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PREFACE



Preface

The study of spaces endowed with generalized metrics was initiated by P.Finsler in

1918. It is usualy considerd as a generalization of the Riemannian geometry. In fact B.

Riemannian his lecture in 1854 already suggested a possibility of studying more general

geometry than Riemannian geometry. But he said the geometrical meanings of quantities

appearing in such a genaralized space will not be clear and it can not produce any contri-

bution to the geometry consequently all people had neglected for about 60 years to study

such a geometry. Finsler started the study of such a geometry from the stand point of a

geometrization of the variation caluclus.

Subsequently, due to investigations by J. Synge, V. Wagner, L. Berwald, E. Cartan,

H. Rund, M. Matsumato and others, Finsler geometry becomes a separate branch of

differential geometry. In modern implementation classical Finsler geometry represents a

geometry of vectors fibre bundles over manifolds.

Finsler geometry is a Riemannian geometry without the quadratic restriction. It also

asserts itself in the applications, most notably in theory of relativity, control theory and

mathematical biology.

Conformal change is one of the important transformation which preserves the angle.

The theory of conformal changes in Riemanian geometry has been deeply studied locally

and intrinsically. As regards to Finsler geometry an almost complete local theory of

3
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conformal changes has been established.

M.S. Knebelman first defined the conformal theory of Finsler metrics, such that two

metric functions L and L are conformal if the length of an arbitary vector in the space

with the metric L is proportional to the length in the space with the metric L.

The detail study of the conformal theory was carried out by the following authors:

M. Hashinguchi (1976) given a special change named C-change, which is non homothetic

conformal change, satisfying C-condition. C.Shibata and M. Azuma (1993) have inves-

tigated C-Conformal change invariant tensor of Finsler metric. The author S. Kikuchi

(1998) give the condition for a finsler space to be conformally flat. H. Izumi gave the

condition for a Finsler space to be h-conformally flat. S.H. Abed (2006) introduce the

conformally β-change.

The whole work represented in the thesis has been partitioned into six

chapters.

The First chapter includes basic concepts of Finsler space and notations. It also

includes the basic concepts of Special Finsler spaces, Conformal change, Conformal β-

change, Nonholonomic frame, Weekly Berwald space, Randers change, Killing vector field,

Finslerian subspaces.

The Second chapter deals with the Conformal change of douglas space with (α, β)-

metrics. The conformal theory of Finsler metrics based on the theory of Finsler spaces by

M. Matsomoto, M. Hashiguchi in 1976 studied the conformal change of a Finsler metric

namely L(x, y) = eσ(x)L(x, y)[1]. The concept of Douglas space has been introducing by

M. Matsumoto and S. Bacso as a generalization of Berward spaces from stand point of

view of geodesic equation. Finsler space is said to be of Douglas space if Dij = Giyj−Gjyi

are homogeneous polynomial of degree three in yi. It is remarkable that a Finsler space
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is a Douglas space if and only if the Douglas tensor vanishes identically. In this chapter,

we proved the following results:

1. A Finsler space with second approximate matsumato metric (α, β)-metric L = α +

β + β2

α
+ β3

α2 is a Douglas space if and only if

i) α2 6= 0(modβ), b2 6= 1

k
: bi;j is written in the form

ii) α2 = 0(modβ) : n = 2 and bi;j is written in the form

where α2 = βδ, δ = di(x)yi, vo = vi(x)yi.

2. α2 6= 0(modβ), then the Douglas space with second approximate matsumato metric

L = α + β + β2

α
+ β3

α2 is conformally transformed to a Douglas space if and only if

transformation is homothetic.

3. A Finsler space F
n
(n > 2) which is obtained by a β-conformal change of Finsler

space F n with an special (α, β)-metric L = α− β2

α
+β and L = α+ εβ +k β2

α
(b2 6= 1)

of Douglas type, is also Douglas space.

4. A Finsler space F
n

(n > 2) which is obtained by conformal Kropina change of a

Kropina space F n with (α, β)-metric L = α2

α−β
is of Douglas type if and only if

Mij(x) = n(bjσi − biσj) is satisfied.

5. A Finsler space F
n

(n > 2) which is obtained by conformal Kropina change of a

Kropina space F n with (α, β)-metric L = α − β2

α
+ β(b2 6= 0) and L =

√
2αβ is of

Douglas type if and only if sij = 1
b2

(bisj − bjsi) is satisfied.

The Third chapter deals with the Weakly Berwald Finsler spaces and scalar flag

curvature. In 2004, R.Yoshikawa, Okubo and M.Matsumoto obtained the necessary and

sufficient conditions for some (α, β)-metric spaces to be Weakly-Berwald spaces. C.Ninwei
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worked on a class of (α, β)-metrics to be Weakly-Berwald[26]. In 2009, X.Cheng has

worked on (α, β)-metrics of scalar flag curvature with constant S-curvature[13]. In this

chapter, we proved the following results:

1. The two (α, β)-metrics, F = (α+β)2

α
and F =

√
c1α2 + c2αβ + c3β2 (where c1, c2

and c3 are constants) are of non-Randers type if Φ 6= 0(i.e, non-Riemannian).

2. Finsler space with (α, β)-metrics, F = (α+β)2

α
and F =

√
c1α2 + c2αβ + c3β2 (where

c1, c2 and c3 are constants) are of scalar flag curvature K = K(x, y). Then these

metrics are weak Berwald metrics if and only if such metrics are Berwald metrics

and K = 0. In this case, Finsler metrics must be locally Minkowskian.

3. On an n-dimensional manifold M , special (α, β)- metric F = α2

α−β
+ β is weakly-

Berwald metric if and only if rij = 0, si = 0.

4. On an n−dimensional manifold M , F = α2

α−β
+ β is weakly-Berwald and holds the

following conditions:

(a) F is of isotropic S-curvature, S = (n + 1)cF ;

(b) F is of isotropic mean Berwald curvature, E = n+1
2

cF−1h;

(c) β is killing 1-form with b = constant with respect to α, that is , rij = 0, si = 0;

(d) S=0;

(e) F is weakly-Berwald metric i.e., E=0.

Fourth chapter deals with the Nonholonomic frames In 1982, P.R. Holland studies

a unified formalism that uses a nonholonomic frame on space-time arising from consid-

eration of a charged particle moving in an external electromagnetic field([6][7]). In 1987

R.S. Ingarden was first to point out that the Lorentz force law can be written in this
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case as geodesic equation on a Finsler space called Randers space[8]. In 1995, the author

R.G.Bail a gauge transformation is viewed as a nonholonomic frame on the tangent bun-

dle of a four dimensional base manifold([9][10]). The geometry that follows from these

considerations gives a unified approach to gravitation and gauge sym metries. In the

above mentioned papers, the common Finsler idea used by the physicists R.G. Beil and

P.R. Holland is the existence of a nonholonomic frame on the vertical subbundle V TM

of the tangent bundle of a base manifold M . This nonholonomic frame relates a semi-

Riemannian metric (the Minkovski or the Lorentz metric) with an induced Finsler metric.

In 2001, P.L. Antonelli and I. Bucataru has been determined such a nonholonomic frame

for two important classes of Finsler spaces that are dual in the sense of Randers and

Kropina spaces([11][12]).Recently, Ioan Bucataru and Radu Miron has studied Finsler-

Lagrange geometry and applications to dynamical systems[13].

Considering the above concepts, we found out the following results :

1. Consider a Finsler space L2 = ( β4

(β−α)2
)(α2

β
) = α2β4

β(β−α)2
i.e. product of Infinite series

metric and Kropina metric for which the condition ρ−1β + ρ−2α
2 is true. Then

V i
j = X i

kY
k
j

is a Finslerian nonholonomic frame with X i
k and Y k

j are given by

X i
j =

√
−β4

(α − β)3
δi
j −

1

β6(4α − β)(4α2b2 − αβb2 − 3β2)
×{

α(α − β)8

[√
−β

(α − β)3
± 1

3

√
−9β4

(α − β)3
+

3β2(4α − β)(4α2b2 − αβb2 − 3β2)

(α − β)4

]}
(
−β3(4α − β)

(α − β)4
bi +

3βyi

α(α − β)4

)
.

(
−β3(4α − β)

(α − β)4
bj +

3β4yj

α(α − β)4

)
.

Y i
j = δi

j −
1

C2

(
1 ±

√
1 +

C2α2β

(2β + α)(α2 + αβ + β2)

)
bibj;
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C2 = − β4b2

(α − β)3
+

(4α2b2 − αβb2 − 3β2)2β2

3α(α − β)4
.

2. Consider a Finsler space (L3 = c1α
2β + c2β

3)(α2

β
) = α2(c1α2β+c2β3)

β
i.e. product of

Cube root metric and Kropina metric for which the condition ρ−1β + ρ−2α
2 is true.

Then

V i
j = X i

kY
k
j

is a Finslerian nonholonomic frame with X i
k and Y k

j are given by

X i
j =

√
2(c1α2 + c2β2)

β2
δi
j

− 1

4



(√

2c1α2 + c2β2 ±
√

2c21α2+c1c2β2+c2β2(c2b2+2c1)

c1

)
c2β2(c2b2 + 2c1)


(2c2βbi + 4c1yi) (2c2βbj + 4c1yj)]

Y i
j = δi

j −
1

C2

(
1 ±

√
1 − C2c1

c2(c1α2 − c2
2β

2)

)
bibj

C2 = (2c1α
2c2β

2)b2 +
b2(c2b

2 + 2c1)
2

c1

.

3. Consider a Finsler space L =
(
α − β + β2

α

)2

, for which the condition ρ−1β + ρ−2α
2

is true. Then

V i
j = X i

kY
k
j
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is a Finslerian nonholonomic frame with X i
k and Y k

j are given by

X i
k =

√
α2 − αβ + β2)(α2 − β)2

α4
δi
k −

α4

(b2α2 − β2)(√
(α2 − αβ + β2)(α2 − β2) ±

√
(α2 − αβ + β2)(α2 − β2) − α3 − 3αβ2 + 4β3

β

)
(

bi −
β

α2
yi

)(
bk −

β

α2
yk

)

Y k
j = δk

j − 1

C2
(1 ±

√
1 + α2βc2

α3+3αβ(−α+β)−2β3

b

k

bj,

C2 =
b2(α6 + αβ + β2)(α2 − β2)

α4
− (α3 − 3αβ2 + 4β3)(b2α2 − β2)2

α6β
.

In the Fifth chapter, we study L-Dually Randers Change of Matsumato metric

The (α, β)-metrics form an important class of Finsler metrics appearing iteratively

in formulating Physics, Mechanics and Seismology, Biology, Control Theory, etc, see for

instance. This class of metrics is were first introduced by Matsumoto [8]. An (α, β)-

metric is a Finsler metric of the form F := αφβ
α

where φ = φ(s) is a C∞ on (−b0, b0) with

certain regularity, α =
√

aij(x)yiyj is a Riemannian metric and β = bi(x)yi is a 1-form on

M . The Randers and Matsumoto metrics are special and significant (α, β)-metrics which

constitute a majority of actual research. The Matsumoto and Randers metrics defined by

φ(s) = 1
1−s

and φ(s) = 1 + s, respectively.

On the basis of the above work, we obtained the following results:

1. Let (M, F ) be a Randers change of Matsumoto space and b = (aijb
ibj)

1
2 the Rie-

mannian length of bi. Then if b2 = 1, the L-dual of (M, F ) is the space having the

fundamental function:

H(x, p) =

β∗2

2

[
1 −

[
−q
2

+
√

q2

4
+ p3

27

] 1
3

−
[
−q
2
−
√

q2

4
+ p3

27

] 1
3

+ A
3

]2

[
2 +

[
−q
2

+
√

q2

4
+ p3

27

] 1
3

+

[
−q
2
−
√

q2

4
+ p3

27

] 1
3

− A
3

]2
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2. Let (M, F ) be a Randers change of Matsumoto space and b = (aijb
ibj)

1
2 the Rie-

mannian length of bi. Then if b2 6= 1, the L-dual of (M, F ) is the space having the

fundamental function:

H(x, p) =

β∗2

2

[
1 − −H2+

√
H2

2−4H1H3

2H1
+ A1

4

]4

[
(b2 − 2)

[
−H2+

√
H2

2−4H1H3

2H1
+ A1

4

]2

+ 3

[
−H2+

√
H2

2−4H1H3

2H1
+ A1

4

]
+ (b2 − 1)

]2 .

The Last chapter deals with Conformal Change of Finsler Subspaces In 1976, M.

Hashiguchi studied the conformal change of Finsler metrics, namely, L̄ = eσ(x)L[1]. In

particular, he also dealt with the special conformal transformation named C-conformal

transformation. This change has been studied by H. Izumi, V. K. Kropina. In 2008,

S. Abed introduced the transformation L̄ = eσ(x)L + β, thus generalizing the conformal,

Randers and generalized Randers changes. Moreover, he established the relationships

between some important tensors associated with (M, L) and the corresponding tensors

associated with (M, L̄). He also studied some invariant and σ-invariant properties and

obtained a relationship between the Cartan connection associated with (M, L) and the

transformed Cartan connection associated with (M, L̄).

