 4.3.5, 4.3.6 respectively. For each family of

states considered, the 1 : N−1 separability range obtained using CSTRE criterion

is compared with the 1 : N − 1 separability ranges obtained using AR- and PPT

criteria.

4.1 One parameter family of N qubit Pseudop-

ure states involving W states

The pseudopure (PP) families of states are formed by mixing any pure state with

white noise [69]. They have played a crucial role in demonstrating quantum in-

formation processing possibilities in liquid state NMR spectroscopy [70, 71]. In

Ref. [69], different measures of quantum correlations of bipartite d×d pseudopure

(PP) states of the form

ρPPφ (x) =
1− x

d2 − 1
[(Id ⊗ Id)− |φ〉〈φ|] + x|φ〉〈φ| (4.1)

(where |φ〉 is any arbitrary d× d pure entangled state and 0 ≤ x ≤ 1 denotes the

noisy parameter) are examined. An investigation of entanglement in the 1 : N − 1

partition of the N qubit PP states, constructed using W and GHZ states, is

carried out here based on the CSTRE approach. An expression for the 1 : N − 1

separability range in the N -qubit pseudopure states involving W, GHZ states is

found out using AR-, CSTRE criteria and it is shown that CSTRE criterion always

fares better than AR criterion. The 1 : N−1 separability range identified through

PPT criterion is shown to match with that obtained using CSTRE criterion.
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The one parameter family of N -qubit pseudopure states

ρPPWN
(x) =

1− x

2N − 1

(
I⊗N
2 − |WN〉〈WN |

)
+ x|WN〉〈WN |

obtained by considering the pure state |φ〉 in Eq. (4.1) to be the N -qubit W state:

|WN〉 =
1√
N
[|1102 · · · 0N〉+ |0112 · · · 0N〉+ · · ·+ · · ·+ |010203 · · · 1N〉]

and the d× d matrix Id ⊗ Id replaced by its multiqubit counterpart I⊗N
2 .

To make use of CSTRE approach for the determination of 1 : N−1 separability

range of the pseudopure (PP) states ρPPWN
(x), the 1 : N − 1 separability range

when N = 3, 4, 5, 6 is explicitly evaluated in Secs. 4.1.1 to 4.1.4 and the result is

generalized for arbitrary N in Sec. 4.1.5.

4.1.1 1 : 2 separability in one parameter family of 3-qubit

pseudopure W-states

The one parameter family of 3-qubit pseudopure W-states are given by

ρPPW3
(x) =

1− x

7
(I8 − |W3〉〈W3|) + x|W3〉〈W3| (4.2)

Here, I8 denotes the 8× 8 identity matrix and |W3〉 is the 3-qubit W-state.

The density matrix of the state ρPPW3
(x) is given by

ρPPW3
(x) =




1−x
7

0 0 0 0 0 0 0

0 2+5x
21

8x−1
21

0 8x−1
21

0 0 0

0 8x−1
21

2+5x
21

0 8x−1
21

0 0 0

0 0 0 1−x
7

0 0 0 0

0 8x−1
21

8x−1
21

0 2+5x
21

0 0 0

0 0 0 0 0 1−x
7

0 0

0 0 0 0 0 0 1−x
7

0

0 0 0 0 0 0 0 1−x
7




(4.3)
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The distinct non-zero eigenvalues of ρPPW3
(x) are given by

λ1 = λ2 = · · ·λ7 =
1− x

7
, λ8 = x. (4.4)

In the 1 : 2 partition, the single qubit marginal of ρPPW3
(x) forms the part A, and

it is given by

ρA =

(
2(5+2x)

21
0

0 (11−4x)
21

)

The density matrix corresponding to the remaining two qubit marginal of ρPPW3
(x)

forms the part B and it is given by

ρB =




5+2x
21

0 0 0

0 5+2x
21

8x−1
21

0

0 8x−1
21

5+2x
21

0

0 0 0 2(1−x)
7




(4.5)

The eigenvalues of ρB are given by

η1 = η2 =
2(1− x)

7
, η3 =

2(2 + 5x)

21
, η4 =

5 + 2x

21
.

The entropy S(B) of subsystem ρB and the entropy S(A, B) of the global state

ρPPW3
(x) are obtained respectively as

S(A, B) =
∑

i

−λi log2 λi, S(B) =
∑

i

−ηk log2 ηk (4.6)

and the conditional entropy S(A|B) = S(A, B)−S(B) in the 1 : 2 partition of the

state can readily be evaluated. The monotonically decreasing nature of S(A|B)

and the identification of its zero (the point where S(A, B) changes value from

positive to negative) at x = 0.7390, gives the 1 : 2 von Neumann separability

range of ρPPW3
(x) as (0, 0.7390).
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The evaluation of the AR q-conditional entropy in the 1 : 2 partition of ρPPW3
(x)

leads to

ST
q (A|B) =

1

q − 1

[
1− Tr [(ρAB)

q]

Tr [(ρB)q]

]

=
1

q − 1

(
1− 7

(
1−x
7

)q
+ (x)q

2
(
2−2x
7

)q
+
(
4+10x
21

)q
+
(
5+2x
21

)q

)

On identifying the zero of ST
q (A|B) in the limit q → ∞, the 1 : 2 separability

range of ρPPW3
(x) is found to be (0, 0.3636).

As ρB given in Eq.(4.5) is not a diagonal matrix, there is a need for the con-

struction of an unitary matrix UB to diagonalize it in order to evaluate the quantity

Tr Γq, Γ being the sandwiched matrix

Γ = (I2 ⊗ ρB)
1−q

2q ρPPW3
(x) (I2 ⊗ ρB)

1−q

2q .

It can be seen that

UB =




0 0 0 1

0 −1√
2

1√
2

0

1 0 0 0

0 1√
2

1√
2

0




The non-zero eigenvalues γi of Γ are now evaluated as the eigenvalues of the

unitarily equivalent matrix ΓU = (I2 ⊗ UB)Γ(I2 ⊗ UB)
† and they are given by

γ1 = 2
1−q

q

(
1− x

7

) 1

q

(4-fold degenerate), (4.7)

γ2 =

(
1− x

7

)(
5 + 2x

21

) 1−q

q

, γ3 =

(
1− x

7

)(
4 + 10x

21

) 1−q

q

,

γ4/5 = (21)
−1

q

(
1

2

)(
α a+ β b±

√
(α a+ β b)2 + 504x(x− 1) αβ

)
.

with α = (5 + 2x)
1−q

q , β = (4 + 10x)
1−q

q , a = (2 + 5x), b = (1 + 13x).
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Now the expression for CSTRE D̃T
q (ρ

PP
W3

(x)||ρB) in the 1 : 2 partition of ρPPW3
(x)

can be evaluated through the expression

D̃T
q (ρ

PP
W3

(x)||ρB) =
∑

i γ
q
i − 1

1− q
.

The variation of conditional entropies ST
q (A|B), D̃T

q (ρ
PP
W3

(x)||ρB) both in the limit

q → ∞ and the von-Neumann conditional entropy with the parameter x is shown

in Fig. 4.1. It can be seen that (0, 0.3083) is the 1 : 2 separability range of
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Figure 4.1: Plot illustrating the monotonic decreasing nature of S(A|B) ,
limq→∞ ST

q (A|B), limq→∞ D̃T
q (ρ

PP
W3

(x)||ρB) with x, in the 1 : 2 partition of

ρPPW3
(x).

ρPPW3
(x) using CSTRE criterion [72] and it fares better than the separability ranges

(0, 0.3636), (0, 0.7390) obtained using AR-, von-Neumann conditional entropy

criteria respectively.
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The 1 : 2 partially transposed density matrix of ρPPW3
(x) is given by

ρT =




1−x
7

0 0 0 0 8x−1
21

8x−1
21

0

0 2+5x
21

8x−1
21

0 0 0 0 0

0 8x−1
21

2+5x
21

0 0 0 0 0

0 0 0 1−x
7

0 0 0 0

0 0 0 0 2+5x
21

0 0 0
8x−1
21

0 0 0 0 1−x
7

0 0
8x−1
21

0 0 0 0 0 1−x
7

0

0 0 0 0 0 0 0 1−x
7




(4.8)

The square root of eigenvalues α2
i of (ρT )2 are given by

α1 =
(1− x)

7
(4-fold degenerate), (4.9)

α2 =
(2 + 5x)

21
, α3 =

(1 + 13x)

21
,

α4/5 =
1

21

√(
11 + x(137x− 50)± 6

√
2(1− 9x+ 8x2)

)

With the negativity of partial transpose being given by

N(ρ) =
‖ρT‖ − 1

2
, ||ρT || = trace norm =

∑

i

αi

one can obtain (0, 0.3083) as the 1 : 2 PPT separability range of ρPPW3
(x), matching

with that obtained using CSTRE criteria.

4.1.2 1 : 3 separability in one parameter family of 4-qubit

pseudopure W-states

The one parameter family of 4-qubit pseudopure W-states are given by

ρPPW4
(x) =

1− x

15
(I16 − |W4〉〈W4|) + x|W4〉〈W4|. (4.10)
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Here, I16 denotes the 16 × 16 identity matrix and |W4〉 is the 4-qubit W-state.

The distinct nonzero eigenvalues of the state ρPPW4
(x) are

λ1 = λ2 = · · ·λ15 =
1− x

15
, λ16 = x. (4.11)

The single qubit marginal of ρPPW4
(x), in its 1 : 3 partition is diagonal with diagonal

entries (eigenvalues) 29+16x
60

and 31−16x
60

. The remaining three qubit marginal of the

state ρPPW4
(x) is given by

ρB =




7+8x
60

0 0 0 0 0 0 0

0 7+8x
60

−1+16x
60

0 −1+16x
60

0 0 0

0 −1+16x
60

7+8x
60

0 −1+16x
60

0 0 0

0 0 0 2(1−x)
15

0 0 0 0

0 −1+16x
60

−1+16x
60

0 7+8x
60

0 0 0

0 0 0 0 0 2(1−x)
15

0 0

0 0 0 0 0 0 2(1−x)
15

0

0 0 0 0 0 0 0 2(1−x)
15




and its non-zero eigenvalues are

η1 = η2 = · · · = η6 =
2(1− x)

15
, η7 =

1 + 8x

12
, η8 =

7 + 8x

60
.

The 1 : 3 von Neumann conditional entropy S(A|B) = S(A, B)−S(B) of the state

ρPPW4
(x) can now be evaluated and on identifying its zero, (0, 0.6963) is obtained

as the the 1 : 3 von Neumann separability range of ρPPW4
(x).

The AR q-conditional entropy of ρPPW4
(x) system in its 1 : 3 partition is given

by

ST
q (A|B) =

1

q − 1


1− 15

(
1−x
15

)q
+ (x)q

6
(

2(1−x)
15

)q
+
(
1+8x
12

)q
+
(
7+8x
60

)q


 (4.12)

Finding the zero of ST
q (A|B), in the limit q → ∞, one can obtain (0, 0.25) as the

1 : 3 AR separability range of the state ρPPW4
(x).

In order to evaluate the CSTRE to obtain the 1 : 3 separability range of the

state ρPPW4
(x), the three qubit marginal ρB is to be diagonalized through a unitary
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matrix UB. The unitary matrix UB is given by

UB =




1 0 0 0 0 0 0 0

0 1√
3

1√
3

0 1√
3

0 0 0

0 2√
6

−1√
6

0 −1√
6

0 0 0

0 0 0 1 0 0 0 0

0 0 1√
2

0 −1√
2

0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




This unitary matrix leads to the evaluation of ΓU = (I2 ⊗ UB)Γ(I2 ⊗ UB)
† and its

eigenvalues γi which are the same as that of the eigenvalues of sandwiched matrix

Γ = (I2 ⊗ ρB)
1−q

2q ρPPW4
(x)(I2 ⊗ ρB)

1−q

2q .

The non-zero eigenvalues of ΓU (hence of Γ) are found to be

γ1 = (2)
1−q

q

(
1− x

15

) 1

q

(12-fold degenerate), (4.13)

γ2 =

(
1− x

15

)(
7 + 8x

60

) 1−q

q

, γ3 =

(
1− x

15

)(
1 + 8x

12

) 1−q

q

,

γ4/5 = (60)
−1

q

(
1

2

)[
α a+ β b±

√
(α a+ β b)2 + 1920x(x− 1) αβ

]
.

where α = (7 + 8x)
1−q

q , β = (5 + 40x)
1−q

q , a = (3 + 12x), b = (1 + 44x).

One can now readily evaluate the expression for CSTRE D̃T
q (ρ

PP
W4

(x)||ρB) in the

1 : 3 partition using the relation

D̃T
q (ρ

PP
W4

(x)||ρB) =
∑

i γ
q
i − 1

1− q

The variation of all the three conditional entropies S(A|B), limq→∞ ST
q (A|B),

limq→∞ D̃T
q (ρ

PP
W4

(x)||ρB) with the parameter x is shown in Fig. 4.2. One can obtain

(0, 0.1807) as the 1 : 3 CSTRE separability range of ρPPW4
(x) [72] which is stronger



Chapter 4. 1 : N − 1 separability of pseudopure, Werner-like family of states 135

0.2 0.4 0.6 0.8 1.0
x

-4.´10-7

-2.´10-7

2.´10-7

4.´10-7

D
�

q
T
HΡW4

PP HxLÈÈΡBL

Sq
T HAÈBL

SHAÈBL

Figure 4.2: Plot of the conditional entropies limq→∞ D̃T
q (ρ

PP
W4

(x)||ρB),
limq→∞ ST

q (A|B), S(A|B) of ρPPW4
(x), in its 1 : 3 partition, as a function of

x.

than the corresponding range (0, 0.25) obtained using AR-separability criterion.

On explicitly evaluating the partially transposed density matrix ρT in the 1 : 3

partition of ρPPW4
(x) and the eigenvalues α2

i of
(
ρT
)2
, one has,

α1 =
(1− x)

15
(12-fold degenerate), (4.14)

α2 =
(1 + 4x)

20
, α3 =

(1 + 44x)

60
,

α4/5 =
1

460

√(
19 + 16x(49x− 8)± 8

√
3(1− 17x+ 16x2)

)
.

The negativity of partial transpose N(ρ) = 1
2
(−1 +

∑
i αi) is thereby evaluated.

The 1 : 3 PPT separability range of ρPPW4
(x) is seen to be (0, 0.1807) thus matching

with the corresponding CSTRE range.
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4.1.3 1 : 4 separability in one parameter family of 5-qubit

pseudopure W-states

The one parameter family of 5-qubit pseudopure W-states are given by

ρPPW5
(x) =

1− x

31
(I32 − |W5〉〈W5|) + x|W5〉〈W5| (4.15)

Here, I32 denotes the 32 × 32 identity matrix and |W5〉 is the 5-qubit W-state.