Considering the above concepts, we found out the following results :

1. If a vector field vi(x) is Killing in F n and F̄ n, then

Critv
tDr

j + Crjtv
tDr

i + vrD
r
ij − M l

ijvl|0 = 0.

2. If a vector field vi(x) is Killing in F n and F̄ n, then the vector vi(x, y) is orthogonal

to the vector Di(x, y).

3. Let bi(x) be parallel with respect to CΓ on F n. Then the subspace Fm is totally

geodesic, if and only if the subspace F̄m is totally geodesic.
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4. Let bi(x) be parallel with respect to CΓ on F n. Then the subspace Fm is totally

h-autoparallel, if and only if the subspace F̄m is totally h-autoparallel.

Finally, the thesis ends with a short list of bibliography.
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Notations and Symbols:

∂i =
∂

∂xi
,

∂̇i =
∂

∂yi
,

Mn − n − dimensional manifold,

L − Finsler metric,

gij − Metric tensor,

F n − Finsler space,

TM − Tangent bundle,

TP M − Tangent space,

hij − Angular metric tensor,

li − Normalized element of support,

cijk − Cartan′s tensor,

γi
jk − Christoffel symbol,

N i
j − Non linear connection,

| − h − covariant derivative w.r.t Cartan′s connection,

| − v − covariant derivative w.r.t Cartan′s connection,

: − Covariant derivative w.r.t Berwald′s connection,

12
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H i
hjk − Berwald′s curvature tensor,

Si
hjk − Cartan′s first curvature tensor,

P i
hjk − Cartan′s second curvature tensor,

Ri
hjk − Cartan′s third curvature tensor,

Gi
hjk − hv − curvature tensor,

Ri
jk − h − torsion tensor field,

α − Riemannian metric,

β − Differential 1 − form,

W i
j − Projective deviation tensor,

W i
jhk − Weyl′s projective curvature tensor,

N i − Normal vector,

Hα − Normal curvature tensor,

Hαβ − Second fundamental h − tensor,

Aij − Symmetric tensor field,

Pijk − Torsion tensor field,

K(P, y) − Flag curvature,

Mαβ − Second fundamental v − tensor,

Bi
α − Projection factor,

Di
hjk − Douglas tensor,

ηij − Minkowskian metric.
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Chapter 1

BASIC CONCEPTS AND
PRELIMINARIES

1.1 Introduction to Finsler Geometry

The study of spaces endowed with generalized metrics was initiated by P.Finsler in 1918. It

is usualy considerd as a generalization of the Riemannian geometry. In fact B. Riemannian

his lecture in 1854 already suggested a possibility of studying more general geometry than

Riemannian geometry. But he said the geometrical meanings of quantities appearing in

such a genaralized space will not be clear and it can not produce any contribution to

the geometry consequently all people had neglected for about 60 years to study such

a geometry. Finsler started the study of such a geometry from the stand point of a

geometrization of the variation caluclus. Subsequently, due to investigations by J. Synge,

V. Wagner, L. Berwald, E. Cartan, H. Rund, M. Matsumato and others, Finsler geometry

becomes a separate branch of differential geometry. In modern implementation classical

Finsler geometry represents a geometry of vectors fibre bundles over manifolds. Finsler

geometry is a Riemannian geometry without the quadratic restriction. It also asserts itself

in the applications, most notably in theory of relativity, control theory and mathematical

biology.

14
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However, it was L. Berwald [84] who first introduced a connection what is now called

Berwald connection and some non-Riemannian quantities in his connection and success-

fully extended the notion of Riemann curvature to Finsler spaces. Since then, Finsler

geometry has been developed gradually. From this point of view, Berwald is the founder

of differential geometry of Finsler spaces [131]. Further, E. Cartan laid the foundation

for Finsler geometry in 1933 by introducing a metrical connection in a view point that

a Finsler space is locally Euclidean and since then, important contributions to Finsler

geometry have resulted one after another on the analogy of Riemann geometry. Further,

Varga, Busemann, Rund and so on have made great contribution to Finsler geometry.

The theory of connections in fiber bundles, which had been developed in 1960s to treat

connections in Finsler geometry from more generalized and systematical standpoints.

Further, recently there have been an extensive study and advancement of theoretical

physics and engineering which need geometric interpretation of structures appearing in

these subjects and have stimulated the study of various generalizations of Riemannian

geometry.

1.2 Evolution of Finsler geometry

The evolution of Finsler geometry can be divided into four periods.

The first period of the history of Finsler geometry began in 1924, three geometricians

were almost simultaneously concerned with such a generalized space. J.H. Taylor and J.L.

Synge introduced a special parallelism. But L. Berwald(1883-1942) was the real originator

of Finsler geometry. In 1928, Taylor gave the name Finsler space to the space with such

generalized metric.

The second period of the history of Finsler geometry began in 1934, Cartan showed
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that it was indeed possible to define connections and a covariant derivative so that Ricci

lemma is preserved. On this basis Cartan developed a theory of curvature and practically

all subsequent investigations concerning the geometry of Finsler spaces were dominated

by this approach. Several mathematicians expressed the opinion that the theory had thus

attained its final form. Further, E. Cartan laid the foundations for Finsler geometry in

1933 by introducing a metrical connection in a viewpoint that a Finsler space is locally

Euclidean and since then, important contributions to Finsler geometry have resulted one

after another on the analogy of Riemannian geometry.

The third period of the history of Finsler geometry began in 1951 by H. Rund. He

introduced a new process of parallelism from the stand point of the so called Minkowski

geometry. The P i
hk(x, ẋ) were first introduced by Rund, but these quantities bear a close

relationship to similar coefficients introduced by Cartan. Cartan introduced parallelism

from the stand point of Euclidean geometry. The theory of E. Cartan which treats Finsler

spaces from an entirely different point of view has played the most predominant role in

the development of the subject and in order to do full justice to the methods of Cartan.

The fourth period of the history of Finsler geometry began in 1963, by H. Akbar. He

devoloped the Modern theory of Finsler spaces based on the geometry of connections of

fiber bundles. The reason of modernization is to establish a global definition of connections

in Finsler spaces and to re-examine Cartan’s system of axiomes. M. Matsumato came up

with his book Foundation of Finsler geometry and special Finsler spaces which drew the

attention towards the special Finsler spaces.
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1.3 Scope and Applications of Finsler geometry

Finsler geometry was firrst applied in gravitational theory and this application lead to cor-

rections to observational results predicted by general relativity. . The main application of

Finsler geometry is the geometrization of electromagnetism and gravitation. A Finslerian

approach to this geometrization was first introduced by Randers, but in his work Finsler

geometry was not mentioned, although it was used. Randers metric produces a geodesic

equation identical with Lorentz equation for a charged particle. But the metric depends

on q
m

and defines a different space for each type of particle. In 1934, Cartan showed that

it was indeed possible to define connection coefficients and a covariant derivative so that

Ricci lemma is satisfied. This development is closely related to the present application

of Finsler geometry in physics, namely, to geometrize both electromagnetism and gravity

simultaneously.

Finsler geometry uses families of Minkowski norms, instead of families of inner prod-

ucts, to describe geometry. This situation is entirely analogous to how Banach spaces

relate to Hilbert spaces. There has been a steady modernisation of the field during the

past decade. Within the last two years, several areas of Finsler geometry have experi-

enced accelerated growth. These include Finsler spaces of constant curvature, as well

as applications of Finsler methods to industrial and medical sectors. Theoretical topics

tentatively include Cartan spaces, classification of Berwald spaces, Finsler spaces of con-

stant flag curvature, Finsler-Einstein metrics Finslerian volumes and measures, geodesic

flows, Kobayashi metrics, Lagrange spaces, metric geometry, projective invariants, rigidity

theorems.

Finsler geometry describes the geometry of a manifold M through tensor fields which

live on the tangent bundle TM of the manifold and not on the manifold itself. Rather
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then considering only the points of M, the tangent bundle consists of the points and all

directions of M. The mathematical structure offered by the tangent bundle will be crucial

for the review of standard Finsler spaces and especially for our extension of this framework

to physical Finsler spacetimes and the analysis of physics on Finsler spacetimes.

The applications of Finsler geometry in physics fall basically into two subjects. On

the one hand it appears as an effective geometric description of point particle mechanics,

point particle limits of field theories, like ray theory in media, and as a geometric descrip-

tion of fluid mechanics. On the other hand there are attempts to use Finsler geometry as

the geometry of spacetime which describes gravity. We will mention the two most promi-

nent Finsler length measures in this context, which include not only a metric, but also a

vector field as building ingredients; we will encounter some work where Finsler geometry

is used as a phenomenological tool to describe dark matter, dark energy, as well as quan-

tum gravity effects and we discuss approaches to find field equations determining Finsler

geometries dynamically. The applications of Finsler geometry as spacetime geometry give

rise to a number of questions concerning the equations used to determine the geometry of

spacetime, the existence of the geometric objects appearing, the description of observers

and the coupling of matter fields. Finsler spacetimes provide a clear notion of causality

which is encoded into the geometry, a precise definition of observers and their measure-

ments, field theories coupled to the geometry and gravitational dynamics which determine

the geometry of spacetime from its matter field content. The latter is constructed in such

a way that, in case the Finsler geometry is identical to metric geometry, one recovers all

the standard field theories known from general relativity. In this sense Finsler spacetimes

become viable nonmetric geometric backgrounds for physics.
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1.4 Geometry of Finsler spaces

The term Finsler space evokes in most mathematicians the picture of an impenetra-

ble forest whose entire vegetation consists of tensors. Finsler spaces were discovered by

Riemann in his lecture ber die Hypothesen, welche der Geometrie zu Grunde liegen in

1854. The goal which Riemann set for himself was the definition and discussion of the

most general finite-dimensional space in which every curve has a length derived from

an infinitesimal length or line element. In modern terminology Riemann’s approach is

this. Let a differentiate manifold M of a certain class be given. In any local coordinate

system (x1, ...., xn) = (x) a length F (x, dx) must be assigned to a given line element

(x, dx) = (xi, ....., xn; dx, ....., dxn) with origin x. If x(t) is a smooth curve in M then∫
F (x, ẋ)dt is its length. In order to insure that the length of a curve is positive and

independent of the sense in which the curve is traversed, Riemann requires F (x, dx) > 0

for dx 6= 0 and F (x, dx) = F (x,−dx). Next Riemann assumes that the length of the

line element remains unchanged except for terms of second order, if all points undergo

the same infinitesimal change. This amounts to the condition F (x, kdx) = kF (x, dx)

for k > 0. Nowadays we rather justify this condition by requiring that a change of the

parametrization of the curve does not change its length. Riemann then turns immediately

to the special case where

F (x, dx) = [Σgik(x)dxidxk]
1
2 (1.4.1)

that is, to those spaces which are now called Riemann spaces. The general case is passed

over with the following remarks the next simplest case would comprise the manifolds, in

which the line element can be expressed as the fourth root of a bi-quadratic differential

form. The investigation of these more general types would not require any essentially

different principles, but it would be time consuming and contribute comparatively little
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new to the theory of space, because the results cannot be interpreted geometrically.

Here is one of the few instances where Riemann’s feeling was wrong. Nevertheless the

passage had a great influence: the general case was for a long time entirely neglected,

and when it was taken up the principles of Riemannian geometry were applied. The

results thus obtained are not different enough to enrich geometry materially, moreover

they frequently do not lead themselves to a have geometric interpretation.

1.5 Review of Research and Development

The development of research in Finsler spaces which is carried out by the following na-

tional and internationl mathematicians. M.S. Knebelmen (1929)-Conformal geom- etry

of generalized metric spaces. Y. Ichijyo and M. Hashinguchi (1940)- On locally flat gen-

eralised (α, β) − metric. H. Rund (1959)- The differential geometry of Finsler spaces.

B.N.Prasad B.N Gupta and D.D. Singh (1961) Conformal transformation in Finsler spaces

with (α, β)−metric. M. Hashinguchi (1976)-On Conformal transformation of Finsler met-

ric. H. Izumi- (1977) Conformal transformations of Finsler spaces. I.Tensor. P.N. Pandey

(1978)- Groups of conformal transformations of conformally related Finsler manifolds. H.

Izumi (1980)- Conformal transformations of Finsler spaces. II.Tensor. R. Miron and M.