The nonzero eigenvalues of the state ρPPW5
(x) are

λ1 = λ2 = · · ·λ31 =
1− x

31
, λ32 = x. (4.16)

While the single qubit marginal ρA of ρPPW5
(x) is diagonal with eigenvalues 76+48x

155
,

79−48x
155

, the distinct non-zero eigenvalues of the four qubit marginal ρB are given

by

η1 = η2 = · · · = η14 =
2− 2x

31
, η15 =

9 + 22x

155
, η16 =

2(3 + 59x)

155
.

The 1 : 4 von Neumann conditional entropy

S(A|B) = S(A,B)− S(B) =
∑

i

−λi log2 λi +
∑

k

ηk log2 ηk

of the state ρPPW5
(x) can be readily evaluated using the eigenvalues λi, ηk. The

zero of the monotonically decreasing function S(A|B) = 0 occurs at x = 0.6723

yielding (0, 0.6723) as the 1 : 4 von Neumann separability range of ρPPW5
(x).

The AR q-conditional entropy of ρPPW5
(x) in its 1 : 4 partition is given by

ST
q (A|B) =

1

q − 1


1− 31

(
1−x
31

)q
+ (x)q

14
(

2(1−x)
31

)q
+
(
9+22x
155

)q
+
(

2(3+59x)
155

)q


 (4.17)

In the limit q → ∞, the zero of ST
q (A|B) occurs at x = 0.1621 thus yielding

(0, 0.1621) as the 1 : 4 separability range of the state ρPPW5
(x).
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The unitary UB which diagonalizes the four qubit marginal ρB is given by

UB =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1
2

1
2

0 1
2

0 0 0 1
2

0 0 0 0 0 0 0

0
√
3
2

−1
2
√
3

0 −1
2
√
3

0 0 0 −1
2
√
3

0 0 0 0 0 0 0

0 0
√

2
3

0 −1√
6

0 0 0 −1√
6

0 0 0 0 0 0 0

0 0 0 0 1√
2

0 0 0 −1√
2

0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




and facilitates the evaluation of the eigenvalues γi of ΓU = (I2 ⊗ UB)Γ(I2 ⊗ UB)
†

where Γ = (I2⊗ρB)
1−q

2q ρPPW5
(x)(I2⊗ρB)

1−q

2q is the sandwiched matrix. The non-zero

eigenvalues of Γ are seen to be

γ1 = (2)
1−q

q

(
1− x

31

) 1

q

28-fold degenerate, (4.18)

γ2 =

(
1− x

31

)(
9 + 22x

155

) 1−q

q

, γ3 =

(
1− x

31

)(
6 + 118x

155

) 1−q

q

,

γ4/5 = (155)
−1

q

(
1

2

)[
α a+ β b±

√
(α a+ β b)2 + 6200x(x− 1) αβ

]
.

where α = (9 + 22x)
1−q

q , β = (6 + 118x)
1−q

q , a = (4 + 27x), b = (1 + 123x).
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One can now readily evaluate the expression for CSTRE D̃T
q (ρ

PP
W5

(x)||ρB) in the

1 : 4 partition as

D̃T
q (ρ

PP
W5

(x)||ρB) =
∑

i γ
q
i − 1

1− q

Fig. 4.3 illustrates the stricter 1 : 4 separability range 0 ≤ x ≤ 0.1014 for ρPPW5
(x)

0.2 0.4 0.6 0.8 1.0
x

-4.´10-7

-2.´10-7

2.´10-7

4.´10-7

D
�

q
T
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PP HxLÈÈΡBL

Sq
T HAÈBL

SHAÈBL

Figure 4.3: Identification of the zeroes of limq→∞ D̃T
q (ρ

PP
W5

(x)||ρB),
limq→∞ ST

q (A|B) and S(A|B) to obtain the 1 : 4 separability range of ρPPW5
(x)

using different entropic criteria

through the identification of the zero of the function limq→∞ D̃T
q (ρ

PP
W5

(x)||ρB) [72]
in comparison with the corresponding separability ranges obtained using AR-

criterion and Von-Neumann conditional entropy criterion.

Evaluating the partially transposed density matrix ρT of ρPPW5
(x) in its 1 : 4

partition, the square root αi of the eigenvalues α2
i of

(
ρT
)2

are determined to be

α1 =
(1− x)

31
(28-fold degenerate), α2 =

(4 + 27x)

155
,

α3 =
(3 + 59x)

155
, α4 =

7− 69x

155
, α5 =

1 + 123x

155
.
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Identifying the zero of the monotonically increasing functionN(ρ) = 1
2
(−1+

∑
i αi)

at x = 0.1014, one obtains (0, 0.1014) as the 1 : 4 PPT separability range of ρPPW5
(x)

and it matches with the CSTRE separability range.

4.1.4 1 : 5 separability in one parameter family of 6-qubit

pseudopure W-states

The one parameter family of 6-qubit pseudopure W-states are given by

ρPPW6
(x) =

1− x

63
(I64 − |W6〉〈W6|) + x|W6〉〈W6| (4.19)

Here, I64 denotes the 64× 64 identity matrix and |W6〉 is the 6-qubit W-state The

distinct nonzero eigenvalues of the state ρPPW6
(x) are

λ1 = λ2 = · · ·λ63 =
1− x

63
, λ64 = x. (4.20)

The single qubit marginal ρA of ρPPW6
(x) is diagonal with eigenvalues 187+128x

378
,

191−128x
378

and the non-zero eigenvalues of the remaining five qubit marginal ρB

are

η1 = η2 = · · · = η30 =
2− 2x

63
, η31 =

1 + 44x

54
, η32 =

11 + 52x

378
.

The conditional entropy S(A|B) = S(A, B)−S(B) = −∑i λi log2 λi+
∑

k ηk log2 ηk

in the 1 : 5 partition of the state ρPPW6
(x) can readily be evaluated and on iden-

tifying its zero at x = 0.6621 one obtains (0, 0.6621) as the 1 : 5 von Neumann

separability range of ρPPW6
(x).

The AR q-conditional entropy of ρPPW6
(x) in its 1 : 5 partition is given by

ST
q (A|B) =

1

q − 1


1− 63

(
1−x
63

)q
+ (x)q

30
(

2(1−x)
63

)q
+
(
1+44x
54

)q
+
(
11+52x
378

)q


 (4.21)

In the limit q → ∞ identifying the zero of the monotonically decreasing function

ST
q (A|B) occurs at x = 0.1 and the 1 : 5 separability range of the state ρPPW6

(x) is

obtained as (0, 0.1).
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On explicitly evaluating the unitary matrix UB that diagonalizes the 5-qubit

marginal ρB of ρPPW6
(x) one can evaluate ΓU = (I2 ⊗UB)Γ(I2 ⊗UB)

† and its eigen-

values γi. Γ = (I2 ⊗ ρB)
1−q

2q ρPPW6
(x)(I2 ⊗ ρB)

1−q

2q being the sandwiched matrix of

ρPPW6
(x) in its 1 : 5 partition, one gets

γ1 = (2)
1−q

q

(
1− x

63

) 1

q

(60-fold degenerate), (4.22)

γ2 =

(
1− x

63

)(
11 + 52x

378

) 1−q

q

, γ3 =

(
1− x

63

)(
7 + 308x

378

) 1−q

q

,

γ4/5 = (378)
−1

q

(
1

2

)[
α a+ β b±

√
(α a+ β b)2 + 18144x(x− 1) α β

]
.

with α = (11 + 52x)
1−q

q , β = (7 + 308x)
1−q

q , a = (5 + 58x), b = (1 + 314x).

as the eigenvalues of ΓU and hence of Γ. The expression for CSTRE D̃T
q (ρ

PP
W6

(x)||ρB)
in the 1 : 5 partition can now be evaluated as

D̃T
q (ρ

PP
W6

(x)||ρB) =
∑

i γ
q
i − 1

1− q

The variation of the two q-conditional entropies D̃T
q (ρ

PP
W6

(x)||ρB), ST
q (A|B) in the

limit q → ∞ and the von-Neumann conditional entropy S(A|B) as a function of x

is shown in Fig. 4.4. The zero of the function limq→∞ D̃T
q (ρ

PP
W6

(x)||ρB) [72] is seen

to occur at x = 0.0552 and (0, 0.0552) is obtained as the 1 : 5 CSTRE separability

range of the state ρPPW6
(x).

The square root of the eigenvalues of
(
ρT
)2
, ρT being the partially transposed

density matrix of ρPPW6
(x), in its 1 : 5 partition, are found to be

α1 =
(1− x)

63
(60-fold degenerate),

α2 =
(5 + 58x)

378
, α3 =

(1 + 314x)

378
,

α4/5 =
1

378

√
41 + 4x(5129x− 178)± 12

√
5(1− 65x+ 64x2).
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Figure 4.4: The conditional entropies limq→∞ D̃T
q (ρ

PP
W6

(x)||ρB) ,

limq→∞ ST
q (A|B), S(A|B) as a function of x for ρPPW6

(x), in its 1 : 5
partition.

On identifying the zero of the monotonically increasing function N(ρ) = (−1 +
∑

i αi)/2 at x = 0.0552, one can obtain (0, 0.0552) as the 1 : 5 PPT separability

range of ρPPW6
(x) and it is identical to the CSTRE separability range.

4.1.5 1 : N − 1 separability in pseudopure states involving

N-qubit W states

As the focus is on finding the 1 : N − 1 separability range of the W family of PP

states ρPPWN
(x) using CSTRE criterion, an evaluation of the eigenvalues γi of the

sandwiched matrix

Γ = (I2 ⊗ ρB)
1−q

2q ρPPWN
(x) (I2 ⊗ ρB)

1−q

2q

with ρB = Tr1[ρ
PP
WN

(x)] being the N − 1 qubit marginal of ρPPWN
(x), needs to be

carried out.

The following explicit structure of the eigenvalues γi (for N ≥ 3) is obtained

by generalizing the form of γi obtained for the states ρPPWN
(x) when N = 3, 4, 5, 6
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(See Eqs: (4.7), (4.13), (4.18), (4.22))

γ1 = (2)
1−q

q

(
1− x

2N − 1

) 1

q

,
(
2N − 4

)
fold-degenerate;

γ2 =

(
1− x

2N − 1

)

(2N − 1) +

(∑N
j=3 2

j−1 − 2(N − 2)
)
x

N (2N − 1)




1−q

q

,

γ3 =

(
1− x

2N − 1

)

(N + 1) +

(∑N
j=3 2

j−1 + (N − 2)
(
2N − 2

))
x

N (2N − 1)




1−q

q

, (4.23)

γ4/5 =
[
N
(
2N − 1

)]−1

q

(
1

2

)[
α a+ β b±

√
(α a+ β b)2 + 8N2(2N − 1)x(x− 1) α β

]
.

where

α =

[
2N − 1 +

(
N∑

j=3

2j−1 − 2(N − 2)

)
x

] 1−q

q

,

β =

[
N + 1 +

(
N∑

j=3

2j−1 + (N − 2)
(
2N − 2

)
)
x

] 1−q

q

,

a = (N − 1) +

(
N∑

j=3

2j−1 −N + 4

)
x, (4.24)

b = 1 +

(
N∑

j=3

2j−1 + (N − 2)
(
2N − 2

)
+N

)
x.

Substituting the values of γi in the expression for CSTRE given by

D̃T
q (ρAB||ρB) =

(
∑

i γ
q
i )− 1

1− q
, (4.25)

a numerical estimation of the 1 : N−1 CSTRE separability range forN = 3, 4, 5, 6

has been carried out. This results in the separability range for the noisy parameter

x to be (0, 0.3083), (0, 0.1807), (0, 0.1014), (0, 0.0552) in the 1 : 2, 1 : 3,

1 : 4, 1 : 5 partitions of the noisy state ρPPWN
(x) with N = 3, N = 4, N = 5,

N = 6 respectively. The results obtained based on the CSTRE, along with the

corresponding cut-off value of the parameter x obtained using the AR- and the
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PPT criteria are listed in Table 4.1. This offers a direct comparison of different

approaches, each leading to the threshold values of the parameter x (beyond which

the noisy state is found to be entangled). From Table 4.1 it is clearly seen that,

Table 4.1: Comparison of the 1 : N − 1 separability range (0, x0) of the state
ρPPWN

(x), for N = 3, 4, 5, 6 through the threshold values x0 obtained through
different separability criteria

Number von Neumann AR CSTRE PPT
of conditional q-conditional

qubits (N) entropy entropy

3 0.7390 0.3636 0.3083 0.3083
4 0.6963 0.25 0.1807 0.1807
5 0.6723 0.1621 0.1014 0.1014
6 0.6621 0.1 0.0552 0.0552

for the noisy state ρPPWN
(x), CSTRE provides stricter separability range than the

AR-criterion. Moreover, the CSTRE separability range matches identically with

the PPT separability range.

In general, the CSTRE criterion (in the limit q → ∞) leads to,

0 ≤ x ≤ N +
√
N − 1

N + 2N
√
N − 1

(4.26)

for the (1 : N − 1) separability range of the noisy N qubit PP state ρPPWN
(x) for

N ≥ 3 [72]. Alternately, in the parameter region

N +
√
N − 1

N + 2N
√
N − 1

< x ≤ 1,

the CSTRE method witnesses entanglement in the (1 : N − 1) bipartition of the

noisy state ρPPWN
(x.
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4.1.6 Necessary and sufficient condition for 1 : N − 1 sepa-

rability of ρPPWN
(x)

The pseudopure family of states (see Eq. (4.1)) with the pure entangled state |φ〉
expressed in terms of Schmidt co-efficients ui, i.e.,

|φ 〉 =
d∑

i=1

ui | iAiB〉, (4.27)

with u1 ≥ u2 ≥ · · · ≥ ud ≥ 0 are shown to be separable iff [69, 73]

0 ≤ x ≤ 1 + u1u2
1 + d2 (u1u2)

(4.28)

It is to be recalled here that the Schmidt coefficients are the positive square roots

of the eigenvalues of any of the subsystems of a pure state |φ〉. For the PP state

ρPPWN
(x) with (1 : N − 1) bipartition under investigation, the Schmidt coefficients

are the square roots of the eigenvalues of the single qubit marginal of the N qubit

W state. They are given by [72],

u1 =

√
N − 1

N
, u2 =

1√
N
. (4.29)

Substituting the values of u1, u2 in (4.29) and replacing d2 by 2N in Eq. (4.28),

one can recover the result in Eq. (4.26) for the separability range. This estab-

lishes that the CSTRE approach serves as both necessary and sufficient to detect

entanglement in the (1 : N − 1) partition of the PP state ρPPWN
(x).

4.2 One parameter family of N-qubit pseudop-

ure GHZ-states

The noisy one parameter family of N qubit PP states ρPPGHZN
(x) is given by

ρPPGHZN
(x) =

1− x

2N − 1

(
I⊗N
2 − |GHZN〉〈GHZN |

)
+ x|GHZN〉〈GHZN |. (4.30)
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where,

|GHZN〉 =
1√
2
(|0102 · · · 0N〉+ |1112 · · · 1N〉)

To find the 1 : N − 1 separability range of ρPPGHZN
(x) using CSTRE approach, the

corresponding separability ranges for ρPPGHZN
(x) when N = 3, 4, 5, 6 are explicitly

evaluated in Secs. 4.2.1–4.2.4. The results are generalized in Sec. 4.2.5, to obtain

the separability range in ρPPGHZN
(x) for arbitrary N .