Hashiguchi (1981)- Conformal Finsler connections. U.P. Singh and A.K. Singh (1985)-

On Conformal transformations of Kropina metric. M. Matsumato(1986)-Foundations of

Finsler geometry and special Finsler spaces. R. Miron (1988)- The geometry of Cartan

spaces. M. Matsumato. C. Shibata and M. Azuma (1993)-C-Conformal invarient tensors

of Finsler metrics, H.G. Nagaraja, C.S. Bagewadi and H. Izumi (1995)-On infinitastimal

h-Conformal motion of Finsler metric, F. Ikeda (1997)-Criteria for Conformal flatness of

Finsler spaces, Yong-Duck Lee (1997)-Conformal transformations of difference tensors of
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Finsler space with an (α, β)−metric, Y.D. Lee,(1997)- Conformal transformations of dif-

ference tensor of Finsler space with an (α, β)−metric. M. Matsumoto (1999)- Conformally

closed Finsler spaces. B.N. Prasad and A.K. Diwedi (1999)-Conformal change of three-

dimentional Finsler space. S.I. Hojo M. Matsumoto and K. Okubo (2000)- Theory of Con-

formally Berwald Finsler spaces and its applications to (α, β)−metric. D. Bao, S.S. Chern

and Z. Shen(2000)-An intoduction to Riemann-Finsler geometry. S.K. Narasimhamurthy

and C.S. Bagewadi (2004)-C-Conformal special Finsler space admitting a parallel vector

field. X.Cheng and Z. Shen (2005)-Sub-manifolds of h-Conformally flat Finsler space.

S.H.Abed (2006)- conformal β-change in Finsler spaces. S.K. Narasimhamurthy, C.S.

Bagewadi and H.G. Nagaraja (2007)-On Infinitesimal C-Conformal motion of special

Finsler space. S.H.Abed (2008)- Cartan connection associated with β-conformal change

in Finsler geometry. Abed and A. Soleiman (2008)- A global theory of conformal Finsler

geometry. M.K. Gupta and P.N. Pandey (2009)-Hypersurfaces of conformally and h-

Conformally related Finsler spaces. N.L. Youssef, S.H. Abed S.G. Elgendi (2009)- Gen-

eralised β-conformal change of Finsler metrics. S.K. Narasimhamurthy, S.T. Aveesh,and

Pradeep kumar (2009)-On-Curvature Tensor of C3 -Like Conformal Finsler space. S.K.

Narasimhamurthy and G.N. Latha kumari (2010)- On a hypersurface of a spe- cial Finsler

space with a metric L = α +β + β2

α
. A. Tayebi and B. Najafi (2012)- On mth-root Finsler

metrics. A. Tayebi, E. Peyghan and A. Shahbazinia (2012)-On generalized mth-root

Finsler metrics. S.K. Narasimhamurthy H. Anjan kumar and Ajith (2012)-The study of

Cartan space with Randers metric. S.K. Narasimhamurthy and Vasantha. D (2012)-Some

contributions to Finsler spaces with (α, β) − metric. S.K. Narasimhamurthy and Ajith

(2013)-A study on Conformal Finsler spaces.
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1.6 Finsler Space Structure

Definition 1. A Finsler metric on M is a function L : TM → [0,∞) with the following

properties:

i) L isC∞ on TM0,

ii) L is positively 1 − homogeneous on thefibers of tangent bundle TM, and

iii) The Hessian of F 2 with element gij(x, y) =
1

2
∂̇i∂̇jL

2, is regular on TM0,

i.e., det(gij 6= 0).

The pair (Mn, L) is then called a Finsler space. L is called fundamental function and gij

is called fundamental tensor.

Let Cijk = 1
2

∂gij

∂yk be Cartan tensor. Consider the Finsler space F n = (Mn.L) equipped

with an (α, β)-metric L(α, β). Let γi
jk denote the Christoffel symbols in the Riemannian

space (Mn, α). Denote by bi;j, the covariant derivative of the vector field bi with respect

to Riemannian connection γi
jk, i.e., bi;j = ∂bi

∂xj − bkγ
i
jk.

Example 1. Let Mn be a real n-dimensional differentiable manifold endowed with a

Riemannian metric g and a differentiable 1-form ω. gij(x) and ωj(x) be the components

of g and ω with respect to the local chart (U, φ, Rn) and let L be a real function defined

on φ(U) × Rn by

L(xi, yi) = ωi(x)yi +
1

2
(gij(x)yiyj)

1
2 .

Clearly L is a global function on TM given locally by the above expression.

Moreover, L satisfies the homogeneity property and on an open submanifold A of TM

satisfies

Rank(∂̇i∂̇jL
2/2) = n.
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Thus, L is the fundamental function of Finsler space F n = (TM, L) and this space is

called Randers space.

1.7 Cartan tensor and the generalized Christoffel sym-

bols

From the metric tensor, we construct a tensor Cijk by differentiating partially with respect

to yk. The tensor Cijk is defined by

Cijk =
1

2
∂̇kgij

=
1

4
∂̇i∂̇j ∂̇kL

2. (1.7.1)

This tensor is known as (h)hv-torsion tensor or Cartan tensor. It is positively homoge-

neous of degree-1 in yi and symmetric in all its indices. By Euler’s theorem on homoge-

neous functions, we get

(a) Cijky
i = Cjkiy

i = Ckijy
i = 0,

(b) Ci
jky

j = Ci
kjy

j = 0, (1.7.2)

where Ci
jk is the associate tensor of Cijk, defined as

Ci
jk = gihCjhk. (1.7.3)

which is also positively homogeneous of degree −1 in yi and symmetric in its lower indices.

The torsion vector Ci is defined by Ci = Ci
jkg

jk.

The angular metric tensor hij is defined as

hij = gij − lilj = L(∂̇i∂̇jL), (1.7.4)
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where li = ∂̇iL. The tensor hij is positively homogeneous of degree 0 and satisfies hijy
i = 0.

Let us define the generalized Christoffel symbols of the first kind and the second kind

as in Riemannian geometry:

(a) γi
jk = gihγjhk,

(b) γjhk =
1

2
{∂kgjh + ∂jgkh − ∂hgjk} .

 (1.7.5)

Example 2. Let Mn be a real n-dimensional differentiable manifold endowed with a

Riemannian metric g and a differentiable 1-form ω. Let H be a closed subset of φ(U)×Rn

consisting of all points (xi, yi) such that ωi(x) = 0. Let L(xi, yi) =
gij(x)yiyj

ωi(x)yi be the real

valued function defined on the open set U∗ = φ(U)×Rn−{H}. Let B denote the union of

all open sets φ−1(U∗). It is clear that L satisfies the homogeneity property on B and sat-

isfies Rank(∂̇i∂̇jL
2/2) = n on an open submanifold A of B. Then the pair F n = (TM, L)

is a Finsler space called Kropina space.

Example 3. Let Mn be a real n-dimensional differentiable manifold endowed with a

Riemannian metric g and a differentiable 1-form ω, gij(x) and ωj(x) be the components

of g and ω with respect to the local chart (U, φ, Rn) and let L be a real function defined

on φ(U) × Rn by

L(xi, yi) = ωi(x)yi +
1

2
(gij(x)yiyj)

1
2 . (1.7.6)

Clearly L is a global function on TM given locally by the above expression. Moreover, L

satisfies the homogeneity property and on an open submanifold A of TM satisfies

Rank(∂̇i∂̇jL
2/2) = n. (1.7.7)

Thus, L is the fundamental function of Finsler space F n = (TM, L) and this space is

called Randers space.
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1.8 Finsler connections

A Finsler connection FΓ is defined by a triad (F i
jk, N

i
j , V

i
jk), where

(1) (F i
jk) are the connection coefficients of h-connection which obey the transformation

law

F̄ l
mp = F i

jk

∂x̄l

∂xi

∂xj

∂x̄m

∂xk

∂x̄p
+

∂x̄l

∂xi

∂2xi

∂x̄m∂x̄p
. (1.8.1)

(2) N i
j are the connection coefficients of non-linear connection which obey the transfor-

mation law

N̄ l
m = N i

j

∂x̄l

∂xi

∂xj

∂x̄m
+

∂x̄l

∂xi

∂2xi

∂x̄m∂x̄p
ȳp. (1.8.2)

(3) V i
jk are the connection coefficients of v−connection which are components of a tensor

field of (1,2) type and obey the transformation law

V̄ l
mn = V i

jk

∂x̄l

∂xi

∂xj

∂x̄m

∂xk

∂x̄n
. (1.8.3)

For a given connection, the h− and v−covariant derivatives of any tensor T i
j are given

by

T i
j|k = δkT

i
j + T r

j F i
rk − T i

rF
r
jk, (1.8.4)

and

T i
j |k = ∂̇kT

i
j + T r

j V i
rk − T i

rV
r
jk, (1.8.5)

where δk = ∂k − Nh
k ∂̇h.

The connection formulae for covariant derivatives of a contravariant vector X i are

given by

X i
|j|k − X i

|k|j = XrRi
rjk − X i

|rT
r
jk − X i|rRr

jk,

X i
|j|k − X i|k|j = XrP i

rjk − X i
|rV

r
jk − X i|rP r

jk,

X i|j|k − X i|k|j = XrSi
rjk − X i|rSr

jk. (1.8.6)
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These are called the Ricci identities for the Finsler connection. Here we get three kinds

of curvature tensors:

h−curvature R2 = (Ri
hjk),

hv−curvature P 2 = (P i
hjk),

h−curvature S2 = (Si
hjk),

and five kinds of torsion tensors: (v)h−torsion R1 = (Ri
jk),

(v)hv−torsion P 1 = (P i
jk),

(v)v−torsion S1 = (Si
jk),

(h)h−torsion T = (T i
jk),

(h)hv−torsion V = (V i
jk).

It is to be noted that the v-connection (V i
jk) plays also a role of torsion tensor and

T i
jk = Γ∗i

jk − F i
kj, P i

jk = ∂̇kN
i
j − F i

kj, Si
jk = V i

jk − V i
kj.

The deflection tensor D = (Di
j) of a Finsler connection is given by

Di
j = yi

|j = −N i
j + yrF i

rj. (1.8.7)

In the theory of Finsler spaces two Finsler connections BΓ and CΓ have been playing

dominant role from the time of their introduction.

1.8.1 Berwald connection

The Berwald connection BΓ = (Gi
jk, G

i
j, 0) is uniquely determined from the metric func-

tion L by the system of axioms:

(B1) L-metrical: L|i = 0,

(B2) (h)h-torsion T = 0,
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(B3) Deflection D = 0,

(B4) (v)hv-torsion P 1 = 0,

(B5) v-connection is flat: V i
jk = 0.

Berwald connection parameters Gi
jk are defined by

Gi
jk = ∂̇j ∂̇kG

i, (1.8.8)

where

Gi =
1

2
γi

jky
jyk. (1.8.9)

Since the christoffel symbols of the first kind as well as of the second kind are positively

homogeneous of degree 0 in yi, Gi are positively homogeneous of degree 2 in yi. In view

of (1.8.8) the parameters Gi
jk are positively homogeneous of degree 0 in yi.

Berwald’s covariant derivatives of an arbitrary tensor T i
j with respect to BΓ are given

by

BkT
i
j = ∂kT

i
j − (∂̇hT

i
j )G

h
k + T r

j Gi
rk − T i

rG
r
jk (1.8.10)

and

T i
j.k = ∂̇kT

i
j , (1.8.11)

where h- and v-covariant derivatives with respect to BΓ are denoted by Bk and . respec-

tively and Gi
j = ∂̇jG

i.

Transvecting (1.8.8) by yj and using Euler’s theorem on homogeneous functions, we have

(a) Gi
jky

j = Gi
k

(b) Gi
jy

j = 2Gi.

In view of the homogeneity of Gi
jk in yi, Gi

j are positively homogeneous of degree 1 in

yi.
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Berwald connection parameters Gi
jk do not form the components of a tensor but its

partial derivatives with respect to yk constitute the components of a tensor. This tensor

is denoted as Gi
hjk. Thus

Gi
hjk = ∂̇h∂̇kG

i
j. (1.8.12)

This tensor is symmetric in all its lower indices and positively homogeneous of degree -1

in yi. In view of Euler’s theorem, we get

Gi
hjky

h = Gi
jhky

h = Gi
jkhy

h = 0. (1.8.13)

The Berwald h-coveriant derivatives of yi, yi and L vanish identically, i.e.

a)Bky
i = 0, b)Bkyi = 0, c)BkL = 0.

But the Berwald covariant derivative of the metric tensor gij does not vanish, in

general, i.e. Bgij 6= 0. It is given by

Bkgij = yrG
r
ijk

. The h-covariant differentiation with respect to BΓ and partial differentiation with

respect to yj commute according as

∂̇j(BkX
i) − Bk(∂̇jX

i) = XrGi
rkj. (1.8.14)

The Ricci commutation formulae for Berwald connection are given as follows:

BkBhX
i − BhBkX

i = XrH i
rhk −

(
∂̇r

)
Hr

hk, (1.8.15)

where

H i
hjk = ∂kG

i
hj − ∂jG

i
hk + Gr

hjG
i
rk + Gr

hkG
i
rj + Gi

rhkG
r
j − Gi

rhjG
r
k

The tensor H i
jkh is Berwald curvature tensor. This tensor is skew-symmetric in its last

two lower indices and positively homogeneous of degree zero in yi. The tensors H i
kh and
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H i
jkh are related by

H i
kh = H i

jkhy
j. (1.8.16)

Transvection of H i
jk by yj gives the deviation tensor H i

k, i.e.

H i
k = H i

jky
j. (1.8.17)

Tensors H i
jkh , H i

jk and H i
j are also related by

(a)H i
jkh = ∂̇jH

i
kh, (b)H i

jk =
1

3
(∂̇jH

i
k − ∂̇kH

i
j)

Contraction of the indices i and j in H i
jkh , H i

jk and H i
j yields

(a)Hkh = H i
ikh, (b)Hk = Hk − H i

ik, (c)H =
1

n − 1
H i

i .

Since contractions of the indices do not change the homogeneity in yi, the tensor Hrk,

the vector Hh and the scalar H are homogeneous of degree 0,1 and 2 in yi respectively.

The tensors H i
jkh , H i

jk and Hjk and Hj also satisfy the following:

a) H i
jy

i = 0,

b) yiH i
jk = 0,

c) yiH i
j = 0,

d) Hjh − Hhj = H i
hji,

e) H i
jkh + H i

hjk + H i
khj = 0 and

f) BmH i
hjk + BkH

i
hmj + BjH

i
hkm

+ H l
jkG

i
lhm + H l

mjG
l
lhk + H l

kmGi
lhj = 0.

The equations (e) and (f) are known as Bianchi identities for Berwald curvature tensor.
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1.8.2 Cartan connection

The Cartan connection CΓ = (Γ∗i
jk, G

i
j, C

i
jk) is uniquely determined from the metric func-

tion L by the system of axioms:

(C1) h-metrical: gij|k = 0,

(C2) (h)h-torsion T = 0,

(C3) Deflection D = 0,

(C4) v-metrical: gij|k = 0

(C5) (v)hv-torsion S1 = 0,.

The last two axioms (C4) and (C5) give

Ci
jk =

1

2
gir∂̇rgjk.

This shows that the v-connection of CΓ and Cartan tensor are identical.

h-connection coefficients Γ∗i
jk are given by

Γ∗i
jk =

1

2
gir[δkgjr + δjgkr − δrgjk]. (1.8.18)

The non-linear connection coefficients Gi
j of CΓ are same as that of BΓ.

E.Cartan defined the covariant derivative of a vector field X i by

X i
|k = ∂kX

i − (∂̇rX
i)Γ∗r

hky
h + XrΓ∗i

rk, (1.8.19)

where Γ∗r
hky

h = Gi
k.

This type of covariant derivative introduced by Cartan is called as h-covariant derivative.

Ricci-commutation formula for such covariant derivative is given by

X i
|h|k − X i

|k|h = XrKi
rhk − (∂̇rX

i)Kr
shky

s, (1.8.20)

where Ki
rhk = (∂kΓ

∗i
rh) − (∂hΓ

∗i
rk) + (∂̇mΓ∗i

rk)Γ
∗m
ph yp − (∂̇mΓ∗i

rh)Γ
∗m
ph yp + Γ∗s

rhΓ
∗i
sk − Γ∗s

rkΓ
∗i
sh.

The tensor Ki
jkh is called Cartan curvature tensor or h-curvature tensor. This tensor is
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skew-symmetric in last two lower indices and positively homogeneous of degree zero in

yi. Cartan curvature tensor Ki
jkh is connected with Berwald curvature tensor H i

jkh and

tensor H i
kh by

H i
jkh = Ki

jkh + yr∂̇jK
i
rkh, (1.8.21)

and

Ki
jkhy

j = H i
kh. (1.8.22)

The commutation formula for the operators of partial differentiation with respect to yk

and h-covariant differentiation is given by

∂̇k(X
i
|h) − (∂̇kX

i)|h = Xr∂̇kΓ
∗i
rh − (∂̇rX

i)(∂̇kΓ
∗r
sh)y

s. (1.8.23)

The above definition for covariant differentiation due to Matsumoto are similar to that of

E. Cartan with only difference that T i
j |k of Matsumoto coincides with 1

L
T I

j |k of Cartan,

though the notations are same.

It is easy to verify that

a)yi
|j = 0, b)L|j = 0, c)li|j = 0,

and

a)yi|j = δi
j, b)L|j = lj, c)li|j =

1

L
hi

j,

where lj = gijl
i and hi

j = girhrj.

The Cartan connection coefficients and the Berwald connection coefficients are related by

Gi
jk = Γ∗i

jk + Ci
jk|0. (1.8.24)
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The covariant derivatives of a tensor field T i
j with respect to symmetric connection coef-

ficients Γi
jk(x, ξ) is given by

T i
j;k = ∂kT

i
j + (∂̇hT

i
j )∂kξ

h + T hjΓi
hk − T i

hΓ
h
jk. (1.8.25)

The commutation formula for covariant derivative is given by

X i
;hk − X i

;kh = K̃i
jhk(x, ξ)Xj, (1.8.26)

where

K̃i
jhk(x, ξ) = (∂kΓ

i
jh + (∂̇lΓ

i
jh)∂kξ

i) − (∂hΓ
i
jk + (∂̇lΓ

i
jk)∂hξ

i) + Γi
mkΓ

m
jh − Γi

mhΓ
mjk.

This tensor is called relative curvature tensor, since it depends on partial derivatives

of the field ξm(xk) with respect to xh. The relative curvature tensor K̃i
jhk(x, ξ) satisfies

the following:

(a)K̃i
jhk = −K̃i

jkh, (b)K̃i
jhk;m + K̃i

jmh;k + K̃i
jkm;h = 0.

The associate tensor of the relative curvature tensor is defined as

gjmK̃m
ikh = K̃ijkh.

The tensor satisfies

K̃jihkẋ
i = −K̃ijhkẋ

i.

1.9 Special Finsler spaces

1.9.1 Riemannian space

A Finsler space F n = (M, L) is said to be a Riemannian space if its fundamental function

L(x, y) is written as

L2(x, y) = gij(x)yiyj. (1.9.1)

Among Finsler spaces, the class of all Riemannian spaces is characterized by Cijk = 0.
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1.9.2 Berwald space

A Finsler space is called a Berwald space if the Berwald connection coefficient are linear,

i.e, Gh
ij are functions of position only.

A Finsler space is Berwald space if and only if

for BΓ : Gh
ijk = 0.

for CΓ : Chij|k = 0.

Berwald himself called a Berwald space an affinely connected space. It is clear that

the class of Berwald space is included in the class of Landsberg spaces.

1.9.3 Landsberg Space

A Finsler space is called a Landsberg space if the Berwald connection is h−metrical,

i.e.,Bkgij = 0.

A Landsberg space is characterized by one of the following conditions:

(1) P h
ijk = 0,

(2) P h
ij(= Ch

ij|0) = 0,

(3) Ch
ij|k = Ch

ik|j = 0.

1.9.4 Locally Minkowskian space

A Finsler space F n = (M, L) is called locally Minkowskian space if there exists a coordinate

system (xi) in which L is a function of yi only.

A Finsler space is locally Minkowskian space if and only if

for BΓ : Hh
ijk = 0 = Gh

ijk,

for CΓ : Ri
ijk = 0 = Chij|k.
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1.10 Finsler spaces with (α, β)-metric

There is a class of Finsler metrics defined by a Riemannian metric and a 1-form on

a manifold, with some curvature properties called (α, β)-metrics and these metrics are

computable.

The concept of (α, β)-metric L(α, β) was introduced by M. Matsumoto in 1972 and

has been studied by many Finsler geometers. Physicists are also interested in these met-

rics. They seek for some non-Riemannian models for space time. For example, by using

(α, β)-metrics, G. S. Asanov introduced Finsleroid-Finsler spaces and formulated pseudo-

Finsleroid gravitational field equations.

Definition 2. The Finsler space F n = (Mn, L) is said to have an (α, β)-metric if L

is a positively homogeneous function of degree one in two variables α =
√

aij(x)yiyj and

β = bi(x)yi, where α is a Riemannian metric and β is differential 1-form.

An (α, β)-metric is expressed in the following form

L = αφ(s), s = β/α, (1.10.1)

where φ = φ(s) is a C∞ positive function on an open interval (−b0, b0). The norm ‖ βx ‖α

of β with respect to α is defined by

‖ βx ‖α= supy∈TxM{β(x, y), α(x, y)} =
√

aij(x)bi(x)bj(x).

In order to define L, β must satisfy the condition ‖ βx ‖α< b0 for all x ∈ M.
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The derivative of the (α, β)-metric with respect to α and β are given by

Lα = ∂L/∂α,

Lβ = ∂L/∂β,

Lαα = ∂Lα/∂α,

Lββ = ∂Lβ/∂β,

Lαβ = ∂Lα/∂β.

Then the normalized element of support li = ∂̇iL is given by

li = α−1LαYi + Lβbi, (1.10.2)

where Yi = aijy
j. The angular metric tensor hij = L∂̇i∂̇jL is given by

hij = paij + q0bibj + q1(biYj + bjYi) + q2YiYj, (1.10.3)

where

p = LLαα−1,

q0 = LLββ,

q1 = LLαβα−1,

q2 = Lα−2(Lαα − Lαα−1).

The fundamental tensor gij = 1
2
∂̇i∂̇jL

2 is given by

gij = paij + p0bibj + p1(biYj + bjYi) + p2YiYj,

where

p0 = q0 + L2
β,

p1 = q1 + L−1pLβ,

p2 = q2 + p2L−2.
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Moreover, the reciprocal tensor gij of gij is given by

gij = p−1aij + S0b
ibj + S1(b

iyj + bjyi) + S2y
iyj, (1.10.4)

where

bi = aijbj, S0 = (pp0 + (p0p2 − p2
1)α

2)/ζ,

S1 = (pp1 + (p0p2 − p2
1)β)/ζp,

S2 = (pp2 + (p0p2 − p2
1)b

2)/ζp, b2 = aijb
ibj,

ζ = p(p + p0b
2 + p1β) + (p0p2 − p2

1)(α
2b2 − β2).

The hv-torsion tensor Cijk = 1
2
∂̇kgij is given by

2pCijk = p1(hijmk + hjkmi + hkimj) + γ1mimjmk, (1.10.5)

where

γ1 = p
∂p0

∂β
− 3p1q0, mi = bi − α−2βYi.

The positive homogeneity of L = L(α, β) gives

Lαα + Lββ = L, Lααα + Lαββ = 0,

Lβαα + Lβββ = 0, Lαααα + Lααββ = −Lαα,

Lα = ∂L/∂α, Lβ = ∂L/∂β, Lαα = ∂2L/∂α∂α,

Lαβ = Lβα = ∂2L/∂α∂β, Lααα = ∂3L/∂α∂α∂α.

Some important (α, β)-metrics are listed below.
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L(α, β) = α + β, φ(s) = 1 + s,

L(α, β) = α2/β, φ(s) = 1/s,

L(α, β) = α(m+1)/βm, φ(s) = 1/sm,

L(α, β) = α2/(α − β), φ(s) = 1
1−s

,

L(α, β) = α + β + β2/α, φ(s) = 1 + s + s2,

L(α, β) = α + β + β2/α + β3/α2, φ(s) = 1 + s + s2 + s3,

L(α, β) = αΣ∞
k=0(β/α)k, φ(s) = Σ∞

k=0s
k,

L(α, β) = β(m+1)/αm, φ(s) = sm+1,

L(α, β) = c1α + c2β + β2/α, c2 6= 0, φ(s) = c1 + c2s + s2,

L(α, β) = c1α + c2β + α2/β, c1 6= 0, φ(s) = c1 + c2s + 1/s,

L(α, β) = α + β2/α, φ(s) = 1 + s2,

L(α, β) = α + β(m+1)/αm, φ(s) = 1 + sm+1,

L(α, β) = (α + β)2/α, φ(s) = 1 + 2s + s2,

L(α, β) = (c1α
2 + c2αβ + c3β

2)/(α + β), φ(s) =
(

c1+c2s+c3s2

1+s

)
,

L2(α, β) = 2αβ, φ(s) =
√

2s,

L2(α, β) = c1α
2 + c2αβ + c3β

2, φ(s) =
√

c1 + c2s + c3s2,

L3(α, β) = c1α
2β + c2β

3, φ(s) = 3
√

c1s + c2s3.

1.11 Conformal change

Let F n = (Mn, L(x, y)) and F
n

= (Mn, L(x, y)) be two Finsler spaces on a same underly-

ing manifold Mn. If the angle in F n is equal to that in F
n

for any tangent vectors, then

F n is called conformal to F
n

and the change L −→ L = eσ(x)L of the metric is called a

conformal change, where σ(x) is conformal factor is a function of x alone.

1.11.1 β-change

Let F n = (Mn, L) be a Finsler space associated with the another Finsler space ∗F n =

(Mn, ∗L), where ∗L(x, y) is given by the transformation

L(x, y) → ∗L(x, y) = L(x, y) + β(x, y), (1.11.1)
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where β(x, y) = bi(x)yi is a 1-form, L is Finslerian. This transformation is called β-change.

1.11.2 Conformal β-change

Let F n = (Mn, L) be a Finsler space associated with the another Finsler space ∗F n =

(Mn, ∗L), where ∗L(x, y) is given by the transformation

L(x, y) → ∗L(x, y) = eσ(x)L(x, y) + β(x, y), (1.11.2)

where σ = σ(x) is a function of x and β(x, y) = bi(x)yi is a 1-form, L is Finslerian. This

transformation is called conformal β-change.