4.2.1 1 : 2 separability in one parameter family of 3-qubit

pseudopure GHZ-states

The one parameter family of 3-qubit pseudopure GHZ-states are defined as

ρPPGHZ3
(x) =

1− x

7
(I8 − |GHZ3〉〈GHZ3|) + x|GHZ3〉〈GHZ3| (4.31)

Here, I8 denotes the 8 × 8 identity matrix and |GHZ3〉 is the 3-qubit GHZ-state.

The density matrix of the state ρPPGHZ3
(x) is given by

ρPPGHZ3
(x) =




1+6x
14

0 0 0 0 0 0 8x−1
14

0 1−x
7

0 0 0 0 0 0

0 0 1−x
7

0 0 0 0 0

0 0 0 1−x
7

0 0 0 0

0 0 0 0 1−x
7

0 0 0

0 0 0 0 0 1−x
7

0 0

0 0 0 0 0 0 1−x
7

0
8x−1
14

0 0 0 0 0 0 1+6x
14




(4.32)

The non-zero eigenvalues of ρPPGHZ3
(x) are

λ1 = λ2 = · · ·λ7 =
1− x

7
, λ8 = x. (4.33)

The single qubit marginal of ρPPGHZ3
(x), in the 1 : 2 partition is maximally mixed

and is given by

ρA =
1

2

(
1 0

0 1

)
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The density matrix ρB corresponding to the remaining two qubit marginal of

ρPPGHZ3
(x) is

ρB =
1

14
diag (3 + 4x, 4− 4x, 4− 4x, 3 + 4x) (4.34)

The AR q-conditional entropy for ρPPGHZ3
(x) is seen to be

ST
q (A|B) =

1

q − 1

(
1− 7

(
1−x
7

)q
+ (x)q

2
(
2−2x
7

)q
+ 2

(
3+4x
14

)q

)
(4.35)

Through obtaining the zero of the monotonically decreasing function ST
q (A|B) in

the limit q → ∞, (0, 0.3) is obtained as the 1 : 2 AR separability range of the

state ρPPGHZ3
(x).

As the two qubit marginal ρB is already in the diagonal form, one can evaluate

the sandwiched matrix Γ as

Γ =

(
I2 ⊗ ρ

1−q

2q

B

)
ρPPGHZ3

(x)

(
I2 ⊗ ρ

1−q

2q

B

)

and the non-zero eigenvalues of Γ are evaluated to be

γ1 =

(
1− x

7

)(
2− 2x

7

) 1−q

q

, (4-fold degenerate), (4.36)

γ2 =

(
1− x

7

)(
3 + 4x

14

) 1−q

q

(3-fold degenerate),

γ3 = x

(
3 + 4x

14

) 1−q

q

.

One can now readily evaluate the expression for CSTRE D̃T
q (ρ

PP
GHZ3

(x)||ρB) in the

1 : 2 partition using

D̃T
q (ρ

PP
GHZ3

(x)||ρB) =
∑

i γ
q
i − 1

1− q

It can be readily seen that the zero of limq→∞ D̃T
q (ρ

PP
GHZ3

(x)||ρB) occurs at x =

0.3 and hence (0, 0.3) is the 1 : 2 separability range of ρPPGHZ3
(x) using CSTRE

approach.
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The 1 : 2 partially transposed density matrix of ρPPGHZ3
(x) is given by

ρT =




1+6x
14

0 0 0 0 0 0 0

0 1−x
7

0 0 0 0 0 0

0 0 1−x
7

0 0 0 0 0

0 0 0 1−x
7

8x−1
14

0 0 0

0 0 0 8x−1
14

1−x
7

0 0 0

0 0 0 0 0 1−x
7

0 0

0 0 0 0 0 0 1−x
7

0

0 0 0 0 0 0 0 1+6x
14




. (4.37)

The eigenvalues of
(
ρT
)2

being α2
i , one gets

α1 =
(1− x)

7
, (4-fold degenerate),

α2 =
(1 + 6x)

14
, (3-fold degenerate), α3 =

(3− 10x)

14
. (4.38)

The negativity of partial transpose N(ρ) = (−1 +
∑

i αi)/2 is seen to be non-

zero for values of x ≥ 0.3 thus yielding (0, 0.3) as the PPT separability range of

ρPPGHZ3
(x), in its 1 : 2 partition.

4.2.2 1 : 3 separability in one parameter family of four

qubit pseudopure GHZ-states

The one parameter family of 4-qubit pseudopure GHZ-states are given by

ρPPGHZ4
(x) =

1− x

15
(I16 − |GHZ4〉〈GHZ4|) + x|GHZ4〉〈GHZ4| (4.39)

Here, I16 denotes the 16×16 identity matrix and |GHZ4〉 is the 4-qubit GHZ-state.

The non zero eigenvalues of the state ρPPGHZ4
(x) are

λ1 = λ2 = · · ·λ15 =
1− x

15
, λ16 = x. (4.40)
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The single qubit marginal of ρPPGHZ4
(x), in the 1 : 3 partition is a maximally mixed

state I2/2. The remaining three qubit marginal of the state ρPPGHZ4
(x) is a diagonal

matrix with diagonal elements (eigenvalues of ρB) being given by

η1 = η2 = · · · = η6 =
2(1− x)

15
, η7 = η8 =

1 + 4x

10
.

The AR q-conditional entropy for ρPPGHZ4
(x), in its 1 : 3 partition is given by

ST
q (A|B) =

1

q − 1

(
1− 15

(
1−x
15

)q
+ (x)q

6
(
2−2x
15

)q
+ 2

(
1+4x
10

)q

)
(4.41)

The zero of ST
q (A|B) occurs at x = 0.1666 and hence (0, 0.1666) is the 1 : 3 AR

separability range of the state ρPPGHZ4
(x) using AR criterion.

As ρB is in the diagonal form, the sandwiched matrix

Γ =

(
I2 ⊗ ρ

1−q

2q

B

)
ρPPGHZ4

(x)

(
I2 ⊗ ρ

1−q

2q

B

)

and its eigenvalues γi can be readily evaluated. The non-zero eigenvalues of Γ are

found to be,

γ1 =

(
1− x

15

)(
2− 2x

15

) 1−q

q

(12-fold degenerate), (4.42)

γ2 =

(
1− x

15

)(
3 + 12x

30

) 1−q

q

(3-fold degenerate),

γ3 = x

(
3 + 12x

30

) 1−q

q

.

The expression for CSTRE D̃T
q (ρ

PP
GHZ4

(x)||ρB) in the 1 : 3 partition is evaluated

using

D̃T
q (ρ

PP
GHZ4

(x)||ρB) =
∑

i γ
q
i − 1

1− q

The Fig. 4.5 illustrate the variation of the von-Neumann conditional entropy

S(A|B) and limq→∞ D̃T
q (ρ

PP
GHZ4

(x)||ρB) as functions of x. The 1 : 3 separabil-

ity range of the state ρPPGHZ4
(x) is obtained as 0 ≤ x ≤ 0.1666 through identifying
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the zero of the function limq→∞ D̃T
q (ρ

PP
GHZ4

(x)||ρB) [72].

0.2 0.4 0.6 0.8 1.0
x

-4.´10-7

-2.´10-7

2.´10-7

4.´10-7
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q
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HΡGHZ4

PP HxLÈÈΡBL

SHAÈBL

Figure 4.5: Variation of the Von-Neumann conditional entropy S(A|B) and
the CSTRE D̃T

q (ρ
PP
GHZ4

(x)||ρB) in the 1 : 3 partition of ρPPGHZ4
(x) when q → ∞,

as a function of x.

With α2
i being the eigenvalues of

(
ρT
)2
, ρT being the partially transposed

density matrix in the 1 : 3 partition of ρPPGHZ4
(x), one has

α1 =
(1− x)

15
, (12-fold degenerate), (4.43)

α2 =
(1 + 14x)

30
, (3-fold degenerate), α3 =

(1− 6x)

10
.

and N(ρ) = (−1 +
∑

i αi)/2 is negativity of partial transpose. N(ρ) is seen to be

zero till x = 0.1666 and greater than zero thereafter. Thus (0, 0.1666) is obtained

as the PPT separability range of ρPPGHZ4
(x), in its 1 : 3 partition.
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4.2.3 1:4 separability in one parameter family of five qubit

pseudopure GHZ-states

The one parameter family of 5-qubit pseudopure GHZ-states are given by

ρPPGHZ5
(x) =

1− x

31
(I32 − |GHZ5〉〈GHZ5|) + x|GHZ5〉〈GHZ5| (4.44)

where I32 denotes the 32×32 identity matrix and |GHZ5〉 is the 5-qubit GHZ-state.

The distinct non-zero eigenvalues of the state ρPPGHZ5
(x) are

λ1 = λ2 = · · ·λ31 =
1− x

31
, λ32 = x. (4.45)

The distinct non-zero eigenvalues of tne four qubit marginal ρB = Tr1 ρ
PP
GHZ5

(x)

are

η1 = η2 = · · · η14 =
2− 2x

31
, η15 = η16 =

3 + 28x

62
.

The AR q-conditional entropy for the state ρPPGHZ5
(x) in its 1 : 4 partition is given

by

ST
q (A|B) =

1

q − 1

(
1− 31

(
1−x
31

)q
+ (x)q

14
(
2−2x
31

)q
+ 2

(
3+28x
62

)q

)
(4.46)

The zero of ST
q (A|B) = 0 reveals that the state ρPPGHZ5

(x) is separable in the range

(0, 0.0882) in its 1 : 4 partition in the limit q → ∞.

The four qubit marginal ρB of ρPPGHZ5
(x) is a diagonal matrix and hence the

eigenvalues of the sandwiched matrix Γ =

(
I2 ⊗ (ρ

1−q

2q

B )

)
ρPPGHZ5

(x)

(
I2 ⊗ (ρ

1−q

2q

B )

)

are readily evaluated to be

γ1 =

(
1− x

31

)(
2− 2x

31

) 1−q

q

(28-fold degenerate), (4.47)

γ2 =

(
1− x

31

)(
3 + 28x

62

) 1−q

q

(3-fold degenerate),

γ3 = x

(
3 + 28x

62

) 1−q

q

.
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The expression for CSTRE D̃T
q (ρ

PP
GHZ5

(x)||ρB) in the 1 : 4 partition can now be

obtained using

D̃T
q (ρ

PP
GHZ5

(x)||ρB) =
∑

i γ
q
i − 1

1− q
.

It can be seen that (0, 0.0882) is the 1 : 4 CSTRE separability range for ρPPGHZ5
(x).
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Figure 4.6: Variation of the Von-Neumann conditional entropy S(A|B) and
the CSTRE D̃T

q (ρ
PP
GHZ5

(x)||ρB) in the 1 : 4 partition of ρPPGHZ5
(x) when q → ∞,

as a function of x.

If α2
i are the eigenvalues of

(
ρT
)2
, it can be seen that

α1 =
(1− x)

31
(28-fold degenerate), (4.48)

α2 =
(1 + 30x)

62
(3-fold degenerate), α3 =

(3− 34x)

62
.

The negativity of partial transpose N(ρ) = (−1 +
∑

i αi)/2 is seen to be greater

than zero in the range (0,0882, 1) thus yielding (0, 0.0882) as the 1 : 4 PPT

separability range of ρPPGHZ5
(x).
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4.2.4 1 : 5 separability in one parameter family of six qubit

pseudopure GHZ-states

The one parameter family of 6-qubit pseudopure GHZ-states are given by

ρPPGHZ6
(x) =

1− x

63
(I64 − |GHZ6〉〈GHZ6|) + x|GHZ6〉〈GHZ6| (4.49)

Here, I64 denotes the 64×64 identity matrix and |GHZ6〉 is the 6-qubit GHZ-state.

The distinct non-zero eigenvalues of the state ρPPGHZ6
(x) are

λ1 = λ2 = · · ·λ63 =
1− x

63
, λ64 = x. (4.50)

The five qubit marginal ρB = Tr1 ρ
PP
GHZ6

(x) is diagonal and its eigenvalues are

η1 = η2 = · · · η30 =
2− 2x

63
, η31 = η32 =

1 + 20x

42
.

The AR q-conditional entropy [40] for the state ρPPGHZ6
(x) in its 1 : 5 partition is

given by

ST
q (A|B) =

1

q − 1

(
1− 63

(
1−x
63

)q
+ (x)q

30
(
2−2x
63

)q
+ 2

(
1+20x
42

)q

)
(4.51)

Identifying the zero of ST
q (A|B) = 0 in the limit q → ∞, the 1 : 5 separability

range of the state ρPPGHZ6
(x) is obtained as (0, 0.0454).

Due to the diagonal nature of five qubit marginal ρB, the sandwiched matrix

Γ =

(
I2 ⊗ ρ

1−q

2q

B

)
ρPPGHZ6

(x)

(
I2 ⊗ ρ

1−q

2q

B

)
and its eigenvalues γi can readily be

evaluated.

γ1 =

(
1− x

63

)(
2− 2x

63

) 1−q

q

(60-fold degenerate), (4.52)

γ2 =

(
1− x

63

)(
3 + 60x

126

) 1−q

q

(3-fold degenerate),

γ3 = x

(
3 + 60x

126

) 1−q

q

.
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The conditional Tsallis relative entropy of the state ρPPGHZ6
(x) in its 1 : 5 partition is

evaluated using the relation D̃T
q (ρ

PP
GHZ6

(x)||ρB) = (
∑

i γ
q
i − 1) /(1− q) and Fig. 4.7

illustrates the variation of D̃T
q (ρ

PP
GHZ6

(x)||ρB) as a function of x in the limit q → ∞.

The 1 : 5 separability range of the state ρPPGHZ6
(x) is obtained as 0 ≤ x ≤ 0.0454

0.2 0.4 0.6 0.8 1.0
x
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Figure 4.7: Plot of the conditional entropies S(A|B) and
limq→∞ D̃T

q (ρ
PP
GHZ6

(x)||ρB) of ρPPGHZ6
(x), in its 1 : 5 partition, as a func-

tion of x.

through identifying the zero of the function limq→∞ D̃T
q (ρ

PP
GHZ6

(x)||ρB) [72].

Evaluating the partially transposed density matrix ρT in the 1 : 5 partition

of the state ρPPGHZ6
(x), the trace norm ||ρT || =

∑
i αi and negativity of partial

transpose N(ρ) = (||ρT || − 1)/2 are obtained using the eigenvalues α2
i of

(
ρT
)2
: It

can be seen that

α1 =
(1− x)

63
, (60-fold degenerate), (4.53)

α2 =
(1 + 62x)

126
, (3-fold degenerate), α3 =

(1− 22x)

42
.