1.11.3 Conformal Kropina change

Let F n = (Mn, L) and F
n

= (Mn, L) be two Finsler space on the same underlying

manifold Mn. If we have a function σ(x) in each coordinate neighbourhoods of Mn such

that L(α, β) = eσ[L2(α,β)
β

], then F n is called conformal Kropina to F
n

and the change

L → L of metric is called conformal Kropina change of (α, β)-metric. A conformal change

of (α, β)-metric is expressed as (α, β) −→ (α, β).

1.12 Conformal Vector Fields

A vector Field V on a Finsler manifold (M, F ) is called a Conformal vector field with

a Conformal factor C = C(x) if the 1-parameter transformation ϕt generated by V is a

conformal transformation on (M, F ), that is

F (ϕt(x), (ϕt) ∗ (y)) = e2c(x)tF (x, y). (1.12.1)

In particular,V is called a homothetic vector field with dilation c if c is constant and V is

called a Killing vector field if c = 0.
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1.13 Nonholonomic Finsler frames

Definition 3. Let U be an open set of TM and

Vi : u ∈ U 7→ Vi(u) ∈ VuTM, i ∈ {1, ...., n} (1.13.1)

be a vertical frame over U. If Vi(u) = V j
i (u)(∂/∂yj), then V j

i (u) are the entries of a

invertible matrix for all u ∈ U . Denote by Ṽ j
k (u) the inverse of this matrix. This means

that

V i
j Ṽ j

k = δi
k, Ṽ i

j V j
k = δi

k :

We call V i
j a nonholonomic frame.

Consider aij(x), the components of a Riemannian metric on the base manifold M ,

a(x, y) > 0 and b(x, y) > 0 two functions on TM and B(x, y) = Bi(x, y)dxi a vertical

1-form on TM . Then

gij(x, y) = a(x, y)aij(x) + b(x, y)Bi(x)Bj(x) (1.13.2)

is a generalized Lagrange metric, called the Beil metric. We say also that the metric

tensor gij is a Beil deformation of the Riemannian metric aij. It has been studied and

applied by R. Miron and R.K. Tavakol in general relativity for a(x, y) = exp(2σ(x, y))

and b = 0[137]. The case a(x, y) = 1 with various choices of b and Bi was introduced and

studied by R.G. Beil for constructing a new unified field theory [25].

In this thesis such a nonholonomic frame has been determined for two important classes

of Finsler spaces that are dual in the sense of Matsumoto and special Finsler spaces.

1.14 Locally Dually flat Finsler spaces

Definition 4. A Finsler metric F = F (x, y) on a manifold M is said to be locally dually
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flat if at any point there is a standard coordinate system (xi, yi) in TM which satisfies

(F 2)xkylyk = 2(F 2)xl .

It is known that a Riemannian metric F =
√

gij(x)yiyj is locally dually flat if and only

if in an adapted coordinate system,

gij =
∂2Ψ

∂xi∂xj
(x).

where Ψ = Ψ(x) is a C∞ function.

An (α, β)-metric F = αφ(s), where s = β
α

is dually flat on an open subset U ⊂ Rn if

and only if

3α2amlG
m
α + Q(3sl0 − rl0)α

3 − α2[
∂(ymGm

α )

∂yl
+ αQ

∂(ymGm
α )

∂yl
] + Qα(r00 + 2bmGm

α )yl

+2Q(ymGm
α ) + Φ[αr00 + 2(bmα − sym)Gm

α ](αbl − syl) = 0,

where ri0 = rijy
j, si0 = sijy

j, yi = aijy
j.

1.15 Subspace of Finsler Spaces

We consider an m-dimensional Finsler subspace Fm of Finsler space F n may be paramet-

rically represented by the equation

xi = xi(uα),

where α=1, ...,m and uα are the Gaussian coordinates of Fm.

Suppose that the matrix of the projection factor Bi
α = ∂xi/∂uα is of rank m. The

element of the support X i of F n is taken to be tangential to Fm. i.e., X i = Bi
α(u)Xα.

Thus Xα is the element of support Fm at a point uα. The metric tensor gαβ and
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Cartan’s C-tensor Cαβγ of Fm are given by

a) gαβ = gijB
ij
αβ,

b) Cαβγ = CijkB
ijk
αβγ,

where Bij...
αβ... = Bi

αBj
β . . ..

Since the rank of the matrix ((Bi
α)) is m, it follows that there exists a field of (n−m)

linearly independent vectors N i
(µ) normal to Fm and they are given by the relation

gijN
i
(µ)B

j
α = 0, (µ = m + 1, . . . , n).

These vectors are normalized by means of relations:

a) gijN
i
(µ)N

j
(γ) = δµγ,

b) N i
(µ) = gijNj(µ).

If (Bα
i , Ni(µ)) is the inverse matrix (Bi

α, N i
(µ)), we have

Bi
αBβ

i = δβ
α, Bi

αNi(µ) = 0, N i
(µ)B

α
i = 0, N i

µNi(µ) = 1,

and further

Bi
αBα

j + N i
µNj(µ) = δi

j.

Making use of the inverse matrix (gαβ) of (gαβ), we get

Bα
i = gαβgijB

j
β, Ni(µ) = gijN

j
(µ).
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Chapter 2

CONFORMAL CHANGE OF
DOUGLAS SPACE WITH
SPECIAL (α, β)-METRICS

2.1 Introduction

The conformal theory of Finsler metrics based on the theory of Finsler spaces by M.

Matsomoto, M. Hashiguchi ([70], [92]) in 1976 studied the conformal change of a Finsler

metric namely L(x, y) = eσ(x)L(x, y). The concept of Douglas space ([89], [95], [110],

[111], [112]) has been introducing by M. Matsumoto and S. Bacso as a generalization of

Berward spaces from stand point of view of geodesic equation. Finsler space is said to be

of Douglas space if Dij = Giyj −Gjyi are homogeneous polynomial of degree three in yi.

it is remarkable that a Finsler space is a Douglas space if and only if the Douglas tensor

vanishes identically.

Further many authors including S. K. Narasimhamurthy ([104], [105], [106]) has de-

rived the condition for Douglas spaces of Finsler spaces with different (α, β)-metrics. Re-

cently B. N. Prasad [[113][114]] gave the condition that Finsler space with (α, β)-metric

of Douglas type is conformally transformed to a Douglas space with (α, β)-metric.

42
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2.2 Preliminaries

Let α(x, y) =
√

aijyiyj be Riemannian metric and β(x, y) = bi(x)yi be a differential one-

form in an n-dimentional differetiable manifold Mn. If the Finsler metric function L(α, β)

is positively homogeneous of degree one in α and β in Mn, then F n = (Mn, L(α, β)) is

called a Finsler space with (α, β)-metric[94].

The space Rn = (Mn, α) is called a Riemannian spce associated with F n and Christof-

fel symbol of Rn are indicated by γi
jk(x) by ∇.

d2xi

dt2
yj − d2xj

dt2
yi + 2(Giyj − Gjyi) = 0, yi =

dxi

dt
,

in a parameter t. The function Gi(x, y) is given by

2Gi(x, y) = gij(yr∂̇j∂rF − ∂jF ) = γi
jky

jyk,

where ∂i = ∂
∂xi , F = L2

2
and gij(x, y) be the inverse of we use the following symbols :

rij =
1

2
(∇jbi + ∇ibj), sij =

1

2
(∇jbi + ∇ibj), si

j = airsrj, sj = brs
r
j . (2.2.1)

It is to be noted that

sij =
1

2
(∂̇jbi − ∂̇ibj).

Throughout the paper the symbols ∂i and ∂̇i stand for ∂
∂xi and ∂

∂yi respectively. We

are concerned with the Berwald connection BΓ=(Gi
jk, Gi

j) which given by

2Gi(x, y) = gij(yr∂̇j∂rF − ∂jF ),

where F =
L2

2
, Gi

j = ∂̇jG
i and Gi

jk = ∂̇kG
i
j.

The Finsler space F n is said to be of Douglas type (Douglas space)[95] if Dij =

Giyj − Gjyi are homogeneous polynomial of degree r in yi, by hp(r).
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For a Finsler space F n with (α, β)-metric ([80],[94]), we have

2Gi = γi
00 + 2Bi. (2.2.2)

where

Bi =
E

α
yi +

αLβ

Lα

si
0 −

αLαα

Lα

C∗(
yi

α
− α

β
bi), E =

βLβ

L
C∗

C∗ =
αβ(r00Lα − 2αs0Lβ)

2(β2Lα + αγ2Lαα)
, (2.2.3)

γ2 = b2α2 − β2

and the scripts α and β in L denote the partial differentiation with respect to α and β

respectively. Since γi
00 = γi

jk(x)yiyj is homogeneous polynomial degree two in (yi), we

have [95]:

Lemma 2.2.1. A Finsler space F n with an (α, β)-metric is a Douglas space if and only

if Bij = Biyj − Bjyi are hp(3). Equation (2.3.3) gives

Bij =
αLβ

Lα

(si
0y

j − sj
0y

i) +
α2Lαα

βLα

C∗(biyj − bjyi). (2.2.4)

2.3 β-Conformal change of Douglas type with Finsler

(α, β)-metric

This section is devoted to determine the condition for the Finsler space F
n

which is

obtained by β-conformal change of Finsler space F n with the (α, β)-metric of Douglas

type, to be also of Douglas type and vice versa.

For a β-conformal change L = eσL+β, the associated normalized supporting element

is given by:

Li(x, y) = eσ(x)Li(x, y) + bi(x). (2.3.1)
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Consequently, if we write Lij = ∂̇jLi, Lijk = ∂̇kLij, · · · etc., we get

Lij(x, y) = eσ(x)Lij(x, y),

Lijk(x, y) = eσ(x)Lijk(x, y).

We may put

G
i
= Gi + Di. (2.3.2)

Then G
i

j = Gi
j + Di

j and G
i

jk + Gi
jk + Di

jk, where Di
j = ∂̇jD

i and Di
jk = ∂̇kD

i
j.

The tensors Di, Di
j and Di

jk, are positively homogeneous in yi of degree two, one and

zero respectively. S. H. Abed[1] determined the explicit expression for the required Dr as

Dr =
1

2

{
Le−σF r

0 +
L

L
(E00 − 2Le−σFβ0)L

r − L2σr +
L

L
(2Leσσ0 + L2σβ)Lr

}
, (2.3.3)

where σβ = σib
i, F r

0 = girFi0, Fβ0 = Fi0b
i and Lr = yr

L
.

Thus, we have the following:

Theorem 2.3.1. The tensor Di of (3.2.1) arising from β-conformal change is given by

(2.4.3).

Now from (3.2.1) and (2.4.3), we have

G
i
yj − G

j
yi = Giyj − Gjyi + (2Leσ(F i

0y
j − F j

0 yi) − L2(σiyj − σjyi)),

= Giyj − Gjyi + Kij,

where Kij = 2Leσ(F i
0y

j − F j
0 yi) − L2(σiyj − σjyi). Suppose F n is a Douglas space, that

is, Giyj − Gjyi is hp(3). Thus we state:

Theorem 2.3.2. Let F n be a Douglas space and F
n

a Finsler space which is obtained by

β-conformal change, F
n

is also a Douglas space if and only if Kij are hp(3).
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From (2.3.4), B
ij

= B
i
yj − B

j
yi in F

n
are written as

B
ij

=
αLβ

Lα

(si
0y

j − sj
0y

i) +
α2Lαα

βLα

C∗(biyj − bjyi)

+e−σ

[
α

Lα

(si
0y

j − sj
0y

i) − α4s0Lαα

Lα(β2Lα + αγ2Lαα)
(biyj − bjyi)

]
+

[
−(e−σα4Lαα + α4LααLβ)

2Lα(β2Lα + αγ2Lαα)
(b2σ0 − ρβ) +

α3Lαα

2(β2Lα + αγ2Lαα)
(ρα2 − σ0β)

+
αe−σ + αLβ

2Lα

σ0

]
(biyj − bjyi) − αβ(Lβ + e−σ)

2Lα

(σiyj − σjyi), (2.3.4)

B
ij

= Bij + Cij (2.3.5)

where

Cij = e−σ

[
α

Lα

(si
0y

j − sj
0y

i) − α4s0Lαα

Lα(β2Lα + αγ2Lαα)
(biyj − bjyi)

]
+

[
−(e−σα4Lαα + α4LααLβ)

2Lα(β2Lα + αγ2Lαα)
(b2σ0 − ρβ) +

α3Lαα

2(β2Lα + αγ2Lαα)
(ρα2 − σ0β)

+
αe−σ + αLβ

2Lα

σ0

]
(biyj − bjyi) − αβ(Lβ + e−σ)

2Lα

(σiyj − σjyi). (2.3.6)

Suppose F n is a Douglas space. The necessary and sufficient condition for F
n

to be also

a Douglas space is that Cij is hp (3). Thus, we have the following:

Theorem 2.3.3. Let F n = (Mn, L) be a Finsler space with an (α, β)-metric of Douglas

type, then F
n

= (Mn, L) which is obtained by a β-conformal change of F n is also a

Douglas space if and only if Cij is hp(3).

2.4 β-Conformal change of Douglas type with Finsler

(α, β)-metric L = α − β2

α + β

Let F n = (Mn, L = α + β) be Randers Space and F
n

= (Mn, L = α + β), so that

Lα = 1 + β2

α
, Lαα = −2β2

α3 and Lβ = −2β
α

+ 1. A Finsler space which is obtained by



Conformal Change of Douglas space with special (α, β)-metrics 47

β-conformal change of F n = (Mn, L), we have

B
ij

= Bij + Cij,

where

Cij = α2[
e−σ

α2 + β2
(si

0y
j − sj

0y
i) +

(α(1 + e−σ) − 2β)

2(α2 + β2)

{
σ0(b

iyj − bjyi) − β(σiyj − σjyi)
}
].

We know that a Finsler space with Randers metric is Douglas space if and only if sij = 0.

Hence Cij reduces to

Cij =
α2[(α(1 + e−σ) − 2β)

2(α2 + β2)

{
σ0(b

iyj − bjyi) − β(σiyj − σjyi)
}
]. (2.4.1)

Since α is irrational function in yi, from (2.5.1) it follows that Cij is hp (3) if and only if

σ0(b
iyj − bjyi) − β(σiyj − σjyi) = 0, Cij = 0.

The first of the above equations may be written as

(σkδ
j
h + σhδ

j
k)b

i − (bkδ
j
h + bhδ

j
k)σ

i − (σkδ
i
h + σhδ

i
k)b

j + (bkδ
i
h + bhδ

i
k)σ

j = 0. (2.4.2)

Contracting (2.5.2) by j and h, we get σkb
i − bkσ

i = 0, i.e., biσj − bjσi = 0 which gives

σi = (ρ/b2)bi.

Conversely if σi = (ρ/b2)bi, then σ0 = (ρ/b2)β and (2.5.1) gives Cij = 0.

Hence (2.4.5) gives B
ij

= Bij. Thus, we state the following:

Theorem 2.4.1. Let F n be a Finsler space with Randers metric of Douglas type, then

β-conformal change of Rander space is also Douglas space if and only if σi = (ρ/b2)bi.

Theorem 2.4.2. Let F n be a Douglas space with Special (α, β)-metric L = α − β2

α
+ β,

then β-conformal change of Finsler space is also Douglas space.
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Let F
n

= (Mn, L) a Finsler space which is obtained by a β-Conformal change of

F n = (Mn, L = α − β2

α
+ β), (2.3.4) gives

Bij =
α2(α − 2β)

α2 + β2
(si

0y
j − sj

0y
i) (2.4.3)

+
α2{r00(α

2 + β2) − 2s0α
2(α − 2β)}

(α2 + β2){α2(1 − 2b2) + 3β2}
(biyj − bjyi).

Suppose that F
n

be a Douglas space that is Bij be hp(3) separating (2.5.3) in to

rational and irrational terms of yi, we have

{α2(1 − 2b2) + 3β2}{(α2 + β2)B
ij

+ 2α2β(si
0y

j − sj
0y

i)}×

α2{r00(α
2 + β2) + 4s0α

2kβ}(biyj − bjyi)

−α[2s0α
4(biyj − bjyi) + α2{α2(1 − 2b2) + 3β2}(si

0y
j − sj

0y
i)] = 0.

which yeild two equations as follows

{α2(1 − 2b2) + 3β2}{(α2 + β2)Bij + 2α2β(si
0y

j − sj
0y

i)} (2.4.4)

+α2{r00(α
2 + β2) + 4s0α

2β}(biyj − bjyi) = 0.

[2s0α
2(biyj − bjyi) − {α2(1 − 2b2) − 3β2}(si

0y
j − sj

0y
i)] = 0. (2.4.5)

Transvecting (2.5.5) by biyj, we obtain

[2s0α
2(biyj − bjyi) − {α2(1 − 2b2) − 3kβ2}(si

0y
j − sj

0y
i)] = 0.

which implies s0(α
2(β2 − α2)) = 0. Therefore we get si = 0. Hence (2.5.5) is reduced

to si
0y

j − sj
0y

i = 0, and transvection by yi gives si
0 = 0. Consequently sij = 0. On the

other hand, substituting (2.5.5) in (2.5.4),
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we have

{α2(1 − 2b2) − 3β2}Bij + α2{r00(b
iyj − bjyi)} = 0, (2.4.6)

only the terms 3β2Bij of (2.5.6) seemingly do not contain α2. Hence we must have

hp(3)vij
3 satisfying

3β2Bij = α2vij
3 . (2.4.7)

For the sake of brevity we suppose α2 6= 0(modβ). Then (2.5.6) is reduced to

Bij = α2vij, where vij are hp(1). Thus (2.5.7) leads to

{α2(1 − 2b2) − 3β2}vij − {r00(b
iyj − bjyi)} = 0. (2.4.8)

transvecting (2.5.8) by biyj, we get

{α2(1 − 2b2) − 3β2}biv
ijyj − r00(b

2α2 − β2) = 0,

which imply

α2{(1 − 2b2) − 3β2}biv
ijyj − b2r00 = β2(3kbiv

ijyj − r00).

Therefore there exists a function f1(x) satisfying

(1 − 2b2)biv
ijyj − b2r00 = f1(x)β2, 3biv

ijyj − r00 = f1(x)α2.

Eliminating biv
ijyj from above the equations, we obtain

r00 = f1(x)
(1 − 2β2)α2 − 3β2

b2 − 1
. (2.4.9)

From (2.5.9) and sij = 0,

bi;j = f2(x){(1 − b2)aij − 3bibj}, (2.4.10)

where f2(x) = f1(x)
b2−1

.
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Conversely, if (2.5.10) is satisfied, then sij = 0 and

r00 = f2(x){(1 − 2β2)α2 − 3β2},

from which Bij of (2.5.3) are hp(3). Thus we have the following

Theorem 2.4.3. A Finsler space F
n
(n > 2) which is obtained by β-conformal change of

Finsler space F n with an special (α, β)-metric L = α − β2

α
+ β of Douglas type is also

Douglas space.

2.5 β-Conformal change of Douglas type with Finsler

(α, β)-metric L = α + εβ + kβ2

α

Here we consider Finsler (α, β) − metric, L = α + εβ + k β2

α
, where ε, k are non zero

constants, so that Lα = 1 − kβ2

α2 , Lαα = 2kβ2

α3 and Lβ = 2kβ
α

. Hence from (2.4.6) the value

of Cij given by

Cij = α2[
e−σ

α2 − β2
(si

0y
j − sj

0y
i) +

(α(ε + e−σ) + 2kβ)

2(α2 − β2)

{
σ0(b

iyj − bjyi) − β(σiyj − σjyi)
}
].

We know that a Finsler space with (α, β)-metric is Douglas space if and only if sij = 0.

Hence Cij reduces to

Cij = α2[
(α(1 + e−σ) − 2β)

2(α2 + β2)

{
σ0(b

iyj − bjyi) − β(σiyj − σjyi)
}
]. (2.5.1)

Since α is irrational function in yi, from (2.6.1) it follows that Cij is hp (3) if and only if

σ0(b
iyj − bjyi) − β(σiyj − σjyi) = 0, Cij = 0.

The first of the above equations may be written as

(σkδ
j
h + σhδ

j
k)b

i − (bkδ
j
h + bhδ

j
k)σ

i − (σkδ
i
h + σhδ

i
k)b

j + (bkδ
i
h + bhδ

i
k)σ

j = 0. (2.5.2)
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Contracting (2.6.2) by j and h, we get σkb
i − bkσ

i = 0, i.e., biσj − bjσi = 0 which gives

σi = (ρ/b2)bi.

Conversely if σi = (ρ/b2)bi, then σ0 = (ρ/b2)β and (2.6.1) gives Cij = 0.

Hence (2.4.5) gives B
ij

= Bij. Thus, we state the following:

Theorem 2.5.1. Let F n be a Finsler space with Randers metric of Douglas type, then

β-conformal change of Randers space is also Douglas space if and only if σi = (ρ/b2)bi.

Theorem 2.5.2. Let F n be a Douglas space with Special (α, β)-metric L = α+ εβ +k β2

α
,

where ε, k are non zero constants, then β-conformal change of Finsler space is also Douglas

space.

From (2.3.4) gives

Bij =
α2(αε + 2kβ)

α2 − kβ2
(si

0y
j − sj

0y
i) (2.5.3)

+
α2k{r00(α

2 − kβ2) − 2α2s0α
2(αε + 2kβ)}

(α2 − kβ2){α2(1 + 2kb2) − 3kβ2}
(biyj − bjyi).

Suppose that F
n

be a Douglas space that is Bij be hp(3) separating (2.6.3) in to

rational and irrational terms of yi, we have

{α2(1 + 2kb2) − 3kβ2}{(α2 − kβ2)Bij − 2α2kβ(si
0y

j − sj
0y

i)}

α2k{r00(α
2 − kβ2) − 4s0α

2kβ}(biyj − bjyi)

+α[2s0α
4(biyj − bjyi) − α2{α2(1 + 2kb2) − 3kβ2}(si

0y
j − sj

0y
i)] = 0.

which yeild two equations as follows

{α2(1 + 2kb2) − 3kβ2}{(α2 − kβ2)Bij − 2α2kβ(si
0y

j − sj
0y

i)} (2.5.4)
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−α2k{r00(α
2 − kβ2) − 4s0α

2kβ}(biyj − bjyi) = 0.

[2s0α
2(biyj − bjyi) − {α2(1 + 2kb2) − 3kβ2}(si

0y
j − sj

0y
i)] = 0. (2.5.5)

Transvecting (2.6.5) by biyj, we obtain

[2s0α
2(biyj − bjyi) − {α2(1 + 2kb2) − 3kβ2}(si

0y
j − sj

0y
i)] = 0.

which implies s0(α
2(β2 − α2)) = 0. Therefore we get si = 0. Hence (2.6.5) is reduced

to si
0y

j − sj
0y

i = 0, and transvection by yi gives si
0 = 0. Consequently sij = 0. On the

other hand, substituting (2.6.5) in (2.6.4),

we have

{α2(1 + 2kb2) − 3kβ2}Bij − α2{r00(b
iyj − bjyi)} = 0. (2.5.6)

only the terms 3kβ2Bij of (2.6.6) seemingly do not contain α2. Hence we must have

hp(3)vij
3 satisfying

3kβ2B
ij

= α2vij
3 . (2.5.7)

For the sake of brevity we suppose α2 6= 0(mpdβ). Then (2.6.6) is reduced to

Bij = α2vij, where vij are hp(1). Thus (2.6.6) leads to

{α2(1 + 2kb2) − 3kβ2}vij − {r00(b
iyj − bjyi)} = 0. (2.5.8)

Transvecting (2.6.8) by biyj, we get

{α2(1 + 2kb2) − 3kβ2}biv
ijyj − r00(b

2α2 − β2) = 0.

which imply

α2{(1 + 2kb2) − 3kβ2}biv
ijyj − b2r00 = β2(3kbiv

ijyj − r00).
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Therefore there exists a function f1(x) satisfying

(1 + 2kb2)biv
ijyj − b2r00 = f1(x)β2, 3kbiv

ijyj − r00 = f1(x)α2.

Eliminating biv
ijyj from above the equations, we obtain

r00 = f1(x)
(1 + 2kβ2)α2 − 3kβ2

b2 − 1
. (2.5.9)

From (2.6.9) and sij = 0.

bi;j = f2(x){(1 + 2kb2)aij − 3bibj}, (2.5.10)

where f2(x) = f1(x)
b2−1

.

Conversely if (2.6.10) is satisfied, then sij = 0 and

r00 = f2(x){(1 + 2kβ2)α2 − 3kβ2},

from which Bij of (2.6.3) are hp(3). Thus we have the following

Theorem 2.5.3. A Finsler space F
n
(n > 2) which is obtained by a β-conformal change

of Finsler space F n with an special (α, β)-metric L = α + εβ + k β2

α
(b2 6= 1) of Douglas

type, is also Douglas space.