It can be seen that (0, 0.0454) as the 1 : 5 PPT separability range of ρPPGHZ6
(x)

matching with the corresponding CSTRE as well as AR-separability range.
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4.2.5 1 : N − 1 separability in ρPPGHZN
(x)

On observing the structure of γi, the eigenvalues of the sandwiched matrix

Γ =

(
I2 ⊗ ρ

1−q

2q

B

)
ρPPGHZN

(x)

(
I2 ⊗ ρ

1−q

2q

B

)

when N = 3, 4, 5, 6, an explicit structure of the non-zero eigenvalues γi of the

sandwiched matrix Γ for any N ≥ 3 can be arrived at [72] and they are given by

γ1 =

[
1− x

2N − 1

] [
2 (1− x)

2N − 1

] 1−q

q

, , (2N − 4)-fold degenerate (4.54)

γ2 =

[
1− x

2N − 1

]

3 +

(∑N
j=3 2

j−1
)
x

∑N
j=1 2

j




1−q

q

, 3-fold degenerate

γ3 = x



3 +

(∑N
j=3 2

j−1
)
x

∑N
j=1 2

j




1−q

q

.

In general for any N ≥ 3, one can obtain the following bound (See Table 4.2)

0 ≤ x ≤ 3

2N + 2
(4.55)

in the limit q → ∞, within which the PP state ρPPGHZN
(x) is separable.

Table 4.2: The comparison of the 1 : N − 1 separability threshold values x0 of
the state ρPPGHZN

(x), for N = 3, 4, 5, 6 obtained through different separability
criteria.

Number von Neumann AR CSTRE PPT
of conditional q-conditional

qubits (N) entropy entropy

3 0.7225 0.3 0.3 0.3
4 0.6509 0.1666 0.1666 0.1666
5 0.5976 0.0882 0.0882 0.0882
6 0.5606 0.0454 0.0454 0.0454
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The CSTRE separability range obtained in Eq. (4.55) is seen to match with

that obtained using AR-criterion and also PPT criterion (See Table 4.2). The

matching of the AR-separability range with the CSTRE separability range is due to

the maximally mixed nature and hence commutativity of the single qubit marginal

with the global state ρPPGHZ5
(x). But though the CSTRE and AR criteria result

in the same separability threshold for the noisy parameter x, they approach the

cut-off value with different convergence rates, which is depicted in Fig. 4.8, for

the specific case of N = 6. The separability range in Eq. (4.55) is also seen to

0 10 20 30 40 50 60 70
q0.0

0.1

0.2

0.3

0.4

0.5

x

AR

CSTRE

Figure 4.8: Implicit plots of D̃T
q (ρ

PP
GHZ6

(x)||ρB) = 0 and the Abe-Rajagopal

q-conditional entropy ST
q (A|B) = 0 as a function of q in the 1 : 5 partition

of the state ρPPGHZ6
(x). This demonstrates the relatively slower convergence of

the noisy parameter x to the cut-off value 0.04545 in the case of the CSTRE
approach, when compared with that of the AR method.

match identically with the necessary and sufficient condition (See Eq. (4.28) for

separability. This is readily seen on substituting the Schmidt coefficients u1 =

u2 = 1/
√
2 associated with the (1 : N − 1) partition of the GHZ state. Thus, the

CSTRE method is found to serve as a necessary and sufficient condition to detect

entanglement in the 1 : N − 1 partition of the N qubit PP state ρPPGHZN
(x).
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4.3 Werner-like one parameter family of N qubit

W states

It can be recalled here (See Eq. (1.5)) that an example of a two-qubit mixed state

is referred to as Werner state and it is given by

ρw =
(1− x)I4

4
+ x|φ1〉〈φ1|, |φ1〉 =

1√
2
[|00〉+ |11〉] (4.56)

The state ρw is entangled when 1
3
< x ≤ 1 and is separable when 0 ≤ x ≤ 1

3
.

The N -qubit generalizations of the state ρw can be termed as Werner-like one

parameter family of states and they are given by

ρΦN
(x) = (1− x)

I⊗N
2

2N
+ x |Φ〉 〈Φ| , 0 ≤ x ≤ 1 (4.57)

When the pure entangled state |Φ〉 corresponds to the N -qubit W state (See Eq.

(2.24)), the noisy state

ρWN
(x) = (1− x)

I⊗N
2

2N
+ x |WN〉 〈WN | . (4.58)

is obtained. In order to carry out the task of identifying the 1 : N − 1 separability

range of the state ρWN
(x) via the CSTRE method, one needs to evaluate the 2N

eigenvalues γi of the sandwiched matrix

Γ = (I2 ⊗ ρB)
1−q

2q ρWN
(x)(I2 ⊗ ρB)

1−q

2q

where ρB = Tr1[ρWN
(x)] is the N − 1 qubit marginal of ρWN

(x) obtained by

tracing over the first qubit. In Secs. 4.3.1 to 4.3.4, the form of γi is obtained for

N = 3, 4, 5, 6 and the generalized form of these eigenvalues for any N is obtained

in Sec. 4.3.5.
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4.3.1 Separability in the 1 : 2 partition of three qubit Werner-

like family involving W-states

The Werner-like one parameter family of 3-qubit W-states given by

ρW3
(x) = (1− x)

I8
8
+ x |W3〉 〈W3| . (4.59)

has non-zero eigenvalues λk where

λ1 = λ2 = · · ·λ7 =
1− x

8
, λ8 =

1 + 7x

8
. (4.60)

The single qubit marginal of ρW3
(x), though diagonal, does not correspond to

maximally mixed state. The density matrix corresponding to the remaining two

qubit marginal of ρW3
(x) is explicitly given by

ρB =




3+x
12

0 0 0

0 3+x
12

x
3

0

0 x
3

3+x
12

0

0 0 0 1−x
4




(4.61)

The eigenvalues of ρB are

η1 = η2 =
1− x

4
, η3 =

3 + x

12
, η4 =

3 + 5x

12
.

The AR q-conditional entropy for ρW3
(x) turns out to be

ST
q (A|B) =

1

q − 1

(
1− 7

(
1−x
8

)q
+
(
1+7x
8

)q

2
(
1−x
4

)q
+
(
3+x
12

)q
+
(
3+5x
12

)q

)
(4.62)

On identifying the zero of the monotonically decreasing function limq→∞ ST
q (A|B)

one can observe that the state ρW3
(x) is separable in the range (0, 0.2727) accord-

ing to AR-criterion.



Chapter 4. 1 : N − 1 separability of pseudopure, Werner-like family of states 158

The unitary operator UB which diagonalizes ρB is as follows

UB =




0 0 0 1

0 −1√
2

1√
2

0

1 0 0 0

0 1√
2

1√
2

0




This unitary matrix facilitates the evaluation of ΓU = (I2 ⊗ UB)ρW3
(x)(I2 ⊗ UB)

†

which has the same eigenvalues as that of the sandwiched matrix

Γ =

(
I2 ⊗ ρ

1−q

2q

B

)
ρW3

(x)

(
I2 ⊗ ρ

1−q

2q

B

)
.

The non-zero eigenvalues γi of ΓU and hence of Γ are obtained as

γ1 =

(
1− x

8

)(
1− x

4

) 1−q

q

(4-fold degenerate), (4.63)

γ2 =

(
1− x

8

)(
3 + x

12

) 1−q

q

, λ3 =

(
1− x

8

)(
3 + 5x

12

) 1−q

q

,

γ4/5 =

(
1

4

)
(12)

−1

q

(
α a+ β b±

√
(α a+ β b)2 + 512x2 α β

)
.

where α = (3 + x)
1−q

q , β = (3 + 5x)
1−q

q , a = (3 + 5x), b = (3 + 13x).

One can now readily evaluate the expression for CSTRE D̃T
q (ρW3

(x)||ρB) in the

1 : 2 partition using D̃T
q (ρW3

(x)||ρB) = (
∑

i γ
q
i − 1) /(1−q). The 1 : 2 separability

range of the state ρW3
(x) is obtained as 0 ≤ x ≤ 0.2095 through identifying the

zero of the function limq→∞ D̃T
q (ρW3

(x)||ρB) at x = 0.2095 [72].

4.3.2 Separability in the 1 : 3 partition of four qubit Werner-

like family involving W-states

The distinct non-zero eigenvalues of the 4-qubit state ρW4
(x) are

λ1 = λ2 = · · ·λ15 =
1− x

16
, λ16 =

1 + 15x

16
. (4.64)
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The three qubit marginal of the state ρW4
(x), obtained by tracing over the first

qubit of ρW4
(x) is explicitly given by

ρB =




1+x
8

0 0 0 0 0 0 0

0 1+x
8

x
4

0 x
4

0 0 0

0 x
4

1+x
8

0 x
4

0 0 0

0 0 0 1−x
8

0 0 0 0

0 x
4

x
4

0 1+x
8

0 0 0

0 0 0 0 0 1−x
8

0 0

0 0 0 0 0 0 1−x
8

0

0 0 0 0 0 0 0 1−x
8




The distinct non-zero eigenvalues of ρB are

η1 = η2 = · · · η6 =
1− x

8
, η7 =

1 + x

8
, η8 =

1 + 5x

8
.

The AR q-conditional entropy [40] for the state ρW4
(x) in its 1 : 3 partition is

given by

ST
q (A|B) =

1

q − 1

(
1− 15

(
1−x
16

)q
+
(
1+15x
16

)q

6
(
1−x
8

)q
+
(
1+x
8

)q
+
(
1+5x
8

)q

)
(4.65)

Identifying the zero of the monotonically decreasing function limq→∞ ST
q (A|B) at

x = 0.2, one can obtain (0, 0.2) as the 1 : 3 AR separability range of the state

ρW4
(x).

The unitary UB which diagonalizes the three qubit marginal ρB is given by

UB =




0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 −1√
6

−1√
6

0 2√
6

0 0 0

0 0 0 1 0 0 0 0

0 1√
2

−1√
2

0 0 0 0 0

1 0 0 0 0 0 0 0

0 1√
3

1√
3

0 1√
3

0 0 0




The non-zero eigenvalues γi of ΓU = (I2 ⊗ UB)Γ(I2 ⊗ UB)
† which are same as the
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eigenvalues of the sandwiched matrix Γ =

(
I2 ⊗ ρ

1−q

2q

B

)
ρW4

(x)

(
I2 ⊗ ρ

1−q

2q

B

)
are

seen to be,

γ1 =

(
1− x

16

)(
1− x

8

) 1−q

q

(12-fold degenerate), (4.66)

γ2 =

(
1− x

16

)(
4 + 4x

32

) 1−q

q

, γ3 =

(
1− x

16

)(
4 + 20x

32

) 1−q

q

,

γ4/5 =

(
1

4

)
(32)

−1

q

(
α a+ β b±

√
(α a+ β b)2 + 3072x2 α β

)
.

where α = (4 + 4x)
1−q

q , β = (4 + 20x)
1−q

q , a = (4 + 12x), b = (4 + 44x).

One can now readily evaluate the expression for CSTRE D̃T
q (ρW4

(x)||ρB) in its

1 : 3 partition using D̃T
q (ρW4

(x)||ρB) =
∑

i γq

i
−1

1−q
. The 1 : 3 separability range of

the state ρW4
(x) is obtained as 0 ≤ x ≤ 0.1261 through identifying the zero of the

function limq→∞ D̃T
q (ρW4

(x)||ρB) [72].

4.3.3 Separability in the 1 : 4 partition of five qubit Werner-

like family involving W-states

The Werner-like one parameter family involving 5-qubit W-states is given by

ρW5
(x) = (1− x)

I32
32

+ x |W5〉 〈W5| . (4.67)

and its nonzero eigenvalues are

λ1 =
1− x

32
(31-fold degenerate), λ2 =

1 + 31x

32
. (4.68)

The AR q-conditional entropy for the state ρW5
(x), in its 1 : 4 partition, is given

by

ST
q (A|B) =

1

q − 1

(
1− 31

(
1−x
32

)q
+
(
1+31x
32

)q

14
(
1−x
16

)q
+
(
5+11x
80

)q
+
(
5+59x
80

)q

)
(4.69)
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In the limit q → ∞, the zero of ST
q (A|B) reveals that the state ρW5

(x) is separable

in the range (0, 0.1351) in its 1 : 4 partition.

The unitary UB which diagonalizes the four qubit marginal ρB is given by

UB =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 1
2

1
2

0 1
2

0 0 0 1
2

0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 3√
12

−1√
12

0 −1√
12

0 0 0 −1√
12

0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2√
6

0 −1√
6

0 0 0 −1√
6

0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1√
2

0 0 0 − 1√
2

0 0 0 0 0 0 0




The non-zero eigenvalues of the matrix ΓU which is unitarily equivalent to the

sandwiched matrix Γ =

(
I2 ⊗ ρ

1−q

2q

B

)
ρW5

(x)

(
I2 ⊗ ρ

1−q

2q

B

)
are found to be

γ1 =

(
1− x

32

)(
1− x

16

) 1−q

q

(28-fold degenerate), (4.70)

γ2 =

(
1− x

32

)(
5 + 11x

80

) 1−q

q

, γ3 =

(
1− x

32

)(
5 + 59x

80

) 1−q

q

,

γ4/5 =

(
1

4

)
(80)

−1

q

(
α a+ β b±

√
(α a+ β b)2 + 16384x2 α β

)
.

where α = (5 + 11x)
1−q

q , β = (5 + 59x)
1−q

q , a = (5 + 27x), b = (5 + 123x).
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One can now readily evaluate the expression for CSTRE using D̃T
q (ρW5

(x)||ρB) =
∑

i γq
i
−1

1−q
and obtain D̃T

q (ρW5
(x)||ρB) as a function of x. From the CSTRE criterion

one can obtain (0, 0.0724) as the separability range for ρW5
(x).

4.3.4 Separability in the 1 : 5 partition of six qubit Werner-

like family involving W-states

The Werner-like one parameter family involving 6-qubit W-state is given by

ρW6
(x) = (1− x)

I64
64

+ x |W6〉 〈W6| . (4.71)

where I64 denotes the 64× 64 identity matrix and |W6〉 is the 6-qubit W-state.

The non zero eigenvalues of the state ρW6
(x) and its 5-qubit marginal ρB are

respectively given by

λ1 =
1− x

64
(63-fold degenerate), λ2 =

1 + 63x

64
(4.72)

η1 = η2 = · · · η32 =
1− x

32
, η33 =

3 + 13x

96
, η34 =

3 + 77x

96
.

The AR q-conditional entropy for the state ρW6
(x) in its 1 : 5 partition is given

by

ST
q (A|B) =

1

q − 1

(
1− 63

(
1−x
64

)q
+
(
1+63x
64

)q

30
(
1−x
32

)q
+
(
3+13x
96

)q
+
(
3+77x
96

)q

)
(4.73)

On obtaining the zero of ST
q (A|B) in the limit q → ∞, one can obtain (0, 0.0857)

as the 1 : 5 separability range of the state ρW6
(x) using AR criterion.

The unitary matrix UB which diagonalizes the five qubit marginal ρB helps in

the evaluation of ΓU , the unitary equivalent of the sandwiched matrix Γ and the
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non-zero eigenvalues of ΓU (hence of Γ) are seen to be

γ1 =

(
1− x

64

)(
1− x

32

) 1−q

q

(60-fold degenerate), (4.74)

γ2 =

(
1− x

64

)(
6 + 26x

192

) 1−q

q

, γ3 =

(
1− x

64

)(
6 + 154x

192

) 1−q

q

,

γ4/5 =

(
1

4

)
(192)

−1

q

(
α a+ β b±

√
(α a+ β b)2 + 81920x2 α β

)
.

where α = (6 + 26x)
1−q

q , β = (6 + 154x)
1−q

q , a = (6 + 58x), b = (6 + 314x).

Using the relation D̃T
q (ρW6

(x)||ρB) =
∑

i γq

i
−1

1−q
, the expression for CSTRE D̃T

q (ρW6
(x)||ρB)

in its 1 : 5 partition can be evaluated. The variation of the different conditional

entropies including D̃T
q (ρW6

(x)||ρB) as a function of x is shown in Fig. 4.9. The

1 : 5 separability range of the state ρW6
(x) is obtained as 0 ≤ x ≤ 0.0857 through

identifying the zero of the function limq→∞ D̃T
q (ρW6

(x)||ρB) [72].

0.2 0.4 0.6 0.8 1.0
x

-4.´10-7

-2.´10-7

2.´10-7

4.´10-7

D
�

q
T
HΡW6
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Sq
T HAÈBL

SHAÈBL

Figure 4.9: Plot of the conditional entropies S(A|B) and
limq→∞ D̃T

q (ρW6
(x)||ρB) of ρW6

(x), in its 1 : 5 partition, as a function
of x.

The structure of γi obtained for N = 3, 4, 5, 6 helps in the generalization of

their form for any N ≥ 3 and this task is carried out in the following.
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4.3.5 1 : N − 1 separability in Werner like one parameter

family involving N-qubit W states

The state corresponding to Werner like one-parameter family involving N -qubit

W states is given by

ρWN
(x) = (1− x)

I⊗N
2

2N
+ x |WN〉 〈WN | .

In order to carry on with the task of identifying the 1 : N −1 separability range of

the state ρWN
(x) via the CSTRE method, the 2N eigenvalues γi of the sandwiched

matrix

Γ = (I2 ⊗ ρB)
1−q

2q ρWN
(x)(I2 ⊗ ρB)

1−q

2q

are to be evaluated and an observation of the structure of γi obtained for N =

3, 4, 5, 6 helps in their generalization for any N ≥ 3. It can be seen that the

eigenvalues of the sandwiched matrix Γ corresponding to 1 : N −1 partition of the

state ρWN
(x) are explicitly given by

γ1 =

(
1− x

2N

)[
1− x

2N−1

] 1−q

q

; (2N − 4) fold-degenerate

γ2 =

(
1− x

2N

)

N +

(∑N
j=3 2

j−2 − (N − 2)
)
x

N 2N−1




1−q

q

;

γ3 =

(
1− x

2N

)

N +

(∑N
j=3 2

j−2 + (N − 2)
(
2N−1 − 1

))
x

N 2N−1




1−q

q

; (4.75)

γ4/5 =
1

4

(
2N−1N

)−1

q

[
α a+ β b±

√
(α a− β b)2 + 22N+2(N − 1)x2 α β

]
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where

α =

[
N +

(
N∑

j=3

2j−2 − (N − 2)

)
x

] 1−q

q

,

β =

(
N +

[
N∑

j=3

2j−2 + (N − 2)(2N−1 − 1)

)
x

] 1−q

q

,

a = N +

(
N∑

j=3

2j−2 − (N − 2) + 2N−1

)
x, (4.76)

b = N +

(
N∑

j=3

2j−2 + 2N−1(2N − 3)− (N − 2)

)
x.

Substituting for γi in Eq. (4.25), a numerical estimation of the separability ranges

in the 1 : 2, 1 : 3, 1 : 4, 1 : 5 bipartitions of the noisy states ρW3
(x), ρW4

(x),

ρW5
(x), ρW6

(x) is carried out. The separability threshold value of the parameter

x obtained using CSTRE approach, along with the corresponding results from

PPT criteria and also those inferred via the positivity of the corresponding von

Neumann and the AR-conditional entropies are tabulated in (see Table 4.3). It

Table 4.3: The 1 : N −1 separability threshold value of the noisy parameter x
in the states ρWN

(x) for N = 3, 4, 5, 6, obtained through different separability
criteria.

Number von Neumann AR CSTRE PPT
of conditional q-conditional

qubits entropy entropy

3 0.7018 0.2727 0.2095 0.2095
4 0.6760 0.2 0.1261 0.1261
5 0.6618 0.1351 0.0724 0.0724
6 0.6567 0.0857 0.0402 0.0402

is readily seen that the result based on the positivity of the CSTRE is stronger

than the one obtained from the positivity of the von Neumann, AR conditional

entropies. Further, it is observed that the CSTRE result agrees with that identified

from the PPT criterion. In general, the CSTRE approach is found to lead to the
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separability range

0 ≤ x ≤ N

N + 2N
√
N − 1

(4.77)

for the 1 : N − 1 partitions of the state ρWN
(x) for N ≥ 3.

One can recall here that the noisy N -qubit state ρΦN
(x) in Eq. (4.57) is known

to be separable iff [73]

0 ≤ x ≤ 1

2N u1 u2 + 1
(4.78)

where u1 and u2 are the two largest Schmidt coefficients of the pure entangled state

|ΦN〉 under bipartition. In the specific case of (1 : N − 1) partition of the state

ρWN
(x), on substituting the corresponding Schmidt coefficients (see Eq. (4.29))

u1 =

√
N − 1

N
, u2 =

1√
N

in Eq. (4.78), one can recognize that the separability range reveals a clear agree-

ment with Eq. (4.77) obtained via the CSTRE approach. This establishes that

the CSTRE method serves as necessary and sufficient for inferring separability in

the Werner-like one parameter family of W states also.

4.3.6 1 : N − 1 separability in Werner-like noisy states in-

volving N-qubit GHZ states

To investigate the (1 : N − 1) separability range in the one parameter family of

noisy Werner-like N qubit GHZ states,

ρGHZN
(x) = (1− x)

I⊗N
2

2N
+ x |GHZN〉 〈GHZN | (4.79)

the eigenvalues Γi of the sandwiched matrix

Γ = (I2 ⊗ ρB)
1−q

2q ρGHZN
(x)(I2 ⊗ ρB)

1−q

2q (4.80)

are evaluated. Here ρB = Tr1[ρGHZN
(x)] is the subsystem density matrix of

ρGHZN
(x) obtained by tracing over its first qubit. The eigenvalues γi of the sand-

wiched matrix Γ for the cases N = 3, 4, 5, 6 are explicitly evaluated and they
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Table 4.4: The non-zero eigenvalues γi of the sandwiched matrix

(I2 ⊗ ρB)
1−q

2q ρGHZN
(x)(I2 ⊗ ρB)

1−q

2q for N = 3 to 6

Number γ1 γ2
of (2N − 4) fold 3 fold γ3

qubits (N) degenerate degenerate

N = 3
(
1−x
8

) (
1−x
4

) 1−q

q
(
1−x
8

) (
1+x
4

) 1−q

q
(
1+7x
8

) (
1+x
4

) 1−q

q

N = 4
(
1−x
16

) (
1−x
8

) 1−q

q
(
1−x
16

) (
1+3x
8

) 1−q

q
(
1+15x
16

) (
1+3x
8

) 1−q

q

N = 5
(
1−x
32

) (
1−x
16

) 1−q

q
(
1−x
32

) (
1+7x
16

) 1−q

q
(
1+31x
32

) (
1+7x
16

) 1−q

q

N = 6
(
1−x
64

) (
1−x
32

) 1−q

q
(
1−x
64

) (
1+15x
32

) 1−q

q
(
1+63x
64

) (
1+15x
32

) 1−q

q

are given in Table 4.4. On observing the structure of the eigenvalues γi in Table

4.4, it is possible to arrive at the form of the eigenvalues for any N ≥ 3.

γ1 =

[
1− x

2N

] [
1− x

2N−1

] 1−q

q

; (2N − 4)-fold degenerate;

γ2 =

[
1− x

2N

] [
1 +

(
2N−2 − 1

)
x

2N−1

] 1−q

q

; 3-fold degenerate

γ3 =

[
1 +

(
2N − 1

)
x

2N

][
1 +

(
2N−2 − 1

)
x

2N−1

] 1−q

q

. (4.81)

Substituting Eq. (4.81) in Eq. (4.25) we find that positivity of CSTRE as q → ∞
requires the following bound

0 ≤ x ≤ 1

2N−1 + 1
. (4.82)

on the noisy parameter x. This result agrees with the 1 : N − 1 separability range

obtained based on the commutative AR method too in the case of ρGHZN
(x). How-

ever, the convergence towards the threshold value of the parameter x → 1
2N−1+1

in the limit q → ∞ based on the CSTRE method is slower compared to that of

the AR approach. This is illustrated in Fig. 4.10 in the specific case of N = 6.
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Moreover, substituting the Schmidt coefficients u1 = u2 = 1/
√
2 associated with

0 10 20 30 40 50 60 70
q0.0

0.1

0.2

0.3

0.4

0.5

x

AR

CSTRE

Figure 4.10: Implicit plots of D̃T
q (ρGHZ6

(x)||ρB) = 0 as a function of q and the

AR q-conditional entropy ST
q (A|B) = 0 for ρGHZ6

(x) in its 1 : 5 partition. The
convergence of the parameter x to its bound 0.0303 under the CSTRE criterion

is slower compared to that of the AR method.

the (1 : N−1) partition of the GHZ state in Eq. (4.78), reveals that the range Eq.

(4.82) for the parameter x obtained from CSTRE approach is both necessary and

sufficient for the separability in the (1 : N − 1) bipartition of the state ρGHZN
(x).

Table 4.5 compares the threshold values of x, obtained using different separability

criteria, above which the state ρGHZN
(x) is entangled.

Table 4.5: Comparison of the 1 : N − 1 separability threshold value of the
noisy parameter x in the states ρGHZN

(x) using different separability criteria

Number von Neumann AR CSTRE PPT
of conditional q-conditional

qubits entropy entropy

3 0.6829 0.2 0.2 0.2
4 0.6276 0.1111 0.1111 0.1111
5 0.5846 0.0588 0.0588 0.0588
6 0.5536 0.0303 0.0303 0.0303
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4.4 Summary

In this chapter, the 1 : N − 1 separability range in the noisy N qubit states of the

pseudopure family and Werner-like family involving W, GHZ states1 is investigated

using the CSTRE approach. It is shown that in all the families of states considered

here, the 1 : N − 1 separability range obtained using CSTRE criterion matches

with the corresponding PPT separability range. In both pseudopure, Werner-like

family of states involving W states the AR-criterion is shown to yield a weaker

separability range than the one obtained using CSTRE, and PPT criteria. In both

these families involving GHZ states, the 1 : N − 1 separability ranges obtained

using AR-. CSTRE- and PPT criteria match with one another. The matching of

the results due to AR- and CSTRE criteria is attributed to the maximally mixed

nature of the single qubit marginal of the noisy families involving GHZ states. It

is shown that the positivity of the CSTRE in the limit q → ∞ is both necessary

and sufficient for the 1 : N − 1 separability in the one parameter family of noisy

pseudopure, Werner-like states.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1It is to be noted here that both PP and Werner-like noisy one parameter family of states
considered here are not permutation symmetric states, as they do not get restricted only to the
N + 1 dimensional symmetric subspace of the 2N Hilbert space of N -qubits. This is because
the completely random state I⊗N

2
/2N , which is mixed with the pure symmetric N qubit states

in ρPP

WN
(x), ρPP

GHZN
(x), ρWN

(x), ρGHZN
(x), is not confined to the N + 1 dimensional subspace of

permutation symmetric N qubit states



Chapter 5

One parameter family of N-qudit

Werner-Popescu states: Bipartite

separability using Conditional

quantum relative Tsallis entropy

In Chapters 2, 3, 4, it has been shown that CSTRE criterion gives strictest sep-

arability range in the 1 : N − 1 partition of the one parameter family of N-

qubit mixed W and GHZ states. In Chapter 3, an illustration of the utility of

CSTRE criterion to detect entanglement in qubit-qutrit and qutrit-qutrit states

has also been explored. It is of interest to check whether CSTRE approach can be

employed to obtain the bipartitie separability range of mixed multipartite states

with higher dimensions. In this Chapter, the CSTRE method is employed to ob-

tain the 1 : N − 1 separability range of the N -qudit Werner- Popescu type of

states. It is observed that in the limit q → ∞, a 1 : N − 1 separability range

that matches with the one obtained using an algebraic necessary and sufficient

condition [54, 55] for separability. Further, a comparison of the convergence of the

parameter x with increasing values of q in the implicit plots of AR q-conditional

entropy and CSTRE is carried out [74].

This Chapter is organized in three sections. Sec. 5.1 defines the one-parameter

family of N -qudit Werner-Popescu states and details the attempts in the literature

170
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to identify the bipartite separability in these states. The CSTRE criterion is

employed in Sec. 5.2 to obtain the 1 : N − 1 separability range of these states. A

comparison of CSTRE and AR-criterion for the state under consideration is also

carried out in Sec. 5.2. Section 5.3 contains the summary of the Chapter.

5.1 N-qudit Werner-Popescu states

The density matrix of the one parameter family of the Werner-Popescu-type state

with N -qudits [35] is defined as follows

ρdN(x) = ρ (A1, A2, . . . AN)

=
1− x

dN
Id(A1)⊗ Id(A2)⊗ . . . Id(AN) + x

∣∣ΦN
d

〉 〈
ΦN

d

∣∣ (5.1)

Here 0 ≤ x ≤ 1 and Id(Ai), i = 1, 2, . . . , N are d × d unit matrices belonging to

the subsystem space of each qudit Ai, i = 1, 2, . . . , N . The pure state
∣∣ΦN

d

〉
is

given by
∣∣ΦN

d

〉
=

1√
d

d−1∑

k=0

|k〉A1
⊗ |k〉A2

⊗ . . .⊗ |k〉AN
. (5.2)

and it is an analogue of GHZ state to d-level systems. Notice that when d = 2,

i.e., for qubits, k = 0, 1 and Eq. (5.2) reduces to the N -qubit GHZ state (See Eq.