2.6 Finsler space with Second Approximate Matsumato

metric of Berwald type

In the present section, we find the condition that a Finsler space F n with a Second

Approximate Matsumato metric

L = α + β +
β2

α
+

β3

α2
(2.6.1)
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A Finsler space is called Berwald space if the Berwald connection BΓ = (Gi
jk, G

i
j, 0) is

linear. In [145], the function Gi of a Finsler space with an (α, β)-metric are given by

2Gi = γi
00 +2Bi, then we have Gi

j = γi
0j +Bi

j and Gi
jk = γi

jk +Bi
jk, where Bi

jk = ∂̇kB
i
j and

Bi
j = ∂̇jB

i. Thus a Finsler space with an (α, β)-metric is a Berwald space iff Gi
jk = Gi

jk(x)

equivalently Bi
jk = Bi

jk(x). Moreover on account of [94] Bi
j is determined by

LαBt
jiy

jyt + αLβ(Bt
jibt − bj;i)y

j = 0 (2.6.2)

where yk = aiky
i. For the special (α, β)-metric (2.7.1) we have,

Lα = 1 − β2

α2
− 2β3

α3
, Lβ = 1 +

2β

α
+

3β2

α2
, Lαα =

2β2

α3
+

6β3

α4
, Lββ =

2

α
+

6β

α2
.(2.6.3)

Substituting (2.7.3) in (2.7.2) equation, we have

(α3 − αβ2 − 2β3)Bt
jiy

jyt + α2(α2 + 2αβ + 3β2)(Bt
jibt − bj;i)y

j = 0. (2.6.4)

Assume that F n is a Berwald space, i.e., Bi
jk = Bi

jk(x). Separating (2.7.4) in rational and

irrational terms of yi as

(α3 − αβ2 − 2β3)Bt
jiy

jyt + α4(Bt
jibt − bj;i)y

j + 2α3β(Bt
jibt − bj;i)y

j

+3α2β2(Bt
jibt − bj;i)y

j = 0, (2.6.5)

which yields two equations

(α3 − αβ2 − 2β3)Bt
jiy

jyt + α4(Bt
jibt − bj;i)y

j + 2α3β(Bt
jibt − bj;i)y

j, (2.6.6)

and

(Bt
jibt − bj;i)y

j = 0. (2.6.7)

Substituting (2.7.7) in (2.7.6), we have

(α3 − αβ2 − 2β3)Bt
jiy

jyt = 0. (2.6.8)



Conformal Change of Douglas space with special (α, β)-metrics 55

Case(i): If Bt
jiy

jyt = 0, we have

Bt
jiath + Bt

hiatj = 0 and Bt
jibt − bj;i = 0. (2.6.9)

Thus we obtain Bt
ji = 0 by Christoffel process in the first equation of (2.7.9) and from

second of (2.7.9), we have bi;j = 0.

Case(ii): If (α3 − αβ2 − 2β3) = 0,

⇒ α is a one form, which is a contradiction.

Conversly, if bi;j = 0, then Bt
ji = 0 are uniquely determined from (2.7.4).

Hence, we conclude the following:

Theorem 2.6.1. A Finsler space with a special (α, β)-metric L = α + β + β2

α
+ β3

α2 is a

Berwald space iff bi;j = 0.

2.7 Finsler space with Second Approximate Matsumato

metric of Douglas type

In this section, we find the condition for a Finsler space F n with a Second Approximate

Matsumato metric L = α + β + β2

α
+ β3

α2 , to be Douglas type.

For a Finsler space F n with a Second Approximate Matsumato metric L = α + β +

β2

α
+ β3

α2 , then equation (2.3.4), becomes

{α3(1 + 2b2) + β2(−3α − 2 − 6β) + 6b2α2β}{(α3 − αβ2 − 2β3)Bij − β(2α + 3β) ×

(si
0y

j − sj
0y

i)} − α2(α + 3β){r00(α
3 − αβ2 − 2β3) − 2α2β2(2α − 3β)} ×

(biyj − bjyi) = 0. (2.7.1)

Suppose that F n is a Douglas space, that is, Bij are hp(3). Arranging the rational and
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irrational terms, equation (2.8.1) can be written as

{α3(1 + 2b2) + β2(−3α − 2 − 6β) + 6b2α2β}{(α3 − αβ2 − 2β3)Bij − β(2α + 3β)

(si
0y

j − sj
0y

i)} − α2(α + 3β){r00(α
3 − αβ2 − 2β3) − 2α2β2(2α − 3β)}(biyj − bjyi)

+α2[2s0α
4(α + 3β)(biyj − bjyi) − α2(α + 3β){α3(1 + 2b2) + β2(−3α − 2 − 6β)

+6b2α2β}(si
0y

j − sj
0y

i)] = 0. (2.7.2)

Separating rational and irrational terms of yi in (2.8.2) we have the following two equations

{α3(1 + 2b2) + β2(−3α − 2 − 6β) + 6b2α2β}{(α3 − αβ2 − 2β3)Bij − β(2α + 3β)

(si
0y

j − sj
0y

i)} − α2(α + 3β){r00(α
3 − αβ2 − 2β3) − 2α2β2(2α − 3β)} ×

(biyj − bjyi), (2.7.3)

and

2s0α
2(α + 3β)(biyj − bjyi) − (α + 3β){α3(1 + 2b2)

+β2(−3α − 2 − 6β) + 6b2α2β}(si
0y

j − sj
0y

i) = 0. (2.7.4)

Substituting (2.8.4) in (2.8.3), we have

{α3(1 + 2b2) + β2(−3α − 2 − 6β) + 6b2α2β}{(α3 − αβ2 − 2β3)Bij

−α2(α + 3β)r00(α
3 − αβ2 − 2β3)(biyj − bjyi) = 0. (2.7.5)

Only the term 4β5Bij of (2.8.5) does not contain α2. Hence we must have hp(6) vij
6

satisfying

4β5Bij = α2vij
6 . (2.7.6)

Now we study the following two cases:

Case(i): α2 6= 0(modβ)
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In this case, (2.8.6) is reduced to Bij = α2vij are hp(1).Thus (2.8.5) gives

α3(1 + 2b2) − β2(−3α − 2 − 6β)Bij − r00(b
iyj − bjyi) = 0. (2.7.7)

Transvecting this by biyj, where yj = ajky
k, we have

α3(1 + 2b2)vijbiyj − b2r00 = β2(r00 − 8vijbiyj). (2.7.8)

Since α2 6= 0(modβ) there exist a function h(x) satisfying

(1 + 2b2)vijbiyj − b2r00 = h(x), β2(r00 − 8vijbiyj) = h(x)α2.

Eliminating vijbiyj from the above two equations, we obtain

(1 + b2)r00 = h(x){(1 + 2b2)α2 − 8β2}, (2.7.9)

from (2.8.9), we get

bi:j = k{(1 + 2b2)aij − 3bibj}, (2.7.10)

where k = h(x)
(1+b2)

. Hence, bi is a gradient vector.

Conversely, if (2.8.10) holds, then sij = 0 and we get (2.8.9). Therefore, (2.8.3) is

written as follows:

Bij = k{α2(biyj − bjyi)},

which are hp(3), that is, F n is a Douglas space.

Case(ii): α2 = 0(modβ).

Consider the following lemma,

Lemma 2.7.1. [145] If α2 = 0(modβ), that is, aij(x)yiyj contains biy
i as a factor, then

the dimention n is equal to 2 and b2 vanishes. In this case we have 1-form δ = di(x)yi

satisfying α2 = βδ and dib
i = 2.
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The equation (2.8.6) is reduced to Bij = δwij
2 , where wij

2 are hp(2).

Hence, the equation (2.8.4) leads to

2s0δ(b
iyj − bjyi) − (δ − 3β)(si

0y
j − sj

0y
i) = 0. (2.7.11)

Transvecting the above equation by yibj, we have s0 = 0. Substituting s0 = 0 in the above

equation, we have sij = 0. Therefore, (2.8.7) reduces to

(δ − 3β)wij
2 biyj − r00β

2 = 0,

which is written as

δwij
2 biyj = β(βr00 − 3wij

2 biyj).

Therefore, there exists an hp(2), λ = λij(x)yiyj such that

wij
2 biyj = βλ, βr00 + 3wij

2 biyj = δλ.

Eliminating wij
2 biyj from the above equations, we get

βr00 = 3βλ − δλ = λ(3β − δ), (2.7.12)

which implies there exists an hp(1), v0 = vi(x)yi such that

r00 = v0(3β − δ) = v0β. (2.7.13)

From r00 given by (2.8.13) and sij = 0, we get

bi:j =
1

2
{vi(3bj + dj) + vj(3bi + di)}. (2.7.14)

Hence bi is gradient vector.

Conversely, if (2.8.14) holds, then sij = 0, which implies r00 = v0(3β + δ). Therefore,

(2.8.3) is written as follows:

Bij = v0δ(b
iyj − bjyi),
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which are hp(3). Therefore, F n is a Douglas space.

Thus, we have

Theorem 2.7.2. A Finsler space with (α, β)-metric L = α + β + β2

α
+ β3

α2 is a Douglas

space if and only if

either

i) α2 6= 0(modβ), b2 6= 1

k
: bi;j is written in the form (2.8.10), or

ii) α2 = 0(modβ) : n = 2 and bi;j is written in the form (2.8.14)

where α2 = βδ, δ = di(x)yi, vo = vi(x)yi.

2.8 Conformal Kropina change of Finsler spaces with

(α, β)-metric of Douglas type

Since, L = eσL(α, β), is equivalent to L = L(eσα, eσβ) by homogeneity. Therefore,

a conformal change of (α, β)-metric is expressed as (α, β) → (α, β), where α = eσα,

β = eσβ, we have

yi = yi, yi = e−2σyi, aij = e2σaij, bi = eσbi

, aij = e−2σaij, b
i
= e−σbi and b

2
= b2. (2.8.1)

Therefore we have

Proposition 2.8.1. In a Finsler space with (α, β)-metric the length b of bi with respect

to the Riemannian metric α is invariant under any conformal change of metric.

From (2.9.1), it follows that the conformal change of Christoffel symbols is given by

γi
jk = γi

jk + δi
jσk + δi

kσj − σiajk, (2.8.2)
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where σj = ∂jσ and σi = aijσj.

From (2.3.1) (2.9.1) and (2.9.2), we have the following identities:

∇jbi = eσ(∇jbi + ρaij − σibj),

rij = eσ[rij + ρaij −
1

2
(biσj + bjσi)], sij = eσ[sij +

1

2
(biσj − bjσi)], (2.8.3)

si
j = e−σ[si

j +
1

2
(biσj − bjσ

i)], sj = sj +
1

2
(b2σj − ρbj),

where ρ = σrb
r.

From (2.9.2) and (2.9.3), we can easily obtain the following:

γi
00 = γi

00 + 2σ0y
i − α2σj, r00 = eσ(r00 + ρα2 − σ0β), (2.8.4)

si
0 = e−σ[si

0 +
1

2
(σs0b

i − βσi)], s0 = s0 +
1

2
(σ0b

i − ρβ).

To find the conformal Kropina change of Bij given in (2.3.4), we find the conformal

Kropina change of C∗ given in (2.3.3).

Since L(α, β) = eσ[L2(α,β)
β

], we have

Lα =
2L

β
, Lα, Lα α = e−σ 2

β
[LLαα +(Lα)2], Lβ =

2βLLβ − L2

β2
, γ2 = e2σγ2. (2.8.5)

from (2.3.3), (2.9.4), (2.9.5), we have

C
∗

= eσ(C∗ + D∗), (2.8.6)

where

D∗ =
αL(β2Lα + αγ2Lαα)[β(ρα2 − σ0β)Lα − αβ(b2σ0 − ρβ)Lβ+

2(β2Lα + αr2Lαα)

αLs0 + 1
2
(b2σ0 − ρβ))] − α2βγ2(Lα)2(r00Lα − 2αs0Lβ)

. (2.8.7)

Hence the conformal Kropina change Bij is written in the form

B
ij

= Bij + Cij, (2.8.8)
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where

Cij =
αL(2βLβ − L)σ0(b

iyj − bjyi) − β(σiyj − σjyi) − 2αL2(si
0y

j − sj
0y

i)+

4βLLα

4α2(Lα)2C∗ + [LLαα + (Lα)2]D∗(biyj − bjyi)
(2.8.9)

Suppose F n is a Douglas space. The necessary and sufficient condition for F
n

to be also

a Douglas space is that Cij is hp(3). Thus, we have the following:

Theorem 2.8.2. A Douglas space with (α, β)-metric is transformed to a Douglas space

with (α, β)-metric under conformal Kropina change if and only if Cij defined in equation

(2.9.9) is hp(3).

In the following three sections we deal with conformal Kropina change of Finsler spaces

with three special (α, β)-metric.

2.8.1 Conformal Kropina change of Finsler spaces with Mat-

sumato metric of Douglas type L = α2

α−β

For an (α, β)-metric, we have L = α2

α−β

Lα =
α(α − 2β)

(α − β)2
, Lβ =

α2

(α − β)2
, Lαα =

2b2

(α − β)3
.