(2.57))

|GHZN〉 =
1√
2
(|0102 · · · 0N〉+ |1112 · · · 1N〉)

The eigenvalues of ρdN(x) are given by

λ1 =
1− x

dN
[(dN − 1)fold degenerate],

λ2 =
1 + (dN − 1)x

dN
. (5.3)

The focus here is on finding the 1 : N−1 separability range of ρdN(x) using CSTRE

criterion.
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5.2 1 : N − 1 separability of ρdN(x) using CSTRE

Denoting the first qubit as subsystem A and the remaining N − 1 qubits as sub-

system B, the density matrix of the N − 1 qubit marginal is given by

ρB = = TrA1
ρ (A1, A2, . . . , AN) = TrA1

ρdN(x)

It can be seen that the eigenvalues ηi of the N − 1 qubit marginal ρB of ρdN(x),

obtained by reducing over the first qubit, are given by

η1 =
1− x

dN−1
[(dN−1 − d)− fold degenerate],

η2 =
1 + (dN−2 − 1)x

dN−1
[d− fold degenerate] (5.4)

Also, the subsystem ρA, the single qudit marginal of ρdN(x), corresponds to the

maximally mixed state Id/d, Id being d× d unit matrix.

In order to find the separability range of the state ρdN in its 1 : N − 1 partition

using CSTRE criterion, one needs to evaluate the eigenvalues γi of the sandwiched

matrix

Γ = (IA ⊗ ρB)
1−q

2q ρdN(x) (IA ⊗ ρB)
1−q

2q (5.5)

so that

D̃T
q

(
ρdN(x)||ρB

)
=

∑
i γ

q
i − 1

1− q
(5.6)

can be evaluated. Thus, in the evaluation of D̃T
q

(
ρdN(x)||ρB

)
, the non-negative

eigenvalues γi play a crucial role. Before generalizing the form of the eigenvalues

γi for N -qudits, an analysis of their form for different N(N = 2, 3, 4, 5) and d (d =

3, 4, 5, 6) is carried out to arrive at a generalization for any N , d [74]. Table 5.1

provides the explicitly evaluated non-zero eigenvalues of the sandwiched matrix Γ

for different values ofN and d [74]. It can be readily seen from Table 5.1 that, there

are only three distinct non-zero eigenvalues for the sandwiched matrix Γ. A careful

observation of the eigenvalues γi, i = 1, 2, 3 leads towards the generalization of

the eigenvalues of sandwiched matrix (IA ⊗ ρB)
1−q

2q ρdN(x) (IA ⊗ ρB)
1−q

2q for N ≥
3. The generalized eigenvalues γi of the sandwiched matrix Γ are given in the
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following [74]:

γ1 =

(
1− x

dN

)(
1− x

dN−1

) 1−q

q

,
(
dN − d2

)
− fold degenerate

γ2 =

(
1− x

dN

)(
1 +

(
dN−2 − 1

)
x

dN−1

) 1−q

q

,
(
d2 − 1

)
− fold degenerate

γ3 =

(
1 +

(
dN − 1

)
x

dN

)(
1 +

(
dN−2 − 1

)
x

dN−1

) 1−q

q

, non-degenerate. (5.7)

The 1 : N − 1 separability range of the state ρdN(x), for each combination of

N = 2, 3, 4, 5 and d = 3, 4, 5, 6 obtained using CSTRE approach allows us to

generalize this range to any N and d. Table 5.2 gives the values of x below which

the state ρdN(x) is separable. Using Table 5.2, the following 1 : N − 1 separability

range is conjectured for the one parameter family of N -qudit Werner-Popescu-

states [74].

0 ≤ x ≤ 1

1 + dN−1
(5.8)

One can note that the 1 : N − 1 separability range given in Eq.(5.8) is the same

as that obtained in Ref. [35], using the AR-criterion. In fact, the existence of

maximally mixed single qubit density matrix is the reason behind the equivalence

of separability ranges in CSTRE and AR-criteria. Such a situation occurs in the

case of symmetric one parameter family of noisy GHZ states (Sec. 3.3), psuedopure

family containing GHZ states (Sec. 4.2) andWerner-like family of states containing

GHZ states (Sec. 4.3.6). In all these states, the single qubit density matrix turns

out to be I2/2 thus implying that the non-commutative CSTRE approach yields

the results equivalent to commutative AR-approach [63]. It is important to notice

here that, using algebraic methods [54, 55] it has been shown that Eq.(5.8) is

actually the necessary and sufficient condition for separability.

Fig.5.1 gives an illustration of the monotonic decrease of D̃T
q (ρ

(3)
4 (x)||ρB) with

increasing x in the q → ∞. From Fig. 5.2 it can be seen that D̃T
q (ρ

(3)
4 (x)||ρB)

is negative for x > 0.5633 when q = 1 (separability range through von Neumann

conditional entropy), whereas it is negative for x > 0.0357 in the limit q → ∞
(separability range through CSTRE criterion).
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Figure 5.1: The variation of conditional form of sandwiched Tsallis relative
entropy D̃T

q (ρ
(3)
4 (x)||ρB) in the 1 : 3 partition of 4-qutrit Werner-Popescu states

ρ
(3)
4 (x) (N=4, d = 3), with respect to x, in the limit q → ∞.

Even though the separability range of ρdN(x), obtained using both CSTRE and

AR-conditional entropy are same, there is a rapid convergence of the parameter x

with increasing values of q in the case of AR q-conditional entropy. This feature

is illustrated in Figs. 5.2, 5.3. Table 5.3 provides the values of the parameter

x at which CSTRE, AR q-conditional entropy becomes zero, when q = 2, for

different d and N . From Table 5.3 one can easily note that the parameter x is

rapidly decreasing in AR method even for q = 2 thus confirming its relatively

rapid convergence in comparison with that of CSTRE in the limit q → ∞.

It is also evident from Table 5.2 that the separability range decreases with the

number of subsystems i.e., with the increase of N for any given d. This feature is

illustrated in Figs. 5.4, 5.5. A comparison of Figs. 5.4, 5.5 illustrates that for

any given N , the separability range decreases with increasing d. Thus a state of

the Werner-Popescu family is entangled throughout the parameter range x if its

constituents are qudits with larger d. More qudits in the state also helps the state

to be entangled in the whole parameter range.
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Figure 5.2: The comparison between implicit plots of D̃T
q (ρ

(3)
5 (x)||ρB) = 0 and

ST
q (A|B) = 0, as a function of q in the 1 : 4 partition of the 5-qutrit (N = 5,

d = 3) state ρ
(3)
5 (x). A rapid decrease in the value of x, in comparison with

D̃T
q (ρ

(3)
5 (x)||ρB) can be observed in the case of ST

q (A|B).
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q
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0.4
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x

AR

CSTRE

Figure 5.3: The comparison between implicit plots of D̃T
q (ρ

(5)
4 (x)||ρB) = 0

and ST
q (A|B) = 0, as a function of q for 4-partite (N = 4), 5-level (d = 5)

Werner-Popescu states ρ
(5)
4 (x).

5.3 Summary

In this Chapter, the CSTRE criterion is employed to find out the 1 : N − 1

separability range of N -party Werner-Popescu states containing d-level quantum

systems. It is observed that the 1 : N − 1 separability range obtained through

both CSTRE and AR q conditional entropy criteria match with each other for
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Figure 5.4: The graph of CSTRE D̃T
q (ρ

(3)
N (x)||ρB) = 0 versus x for different

values of N when d = 3. The decrease of the separability range with N , for any
given d is clearly seen.
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Figure 5.5: The graph of CSTRE D̃T
q (ρ

(4)
N (x)||ρB) = 0 versus x for different

values of N when d = 4.

these states. This separability range is seen to match with that obtained using

an algebraic necessary and sufficient condition for separability. The relatively

smoother convergence of the parameter x with respect to q in the limit q → ∞ is

observed in the case of implicit plots of CSTRE in comparison with the convergence

in the case of AR q-conditional entropy.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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Table 5.1: The non-zero eigenvalues γi of the sandwiched matrix (IA ⊗ ρB)
1−q

2q ρdN (x) (IA ⊗ ρB)
1−q

2q .

Number Number γ1 γ2 γ3
of of

(
dN − d2

)
fold

(
d2 − 1

)
fold

levels (d) parties (N) degenerate degenerate

3

2 -
(
1−x
9

) (
1
3

) 1−q
q

(
1+8x
9

) (
1
3

) 1−q
q

3
(
1−x
27

) (
1−x
9

) 1−q
q

(
1−x
27

) (
1+2x
9

) 1−q
q

(
1+26x
27

) (
1+2x
9

) 1−q
q

4
(
1−x
81

) (
1−x
27

) 1−q
q

(
1−x
81

) (
1+8x
27

) 1−q
q

(
1+80x
81

) (
1+8x
27

) 1−q
q

5
(
1−x
243

) (
1−x
81

) 1−q
q

(
1−x
243

) (
1+26x
81

) 1−q
q

(
1+242x
243

) (
1+26x
81

) 1−q
q

4

2 -
(
1−x
16

) (
1
4

) 1−q
q

(
1+15x
16

) (
1
4

) 1−q
q

3
(
1−x
64

) (
1−x
16

) 1−q
q

(
1−x
64

) (
1+3x
16

) 1−q
q

(
1+63x
64

) (
1+3x
16

) 1−q
q

4
(
1−x
256

) (
1−x
64

) 1−q
q

(
1−x
256

) (
1+15x
64

) 1−q
q

(
1+255x
256

) (
1+15x
64

) 1−q
q

5
(
1−x
1024

) (
1−x
256

) 1−q
q

(
1−x
1024

) (
1+63x
256

) 1−q
q

(
1+1023x
1024

) (
1+63x
256

) 1−q
q

5

2 -
(
1−x
25

) (
1
5

) 1−q
q

(
1+24x
25

) (
1
5

) 1−q
q

3
(
1−x
125

) (
1−x
25

) 1−q
q

(
1−x
125

) (
1+4x
25

) 1−q
q

(
1+124x
125

) (
1+4x
25

) 1−q
q

4
(
1−x
625

) (
1−x
125

) 1−q
q

(
1−x
625

) (
1+24x
125

) 1−q
q

(
1+624x
625

) (
1+24x
125

) 1−q
q

5
(
1−x
3125

) (
1−x
625

) 1−q
q

(
1−x
3125

) (
1+124x
625

) 1−q
q
(
1+3124x
3125

) (
1+124x
625

) 1−q
q

6

2 -
(
1−x
36

) (
1
6

) 1−q
q

(
1+35x
36

) (
1
6

) 1−q
q

3
(
1−x
216

) (
1−x
36

) 1−q
q

(
1−x
216

) (
1+5x
36

) 1−q
q

(
1+215x
216

) (
1+5x
36

) 1−q
q

4
(
1−x
1296

) (
1−x
216

) 1−q
q

(
1−x
1296

) (
1+35x
216

) 1−q
q

(
1+1295x
1296

) (
1+35x
216

) 1−q
q

5
(
1−x
7776

) (
1−x
1296

) 1−q
q
(
1−x
7776

) (
1+215x
1296

) 1−q
q
(
1+7775x
7776

) (
1+215x
1296

) 1−q
q
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Table 5.2: The comparison of the 1 : N − 1 separability range of the state
ρdN (x), for various compositions of d and N obtained through CSTRE criterion.

Number Number CSTRE
of of separability

levels (d) parties (N) range

3

2 (0, 0.25)
3 (0, 0.1)
4 (0, 0.0357)
5 (0, 0.0121)

4

2 (0, 0.2)
3 (0, 0.0588)
4 (0, 0.0153)
5 (0, 0.0039)

5

2 (0, 0.1666)
3 (0, 0.0384)
4 (0, 0.0079)
5 (0, 0.0016)

6

2 (0, 0.1428)
3 (0, 0.0270)
4 (0, 0.0046)
5 (0, 0.0007)

Table 5.3: The comparison of the value of x for q = 2, obtained through
different criteria

Criterion 3-level 4-level 5-level
3-party 4-party 5-party 3-party 4-party 5-party 3-party 4-party 5-party

CSTRE 0.3837 0.3114 0.2744 0.3108 0.2396 0.2116 0.2610 0.1943 0.1730
AR 0.3162 0.1889 0.1104 0.2425 0.1240 0.0623 0.1961 0.0890 0.0399



Chapter 6

Non-Spectral nature of the

Conditional version of

Sandwiched Tsallis Relative

Entropy

This chapter outlines a special characteristic of the CSTRE criterion which the

other entropic criteria do not have. It is shown that the CSTRE criterion can

characterize entanglement in those bipartite states where the knowledge of the

eigenvalues of the state and its marginals fail to identify the entanglement in the

state. This non-spectral feature of the CSTRE criterion is illustrated here using

two isospectral states, states having same local and global spectra (Sec. 6.1). An

attempt to characterize the hidden entanglement in several entangled states having

positive partial transpose, the so-called bound entangled states, is also carried out

in this Chapter (Sec. 6.2). A discussion on the results of the chapter is given in

Sec. 6.3.

179
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6.1 Illustration of Nonspectral nature of the CSTRE

criterion

Generalized entropies serve as a measure of disorder in a given quantum state and

negative values of traditional versions of generalized conditional entropies point

towards more global order than local order in a composite system. Separable states

are more locally ordered than globally as the eigen spectra of the whole composite

separable state is majorized by that of its reduced systems [43]. Negative values

of conditional entropies reflect the contrasting feature that local spectra need not

majorize global spectra in entangled states. However, separability criteria based

purely on the spectra of composite and reduced states are shown to be insuffi-

cient [43]. This feature was illustrated through an example of an isospectral 1 pair

of two qubit states ρAB and ̺AB, which share same local and global spectra [43].

The states are explicitly given by

ρAB =
1

3




1 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0




(6.1)

̺AB =
1

3




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2



. (6.2)

The non-zero eigenvalues of the state ρAB are,

λ1 =
2

3
, λ2 =

1

3
(6.3)

1Isospectral states are states of a composite system with same set of non-zero eigenvalues for
the composite density matrix and the subsystem density matrices.
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and the single qubit marginal obtained by tracing over either the first or the second

qubit of ρAB is seen to be diagonal. That is,

ρA = TrB ρAB, ρB = TrA ρAB, ρA = ρB

and

ρB =
1

3

(
2 0

0 1

)
= ρA (6.4)

It can be readily seen that S(A, B) = S(A) = S(B) and hence the von-Neumann

conditional entropies S(A|B) = S(A, B) − S(B), S(B|A) = S(A, B) − S(A) are

zero. Similarly, the isospectral nature of the state ρAB implies that the Abe-

Rajagopal q-conditional entropy defined by

ST
q (A|B) =

1

q − 1

[
1− Tr (ρAB)

q

Tr (ρB)q

]

turns out to be zero as Tr (ρAB)
q = Tr (ρA)

q.

To make use of the CSTRE criterion to detect the entanglement in the state

ρAB, the power of each diagonal element of ρB is raised by 1−q
2q

, and the sandwiched

matrix

Γ = (I2 ⊗ ρB)
1−q

2q ρAB (I2 ⊗ ρB)
1−q

2q .

is evaluated. The eigenvalues of the sandwiched matrix Γ are seen to be

γ1 = 2
1−q

q 3−
1

q , γ2 =
(
1 + 2

1−q

q

)
3−

1

q

and the Conditional Sandwiched Tsallis Relative Entropy of the state ρAB is given

by

D̃T
q (ρAB||ρB) =

∑
i γ

q
i − 1

1− q

=

(
1 + 2

1−q

q

)q
+ 21−q − 3

3(1− q)
. (6.5)

A plot of D̃T
q (ρAB||ρB) as a function of q is given in Fig. 6.1. It can be readily

seen through Fig. 6.1 that D̃T
q (ρAB||ρB) is negative for all values of q, except for
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Figure 6.1: A plot of CSTRE D̃T
q (ρAB||ρB) of the two qubit entangled state

in Eq. (6.1) as a function of q. It is readily seen that CSTRE is negative for all
values of q > 1 indicating that the state is entangled.

q = 1. Thus, CSTRE criterion is successful in identifying the entanglement in

an isospectral state whereas the spectra-dependent entropic criteria using von-

Neumann conditional entropy or AR q-conditional entropy are unable to detect

the entanglement in the isospectral entangled state ρAB.

It is worth observing here that ρAB does not commute with the state IA⊗ρB or

ρA ⊗ IB despite the subsystem density matrix ρA(= ρB) being diagonal. Thus the

non-commutative CSTRE criterion is able to capture the entanglement in states

having same local, global spectra and thereby exhibiting its non-spectral nature.

It can be readily seen that the partially transposed density matrix of the state

ρAB given by

ρTAB =
1

3




1 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0




has only one negative eigenvalue 1
6

(
1−

√
5
)
and hence the negativity of partial

transpose N(ρ) =
∣∣1
6

(
1−

√
5
)∣∣ = 0.206 thus being able to quantify the entangle-

ment in ρAB.
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The two-qubit state ̺AB is readily seen to be separable as it is equal to its own

partial transpose and being a two-qubit state, the positivity of partial transpose is

a necessary and sufficient condition for separability. The subsystem density matrix

̺A(= ̺B) is diagonal with eigenvalues 1
2
, 2
3
same as that of the non-zero eigenvalues

of ̺AB. While the von-Neumann conditional entropy and AR q-conditional entropy

are easily seen to be zero for this separable state, the vanishing of the conditional

sandwiched relative entropy D̃T
q (̺AB||̺B) is established below. In fact, the eigen-

values γi of the sandwiched matrix Γ = (I2 ⊗ ̺B)
1−q

2q ̺AB (I2 ⊗ ̺B)
1−q

2q are seen to

be

γ1 =

(
2

3

) 1

q

, γ2 =

(
1

3

) 1

q

(6.6)

leading to γq1 + γq2 = 1 and hence D̃T
q (̺AB||̺B) = 0. for all q ≥ 1. Notice that

the separable state ̺AB commutes with its reduced density matrices unlike the

entangled state ρAB thus emphasizing the utility of CSTRE criterion when non-

commuting global, local systems are involved.

Through the example of an isospectral entangled state, it is established that

the sandwiched conditional Tsallis entropy is capable of detecting entanglement

in isospectral states and hence the approach proves to be superior to any spectral

disorder criteria.

6.2 Bound Entangled States: An attempt to de-

tect entanglement using CSTRE criterion

According to Peres-Horodecki separability criterion, negative eigenvalues of the

partially transposed density matrix indicates entanglement in bipartite systems

of dimension 2 × 2 and 2 × 3. But in higher dimensions there exist some entan-

gled states with positive partial transpose and they are called bound entangled

states [23, 24].

The CSTRE criterion is shown to have non-spectral features [62] unlike its

commuting counterpart, the AR-criterion, thus being able to identity entanglement



Chapter 6. Non-Spectral nature of the CSTRE criterion . . . 184

in isospectral states [43]. In fact, with the observation [75] that quantum witnesses

constructed using spectral criteria cannot identify entanglement in the so-called

bound entangled states [23, 24], an effort has been made to identify entanglement

in several bound entangled states using the non-spectral CSTRE criterion.

1. Smolin State[76]: A four-qubit state ρS is defined by [76]

ρS =
4∑

i=1

∣∣φi
〉 〈
φi
∣∣
AD

⊗
∣∣φi
〉 〈
φi
∣∣
BC

(6.7)

where |φi〉 ∈ {|φ±〉 , |ϕ±〉} are the two qubit Bell states

∣∣φ±〉 = 1√
2
(|00〉 ± |11〉) ,

∣∣ϕ±〉 = 1√
2
(|01〉 ± |10〉) .

The state ρS is termed Smolin state and is shown to be bound entangled in

its 2 : 2 partition [76]. For the state ρS there exists only one eigenvalue 1
4

with four fold degeneracy. To check whether the new entropic separability

criterion based on conditional version of sandwiched Tsallis relative entropy

(CSTRE) detects entanglement in ρS, consider the two-qubit marginal of ρS

ρB = Tr1,2 ρS = Tr3,4 ρS =




1
4

0 0 0

0 1
4

0 0

0 0 1
4

0

0 0 0 1
4




(6.8)

As ρB is a maximally mixed state of the two-qubit system, it can be ex-

pected that the non-commutative CSTRE criterion gives the same results

as that of commutative AR-criterion and hence may not detect the bound

entanglement in the Smolin state ρS. In order to verify this, the eigenvalues

of the sandwiched matrix Γ = (I4 ⊗ ρB)
1−q

2q ρS(I4 ⊗ ρB)
1−q

2q are evaluated and

they are given by

γ1 = γ2 = γ3 = γ4 = 4
−1

q

As
∑4

i=1 γ
q
i = 4

(
4

−q

q

)
= 1, the expression for CSTRE given by D̃T

q (ρS||ρB) =
∑

i γq
i
−1

1−q
turns out to be zero for all values of q > 1. Thus one can conclude
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that CSTRE criterion fails to detect entanglement in the bound entangled

state ρS.

2. Horodecki’s 3 ⊗ 3 bound entangled state: The two-qutrit state ρH(x)

given by [77]

ρH(x) =
2

7
|φ〉 〈φ|+ x

7
σ+ +

5− x

7
σ−, a ∈ [0, 5] (6.9)

where

|φ〉 =
1√
3

2∑

k=0

|kk〉 , σ+ =
1

3
(|01〉 〈01|+ |12〉 〈12|+ |20〉 〈20|) ,

σ− =
1

3
(|10〉 〈10|+ |21〉 〈21|+ |02〉 〈02|) (6.10)

is found to be bound entangled state [77]. Here, |0〉, |1〉, |2〉 form the basis

vectors of the qutrit space. The distinct non-zero eigenvalues of the state

ρH(x) are given by

λ1 =
2

7
, λ2 = λ3 = λ4 =

5− x

21
and λ5 = λ6 = λ7 =

x

21

Both the single qutrit reduced states of ρH(x) are seen to be I3/3 and hence

are maximally mixed. It thus appears that the CSTRE criterion may not be

able to detect the bound entanglement in ρH owing to the maximally mixed

and hence commuting nature of the single qutrit marginals with ρH(x).

On evaluating the eigenvalues of the sandwiched matrix Γ = (I3⊗ρB)
1−q

2q ρH(x) (I3⊗
ρB)

1−q

2q , one gets,

γ1 =
2

7
3

−1+q

q (6.11)

γ2 =
(x− 5)

7
3

−1

q (3-fold degenerate)

γ3 =
x

7
3

−1

q (3-fold degenerate)
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One can now readily evaluate the expression for CSTRE given by

D̃T
q (ρH(x)||ρB) =

∑
i γ

q
i − 1

1− q

The Fig. 6.2 illustrates the variation of D̃T
q (ρH(x)||ρB) with respect to x

for different values of q. From Fig. 6.2 one can observe that D̃T
q (ρH(x)||ρB)

remains non-negative for each value of q. Owing to the fact that ρA = ρB =

I3/3, one gets D̃T
q (ρH||ρA) = D̃T

q (ρH||ρB) ≥ 0 for all q ≥ 1. Thus in the case

of ρH(x), the CSTRE is unable to detect the bound entanglement.

1 2 3 4 5
x

0.2

0.4

0.6

D
�

q
T
HΡH HxLÈÈΡBL

q=1000
q=100
q=10
q=1

Figure 6.2: The CSTRE D̃T
q (ρH(x)||ρB) as a function of x for different value

of q in the state ρH(x).

3. Horodecki’s 4 ⊗ 4 bound entangled state: The 4 ⊗ 4 bound entangled

state [78] ρH4 is given by

ρH4 =
3∑

i=0

qi |ψi〉 〈ψi| ⊗ ρ(i)

where

ρ(0) =
1

2
(|00〉 〈00|+ |ψ2〉 〈ψ2|) , ρ(1) =

1

2
(|11〉 〈11|+ |ψ3〉 〈ψ3|) , ρ(2/3) = |χ±〉 〈χ±|

with

∣∣ψ0/1

〉
=

(|00〉 ± |11〉)√
2

,
∣∣ψ2/3

〉
=

(|01〉 ± |10〉)√
2

, |χ±〉 =
(|00〉 ± |ψ0.〉)√

2±
√
2

,



Chapter 6. Non-Spectral nature of the CSTRE criterion . . . 187

The mixing parameters qi, i = 0, 1, 2, 3 are given by

{
p

2
,
p

2
,
(1− p)

2
,
(1− p)

2

}
with p =

√
2(

1 +
√
2
) .

On substituting the value of p, the distinct non-zero eigenvalues of the state

ρH4 are

λ1 = λ2 = 0.2071 and λ3 = λ4 = λ5 = 0.1464

The marginal ρB of ρH4 is seen to be

ρB = Tr1 ρH4 =




0.3535 0 0 0

0 0.1464 0 0

0 0 0.1464 0

0 0 0 0.3535




(6.12)

The eigenvalues of the sandwiched matrix Γ = (I4⊗ ρB)
1−q

2q ρH4 (I4⊗ ρB)
1−q

2q

are given by

γ1 =
(√

2− 1
)

2
−3

2q (2-fold degenerate)

γ2 =
(
1−

√
2
)

2
−3

2q (2-fold degenerate)

γ3 =
(
2
(
1−

√
2
))−1

q

(2-fold degenerate) (6.13)

On evaluating the expression D̃T
q (ρH4||ρB) =

∑

i γq

i
−1

1−q
for CSTRE, it can be

seen that D̃T
q (ρH4||ρB) remains non-negative for each values of q, thus being

unable to detect the bound entanglement in ρH4.

In order to evaluate the CSTRE D̃T
q (ρH4||ρA) with respect to the first sub-

system ρA, it is noticed that

ρA = Tr2 ρH4 =




0.2928 0 0 0

0 0.2071 0 0

0 0 0.2071 0

0 0 0 0.2928




(6.14)
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The eigenvalues of the sandwiched matrix Γ = (ρA ⊗ I4)
1−q

2q ρH4 (ρA ⊗ I4)
1−q

2q

are given by

γ1 =
1

2

(
1− 1√

2

) 1

q

(4-fold degenerate)

γ2 =

(
1√
2
− 1

2

) 1

q

(4-fold degenerate) (6.15)

On explicit evaluation of the CSTRE D̃T
q (ρH4||ρA) =

∑

i γq

i
−1

1−q
, it is observed

that D̃T
q (ρH4||ρA) also remains non-negative for each values of q quite similar

to its second subsystem counterpart D̃T
q (ρH4||ρB). Thus in the case of ρH4,

irrespective of the marginal under consideration, the CSTRE is unable to

detect the bound entanglement.

4. The two qutrit bound entangled state: The two qutrit bound entangled

state [23] is defined by

ρa =
1

1 + 8a




a 0 0 0 a 0 0 0 a

0 a 0 0 0 0 0 0 0

0 0 a 0 0 0 0 0 0

0 0 0 a 0 0 0 0 0

a 0 0 0 a 0 0 0 a

a 0 0 0 0 a 0 0 a

0 0 0 0 0 0 (1+a)
2

0
√
1−a2

2

0 0 0 0 0 0 0 a 0

a 0 0 0 a 0
√
1−a2

2
0 (1+a)

2




, 0 ≤ a ≤ 1

The distinct non-zero eigenvalues of the state ρa are given by

λ1 = λ2 = λ3 = λ4 = λ5 =
a

1 + 8a
and

λ6/7 =
1 + a (11 + 24a)± (1 + 8a)

√
7a2 − 4a+ 1

2 (1 + 8a)2
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The first qutrit marginal ρA = Tr2 ρa of the state ρa is seen to be diagonal

with diagonal elements (eigenvalues ρA)

η1 = η2 =
3a

1 + 8a
, η3 =

1 + 2a

1 + 8a

One can evaluate the eigenvalues γi of sandwiched matrix Γ = (ρA⊗I3)
1−q

2q ρa (ρA⊗
I3)

1−q

2q . The variation of D̃T
q (ρa||ρA) =

∑

i γq

i
−1

1−q
as a function of x for different

values of q is shown in the Fig.6.3.It is observed that D̃T
q (ρa||ρA) remains

non-negative for all values of q ≥ 1. Thus in the case of ρa by considering the

first qutrit marginal the CSTRE is unable to detect the bound entanglement.
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q=1

Figure 6.3: The CSTRE D̃T
q (ρa||ρA) as a function of x for different value of q

in the state ρa.

To check whether the CSTRE detects the bound entanglement by considering

second qutrit marginal, the marginal ρB of the state ρa is evaluated and it

is given by

ρB = Tr1 ρa =




1+5a
2+16a

0
√
1−a2

2+16a

0 3a
1+8a

0
√
1−a2

2+16a
0 1+5a

2+16a


 (6.16)

The eigenvalues of ρB are found to be

λ1 =
3a

1 + 8a
, λ2/3 =

1 + a(13 + 40a)± (1 + 8a)
√
(1− a2)

2(1 + 8a)2
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The unitary matrix that diagonalizes the marginal ρB is given by

UB =




1√
2

0 1√
2

0 1 0
1√
2

0 −1√
2




One can evaluate the eigenvalues γi of sandwiched matrix Γ = (I3⊗ρB)
1−q

2q ρa (I3⊗
ρB)

1−q

2q through the eigenvalues of the unitarily equivalent matrix ΓU =

(I3 ⊗ UB)Γ(I3 ⊗ UB)
†. The variation of D̃T

q (ρa||ρB) =
∑

i γq

i
−1

1−q
as a func-

tion of x for different values of q is shown in the Fig.6.4. It is observed that

D̃T
q (ρa||ρB) remains non-negative for all values of q ≥ 1. Thus in the case of

ρa, the CSTRE is unable to detect the bound entanglement.
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Figure 6.4: The CSTRE D̃T
q (ρa||ρB) as a function of x for different value of q

in the state ρa.

5. Another two-qutrit bound entangled state [79]: A two qutrit state

ρAB defined by [79]

ρAB =
4∑

i=1

λi |ϕi〉 〈ϕi| ,

with

λ1 =
3257

6884
, λ2 = λ3 =

450

1721
, λ3 =

27

6884
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and

|ϕ1〉 =
1√
2
(|00〉+ |11〉) , |ϕ2〉 =

a

12
(|01〉+ |10〉) + 1

60
(|02〉)− 3

10
(|21〉) ,

|ϕ3〉 =
a

12
(|00〉 − |11〉) + 1

60
(|12〉) + 3

10
(|20〉) ,

|ϕ4〉 =
1√
3
(− |01〉+ |10〉+ |22〉) , a =

√
131

2

(6.17)

is shown to be a bound entangled state [79].

The eigenvalues of the state ρAB are given by

λ1 =
3257

6884
, λ2 = λ3 =

450

1721
, λ4 =

27

6884

The first qutrit marginal ρA = TrB ρAB of ρAB is diagonal with eigenvalues

η1 = η2 =
6551

13768
, η3 =

333

6884

On obtaining the eigenvalues γi of the sandwiched matrix Γ = (ρA⊗I3)
1−q

2q ρAB (ρA⊗
I3)

1−q

2q , the expression for CSTRE given by D̃T
q (ρAB||ρA) =

∑

i γq

i
−1

1−q
can be

evaluated. It is observed that D̃T
q (ρAB||ρA) remains non-negative for each

values of q. Thus in the case of ρAB, by considering the first qutrit marginal

the CSTRE is unable to detect bound entanglement.

The second qutrit marginal ρB = TrA ρAB of ρAB is diagonal with eigenvalues

η1 = η2 =
3437

6884
, η3 =

10

6884

Explicit evaluation of the eigenvalues γi of the sandwiched matrix Γ = (I3⊗
ρB)

1−q

2q ρAB (I3 ⊗ ρB)
1−q

2q , lead to the evaluation of CSTRE D̃T
q (ρAB||ρB) =

∑

i γq
i
−1

1−q
and it is seen that D̃T

q (ρAB||ρB) ≥ 0 for all q ≥ 1. Thus in this case

also, the CSTRE is unable to detect bound entanglement in ρAB.
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6. 4 ⊗ 4 bound entangled state of Bennati et.al. [80]: A 4 ⊗ 4 bound

entangled state ρ4⊗4 is explicitly given by [80]

ρ4⊗4 =
1

24




1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 1

0 3 0 0 −1 0 0 0 0 0 0 −1 0 0 −1 0

0 0 1 0 0 0 0 −1 −1 0 0 0 0 1 0 0

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

0 −1 0 0 3 0 0 0 0 0 0 −1 0 0 −1 0

−1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 −1

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

0 0 −1 0 0 0 0 1 1 0 0 0 0 −1 0 0

0 0 −1 0 0 0 0 1 1 0 0 0 0 −1 0 0

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

−1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 −1

0 −1 0 0 −1 0 0 0 0 0 0 3 0 0 −1 0

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

0 0 1 0 0 0 0 −1 −1 0 0 0 0 1 0 0

0 −1 0 0 −1 0 0 0 0 0 0 −1 0 0 3 0

1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 1




There exist only one distinct, 6-fold degenerate non-zero eigenvalue λ = 1
6

for the state ρ4⊗4.

Both the subsystem density matrices ρA, ρB of ρ4⊗4 are maximally mixed and

are given by I4/4. On evaluating the expression for CSTRE D̃T
q (ρ4⊗4||ρB) =

∑

i γq

i
−1

1−q
where γi are the eigenvalues of the sandwiched matrix Γ = (I4 ⊗

ρB)
1−q

2q ρ4⊗4 (I4 ⊗ ρB)
1−q

2q , it is observed that D̃T
q (ρ4⊗4||ρB) remains non-

negative for all values of q ≥ 1. Thus in the case of ρ4⊗4 the CSTRE is

unable to detect the entanglement.

6.3 Summary

The features of the CSTRE criterion which can characterize entanglement in those

states where the knowledge of the local and global spectra is unable to do so

is outlined in this chapter. The non-spectral feature of the CSTRE criterion is

illustrated using a pair of isospectral states one of which is entangled and the other

is separable. While the von-Neumann conditional entropy and AR q-conditional

entropy are unable to characterize entanglement in the entangled isospectral state,

the conditional sandwiched relative entropy is shown to be negative for the state

for all values of q > 1. Using the result that only non-spectral witnesses are
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able to identify the hidden entanglement in bound entangled states, an attempt

is done to check whether CSTRE criterion can detect entanglement in bound

entangled states. Several well-known bound entangled states are subjected to

the CSTRE criterion but all the states considered showed non-negative CSTRE

thus not revealing their hidden entanglement through CSTRE criterion. It is

therefore concluded that the amount of non-spectrality in the CSTRE criterion is

insufficient to identify entanglement in bound entangled states. There is also a

possibility that at least some bound entangled state, not examined here, may reveal

its entanglement through CSTRE criterion and that remains an open problem.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗



Chapter 7

Conclusion

This concluding chapter summarizes the results in the thesis and gives a lead to

the possible open problems.

7.1 Summary of the Thesis

Chapter 1 The Introductory chapter of the thesis reviewed the important concepts es-

sential to understand the research work detailed in the subsequent chapters

of the thesis. The concept of Quantum entanglement through its presently

accepted definition is outlined. This includes the definition of entangled pure

as well as mixed states of a bipartite system. This is followed by the charac-

terization of entangled states through the negativity of conditional entropies.

An overview of the literature on entropic characterization of separability/en-

tanglement and the context of the present work is also given. The outline of

the contents of thesis is given towards the end of the Introductory Chapter.

Chapter 2 This Chapter begins with an introduction to the non-commuting generaliza-

tion of Tsallis relative entropy analogous to the non-commuting (sandwiched)

version of Rényi relative entropy [56, 57]. A conditional version of the sand-

wiched Tsallis relative entropy is defined (see Eq. 2.5) and its commuting

counterpart is recognized to be the Abe-Rajagopal q-conditional entropy [62].

It is shown that the negativity of CSTRE is sufficient to establish that the

194
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state is entangled [63]. Using this result, separability range in all possible

bipartitions of symmetric one-parameter family involving 3-, 4-qubit W-,

GHZ [49, 50] and WW̄ states is evaluated using CSTRE criterion [62, 63].

It is observed that for all the states considered, the 1 : 2, 1 : 3 CSTRE sep-

arability ranges match with the corresponding PPT separability ranges but

in the 2 : 2 partition of the symmetric one parameter family with 4-qubit

W, GHZ, WW̄ states, PPT criterion provides a stricter separability range

than the CSTRE criterion. For the one-parameter family involving GHZ

states, 1 : 2, 1 : 3 separability ranges obtained using AR-, CSTRE- and PPT

criteria match with one another. The equivalence of the separability ranges

due to AR- and CSTRE-criterion is attributed to the maximally mixed and

hence commuting nature of the single qubit marginal for the family involving

GHZ states. Similar situation, that is, equivalence of AR-, CSTRE- sepa-

rability ranges owing to the maximally mixed single qubit marginal occur

for the 1 : 3 partition of the family involving 4 qubit WW̄ states [63]. The

symmetric one parameter family of states involving 3-qubit WW̄ are found

to behave differently by not having a maximally mixed single qubit marginal

and the CSTRE providing a stricter 1 : 2 separability range compared to the

one due to AR-criterion. For the one-parameter family of states involving

W states also, the 1 : 2, 1 : 3 CSTRE separability ranges are stricter than

that due to AR-criterion and here too the the single qubit marginal is not

maximally mixed hence not commuting with the global state. Thus, it is

concluded that whenever the subsystem density matrix under consideration

is not maximally mixed thus not commuting with the global state, CSTRE

criterion fares better than its commuting counterpart, the AR-criterion.

Chapter 3 In Chapter 3, using the relevant results of Chapter 2 and obtaining the 1 : 4,

1 : 5 separability ranges using CSTRE criterion, the 1 : N − 1 separability

range in the symmetric one parameter family involving W, GHZ and WW̄

states are obtained [63]. It is clearly established, through the stricter sep-

arability range obtained using CSTRE criterion, that CSTRE criterion is

superior to AR-criterion in the case of the family containing W states. For

the symmetric one parameter family of states containing GHZ states, the

CSTRE- AR- and PPT criteria are found to be equivalent in discerning the
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1 : N − 1 separability range in this family with N ≥ 3. The equivalence of

AR-, CSTRE- and PPT criteria is also seen while obtaining the 1 : N − 1

separability range in the symmetric one parameter family of states involving

N -qubit WW̄ states with N ≥ 4 [63]. The utility of CSTRE criterion in

identifying bipartite separability/entanglement in one parameter families of

qubit-qutrit and qutrit-qutrit states is also illustrated in this chapter [63].

It has been found that one can use the positivity of conditional version of

sandwiched relative Rényi entropy (CSRRE) as a sufficient criterion for sep-

arability in symmetric one parameter families of states containing W, GHZ

and WW̄ giving results equivalent to the ones obtained using the positivity

of CSTRE [63].

Chapter 4 In chapter 4, 1 : N−1 separability range in two non-symmetric one parameter

families of noisy states involving W, GHZ states are obtained using CSTRE

criterion [72]. The two non-symmetric one parameter family of noisy states

considered are

1. N -qubit Pseudopure (PP) noisy states containing either W or GHZ

states as the pure part of the noisy state [69]

2. N -qubit generalization of Werner states containing either W or GHZ

states as the pure part of the noisy state [19]

For both families of states, when the pure part of the noisy mixture is

an N -qubit W state, the CSTRE criterion is seen to provide stricter 1 :

N − 1 separability range than that due to its commutative version, the AR-

criterion [72]. When the pure part of the noisy mixture in both the families

(PP and Werner-like) is an N -qubit GHZ state, the 1 : N − 1 separabil-

ity ranges obtained using CSTRE and AR-criteria match with one another.

For all the states considered namely PP family with W/GHZ states and

Werner-like family with W/GHZ states, the 1 : N − 1 CSTRE separability

range is seen to match with the corresponding PPT separability range. It

is illustrated that the matching of AR- and CSTRE criterion for both the

families involving GHZ states is due to the maximally mixed nature of the

single qubit marginal. For all the states under consideration, the CSTRE
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separability range is shown to be necessary and sufficient for separability in

the 1 : N − 1 partition [72].

Chapter 5 Chapter 5 illustrates the utility of CSTRE criterion in identifying the 1 :

N − 1 separability range in noisy one parameter family of N -qudits with its

pure part constituted by the N -qudit generalization of the GHZ state [74]. It

is established that the 1 : N−1 CSTRE separability range with the threshold

value of x (above which the state is entangled) being a function of both d,

N is equivalent to the one obtained using AR-criterion. The reason for this

equivalence is shown to be due to the maximally mixed nature of the single

qudit marginal of this so-called Werner-Popescu state [19, 20, 35]. In spite

of the fact that the 1 : N − 1 separability ranges in both AR- and CSTRE

criteria are equivalent, the mode of convergence of the parameter x in the

implicit plot of CSTRE (in the limit q → ∞) is shown to be smoother and

hence more stochastic than in the case of AR q conditional entropy [74].

Chapter 6 Chapter 6 illustrates a very peculiar feature of the CSTRE criterion which

is not found in other entropic separability criteria using von-Neumann con-

ditional entropy or q-conditional entropies. This feature is the non-spectral

nature of the CSTRE criterion which indicates that negativity of CSTRE

can detect entanglement that is not detected by criteria entirely dependent

on the global and local spectra (eigenvalues of the given composite state and

its subsystem density matrix) [62]. The non-spectral nature of the CSTRE

criterion is established through examining two isospectral states [43] one of

which is entangled and the other is separable. Though none of the spectral

separability criteria including the entropic ones could detect which among

the isospectral states is entangled, CSTRE is seen to be negative for all values

of q > 1 when the state is entangled. Motivated by the non-spectral nature

of the CSTRE criterion and observing the hypothesis [75] that only non-

spectral witnesses can detect bound entanglement in the so-called bound en-

tangled (or entangled states with Positive Partial Transpose) states [23, 24],

a honest effort has been put to identify entanglement in the bound entangled

states through CSTRE criterion. But the efforts towards that end has not
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yet been successful. A detailed account of the efforts, using CSTRE cri-

terion, to detect bound entanglement in some well-known bound entangled

states is given in Chapter 6.

7.2 Future Directions. . .

While the 1 : N − 1 separability range of one parameter families of N-qubit states

using CSTRE criterion matched exactly with that obtained through PPT crite-

rion, similar conclusion cannot be drawn about separability ranges of other bi-

partitions such as 2 : N − 2. For instance, the 2 : 2 separability range of ρW4 (x)

using CSTRE criterion is found to be [62] (0, 0.2105) but PPT criterion yielded

(0, 0.0808) as the 2 : 2 separability range of ρW4 (x). Similarly, for ρGHZ
4 (x) the

2 : 2 separability ranges obtained through CSTRE and PPT criterion are found

to be (0, 0.2105), (0, 0.0625) respectively. But an investigation into bipartitions

such as 3 : N − 3 and so on may yield results which are either identical, weaker

or stricter than that through PPT criterion. It is also to be noted here that PPT

and CSTRE separability criteria are of entirely different origins and there is no

reason to expect that the separability ranges obtained through them match with

each other in all bipartitions of an N-qubit state. It is indeed surprising that the

1 : N − 1 separability ranges of one parameter families of states that are inves-

tigated here, obtained using PPT and CSTRE criterion, matched exactly with

each other whereas the separability ranges in other bipartitions may not do so.

Having seen that CSTRE criterion provides separability ranges either identical or

weaker in comparison with PPT criterion, whether it can provide a separability

range stricter than that through PPT criterion in at least some bipartitions of an

N -qubit state still remains an open question.

It would be of interest to examine completely random multi-qubit states and

analyze the separability ranges in different bipartitions, obtained through CSTRE

and PPT criteria. While a numerical investigation on the set of all bipartite

mixed states has revealed [38] that PPT criterion is superior to AR criterion,

a comprehensive numerical survey on the PPT as well as CSTRE separability

ranges in different bipartitions of random states is warranted in order to identify
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the hierarchy between CSTRE and PPT criteria. Such a numerical survey, on the

same lines as in Ref. [38, 39], will also help in strengthening the results of the

research work carried out in this thesis.

It is to be recalled here that the conditional version of sandwiched Rényi rel-

ative entropy is as helpful as its Tsallis entropy counterpart, i.e., the CSTRE in

identifying whether a given mixed state is entangled or not (See Sec. 3.4.2). At

this juncture it is of importance to notice that a conditional version of Rényi rel-

ative entropy is defined in Ref. [81] by maximizing over the marginal state ρB.

While the results obtainable through such a maximization over ρB are of interest,

in view of the fact that it is operationally difficult to identify ρB that maximizes

the conditional entropy (either Rényi or Tsallis), the analysis here is restricted to

the case of the actual marginal ρB of the bipartite state ρAB. It would be interest-

ing to examine the consequences of maximization over marginals in the detection

of entanglement using conditional generalized entropies (Rényi or Tsallis) and at

present it remains an open problem.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

≪ ‡ ≫
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