Hence the values of C∗, D∗ and Cij given by equation (2.3.3), (2.9.7) and (2.9.9)

respectively reduce to

C∗ = −(α − β){(−α + 2β)r00 + 2α2s0}
2β(α − 3β + 2αb2)

D∗ =
(α − β){αβ(α − 3β + 2αb2)(α3b2 − 3α2βb2 − 2αβ2 + 4β3)σ0

4β(α − 3β + 2αb2)(αβ3 + 6b2α2β2 + b2α4 − 4b2α3β − 4β4)

+α3β2(α − β)(α − 3β + 2αb2)ρ + 2α2(−6b2α2β(α − β) + α3β

−6α2β2 + 11αβ3 + 2b2α4 − 8β4)s0 − 2(α − 2β3)(bα − β)(bα + β)r00
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Cij =
α{[−αβ3(α − β)(12β2 − 9αβ + 2α2)(2αβ + α − 3β)σ0

4β2(α − 2β)(α − 3β + 2αb2)(αβ3 + 6b2α2β2 + b2α4 − 4b2α3β − 4β4)

+α3β2(α − β)(α2 + 6β2 − 4αβ)(α − 3β + 2b2α)ρ

+2(α − 2β)3β2(α2 − 4αβ + 2β2)r00]
(biyj − bjyi)

+[αβ2(α − 3β)(α − 3β + 2b2α)(b2α4 + 6b2α2β2

−4b2α3β + αβ3 − 4β4)]
(σiyj − σjyi)} (2.8.10)

The equation (2.9.10) can be written as

4β2(α − 2β)(α − 3β + 2αb2)(αβ3 + 6b2α2β2 + b2α4 − 4b2α3β − 4β4)Cij

+α{[−αβ3(α − β)(12β2 − 9αβ + 2α2)(2αβ + α − 3β)σ0 + α3β2(α − β) ×

(α2 + 6β2 − 4αβ)(α − 3β + 2b2α)ρ + 2(α − 2β)3β2(α2 − 4αβ + 2β2)r00] ×

(biyj − bjyi) + [αβ2(α − 3β)(α − 3β + 2b2α)(b2α4 + 6b2α2β2 − 4b2α3β +

αβ3 − 4β4)](σiyj − σjyi)} = 0. (2.8.11)

Since α is an irrational function in yi, the equation (2.9.11) gives rise to two equations as

follows:

(−96β8 − 208b2α3β5 − 96b4α3β5 + 64b2αβ7 + 96b2α2β6 + 4α3β5 − 36α2β6 + 104αβ7)Cij

−αβ4{[−α(22b2α3 − 42b2α2β − 54α2β + 75αβ2 + 17α3 − 36β3)σ0 − 6α3β5(−3β

+2b2α + 6α)ρ + (20α3 − 72α2β + 112αβ2 − 84α3 + 184α2β − 208αβ2 − 64β3

+96β3)r00](b
iyj − bjyi) + α2β2[α2b2(40β4 + α4 + 2b2α4) − α3β3(−36b4 + 70b2 + 1)

−10α2β4 + 33αβ5 + α3β3 − 36β6](σiyj − σjyi)} = 0, (2.8.12)

and

4b2β2(28b2β2 + 32β2 − 12b2αβ − 9αβ + α2 + 2b2α2)Cij − [2β3(α3 + 2b2α3 − 12b2β3)σ0

−α3β2(−β2 + α2 − 8αβ + 2b2α2 − 10b2αβ + 20b2β2)ρ − 2α2(αβ2 − 9β3)r00](b
iyj − bjyi)

[+10b2α4β3 − 39b2α3β4 − 25 − 36b4α3β4 + 14b4α4β3 − 24b2β7](σiyj − σjyi) = 0.(2.8.13)
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Take n > 2, α2 6= 0(modβ). The terms β of (2.9.13) which seemingly do not contain α2

are β6σ0(b
iyj − bjyi) + β7(σiyj − σjyi). Hence we must have hp(0), M ij(x) such that the

above expression is equal to α2β3M ij(x). Therefore we have

σ0(b
iyj − bjyi) + β(σiyj − σjyi) = α2M ij(x). (2.8.14)

The equation (2.9.14) can be written as

[(σhδ
j
k + σkδ

j
h)b

i − (σkδ
i
h + σhδ

i
k)b

j] + [(bhδ
j
k + bkδ

j
h)σ

i − (bhδ
i
k + bkδ

i
h)σ

j]

= ahkM
ij. (2.8.15)

Contracting (2.9.15) by j = h, we get

n(bkσ
i − biσk) = M i

k

which implies

Mij(x) = n(bjσi − biσj). (2.8.16)

Theorem 2.8.3. A Finsler space F
n

(n > 2) which is obtained by conformal Kropina

change of a Kropina space F n with (α, β)-metric L = α2

α−β
is of Douglas type if and only

if (2.9.16) is satisfied.

2.8.2 Conformal Kropina change of Finsler spaces with (α, β)-

metric L = α − β2

α + β is of Douglas type

For an (α, β)-metric, we have L = α − β2

α
+ β

Lα = 1 +
β2

α2
, Lβ =

−2β

α
+ 1, Lαα =

−2β2

α3

Hence the values of C∗, D∗ and Cij given by equation (2.3.3), (2.9.7) and (2.9.9) respec-

tively reduce to

C∗ =
α(−r00α

2 − r00β
2 − 4α2s0β + 2α3s0)

2β(−α2 − 3β2 + 2b2α2)
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D∗ =
(−8α6β4b2 − α9βb2 − 6α5β5b4 − 16α4β6b2 − 6αβ9 + 13α3β67b2 + 8α6β4b4 + 2α7β3b4

4b(−α2 − 3β2 + 2α2b2)[b2α3(α3 − α + 1) + αβ4(2β + 1) − 3β6 − b2α2β3(2α − 3β)]

+2α9βb4 + 6α2β8 − 2α3β7 + 2α7β3 + 8α4β6 + 2α6β4 + 6α5β5 − 8α7β3b2)σ0

+(2α9β2b2 + 4α8β3b2 − 2α7β4b2 + 6α4β7 − 4α6β5b2 + 2α5β6b2 − α9β2 − 4α6β5

−2α7β4 − 2α8β3 − 3α3β8 + 2α5β6)ρ + (8α8β2b2 − 4α7β3b2 − 8α6β4b2 + 4α5β5b2

−16α5β5 + 8α6β4 − 8α3β7 + 4α4β6 + 4α8β2 − 4α10b2 − 8α7β3 + 4α9βb2 − 6α3β7

−4α8β2 − 2α9β − 4α7β3 − 8α6β4 + 8α9βb2 + 12α4β6 + 4α5β5 − 8α8β2b2

+16α7β3b2 − 4α6β4b2 + 8α5β3b2)s0 + (−6α3β6 + 2α9β2 − 2α7β2 − 6α5β4

+6α7β2b2 + 6α5β4b2 + 2α3β6b2 − 2αβ8)r00
. (2.8.17)

and

[β4(−2α + β4 − 5α2β2 + 2α4b2) + α3(5β5b2 − 4α2β3b2 − 6β5 + 12α4βb4 + 6α3β2b4)]4β

(α4 − β4 + α3β + αβ3)Cij = [β4(−2α + β4 − 5α2β2 + 2α4b2) + α3(5β5b2 − 4α2β3b2

−6β5 + 12α4βb4 + 6α3β2b4 + 12α5b4 − 12α3β3b2)(−2α(3α2 + 2αβ +
2α3

β
+ b2 +

α4

β2
)]

×(si
0y

j − sj
0y

i) + [(β4(−2α + β4 − 5α2β2 + 2α4b2) + α3(5β5b2 − 6β5 + 12α4βb4

+6α3β2b4))4β(α4 − β4)(2α3)(−r00α
2 − r00β

2 − 4α2βs0 + 2α3s0) + {(6α5β + 3α4β2

+6α4)((β7b2 + 2α7b4 + 2αβ6b2 + 3α2β5b2 + 2α3β4b2 + α4β3b2 + 2α3β4b4 + 6α5β2b4

+4α4β3b4 + 4α6βb4)σ0 + (−3β6α2 − 2αβ7 − 2α3β5 − α4β4 − 2α7βb2 − β8 − 2α3β5b2

−4α6β2 − 24α4β2b2 − 16α5βb2 + 12αβ5 + 24α2β4 + 16α3β3 + 2β6)r00 + (8α3β4b2

+24α5β2b2 − 8α6βb2 + 24α4β3b2 − 12α7b2 − 8α3β4 − 10α2β5 + 18α4β3

+16α5β2 − 2β7)s0)}](biyj − bjyi). (2.8.18)

Take n > 2, α2 6= 0(modβ). the terms in (2.9.18) which seemingly do not contain β are

72b2α11s0(b
iyj − bjyi) − 72b4α11(si

0y
j − sj

0y
i).
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Hence we must have hp(1)V ij
(1) such that the above expression is equal to 72b2α11βV ij

(1).

therefore we have

s0(b
iyj − bjyi) − b2(si

0y
j − sj

0y
i) = βV ij

(1), (2.8.19)

by putting V ij
(1) = V ij

(x)y
k, the equation (2.9.19) can be written as

(shδ
j
k + skδ

j
h)b

i − (shδ
i
k + skδ

i
h)b

j − b2[si
hδ

j
k + si

kδ
j
h − sj

hδ
i
k − sj

kδ
i
h]

= bhV
ij
k + bkV

ij
h . (2.8.20)

Contracting (2.9.20) by j = k, we get

nbish − nb2si
h = bhV

ir
r + brV

ir
h , (2.8.21)

Next transvecting (2.9.20) by bjb
h, we have

− b2(b2si
k − sibk − skb

i) = b2brV
ir
k + bkbrV

ir
s bs (2.8.22)

Transvecting (2.9.22) by bk, we get

2b4si = 2b2brV
ir
s bs,

which gives

brV
ir
s bs = b2si, provided, b2 6= 0. (2.8.23)

substituting the value of brV
ir
s bs from (2.9.23) in (2.9.22) we get

brV
ir
h = bish − b2si

h. (2.8.24)

substituting the valuve of brV
ir
h from (2.9.24) in (2.9.21), we get

b2si
h = bish −

1

(n − 1)
V ir

r bh. (2.8.25)
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If we put vi = 1
(n−1)

V ir
r , then equation (2.9.25) gives b2si

h = bish − vibh which implies

b2sij = bisj − vibj,where vi = aijv
j.

Since sij is skew-symmetric tensor, we have Vi = si easily. Hence

sij =
1

b2
(bisj − bjsi). (2.8.26)

Theorem 2.8.4. A Finsler space F
n

(n > 2) which is obtained by conformal Kropina

change of a Kropina space F n with (α, β)-metric L = α − β2

α
+ β(b2 6= 0) is of Douglas

type if and only if (2.9.26) is satisfied.

2.8.3 Conformal Kropina change of L =
√

2αβ

Consider, the (α, β)-metric L =
√

2αβ, we have

Lα =

√
2β

2
√

αβ
, Lβ =

√
2α

2
√

αβ
, Lαα = −

√
2β2

4(αβ)3/2
.

Hence the values of C∗, D∗ and Cij given by equation (2.3.3), (2.9.7) and (2.9.9)

respectively reduce to

C∗ =

√
α3β3(−r00β + 2α2s0)

β
√

αβ(−3β2 + b2α2)

D∗ =
α{ρα2(−3β2 + b2α2) + σ0β(3β2 − αb2) − 4α2βs0 + r00(α

2b2 − β2)}
2β(−3β2 + b2α2)

Cij = −α2{(−3β2 + α2b2)2(si
0y

j − sj
0y

i) + (βr00 − 2α2s0)(b
iyj − bjyi)}

2β(−3β2 + b2α2)
. (2.8.27)

Since { 6α2β2

2β(−3β2+b2α2)
}(si

0y
j − sj

0y
i) and −{ α2βr00

2β(−3β2+b2α2)
}(biyj − bjyi) are hp(3), these terms

of (2.9.27) may be neglected in our discussion and we treat only of

V ij
(3) =

(α2)2s0

2β(−3β2 + b2α2)
(si

0y
j − sj

0y
i) − (α2)2b2

2β(−3β2 + b2α2)
(biyj − bjyi), (2.8.28)

where V ij
(3) is hp(3).
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The equation (2.9.28) can be written as

β(−3β2 + b2α2)V ij
(3) − (α2)2s0(b

iyj − bjyi) + b2(α2)2(si
0y

j − sj
0y

i) = 0. (2.8.29)

Take n > 2, α2 6= 0(modβ) [95]. The terms of (2.9.29) which seemingly do not contain β

are b2(α2)2(si
0y

j − sj
0y

i) − (α2)2s0(b
iyj − bjyi). Hence we must have hp(1) V ij

(1) such that

the above expression is equal to α4βV ij
(1). Thus

b2(si
0y

j − sj
0y

i) − s0(b
iyj − bjyi) = βV ij

(1). (2.8.30)

By putting V ij
(1) = V ij

k (x)yk, the equation (2.9.30) is written as

b2[si
hδ

j
k + si

kδ
j
h − sj

hδ
i
k − sj

kδ
i
h] − [(shδ

j
k + skδ

j
h)b

i − (shδ
i
k + skδ

i
h)b

j]

= bhV
ij
k + bkV

ij
h . (2.8.31)

Contracting (2.9.31) by j = k, we get

nb2si
h − nbish = bhV

ir
r + brV

ir
h . (2.8.32)

Next, transvecting (2.9.31) by bjb
h, we have

b2(b2si
k − sibk − skb

i) = b2brV
ir
k + bkbrV

ir
s bs. (2.8.33)

Transvecting (2.9.33) by bk, we get

−2b4si = 2b2brV
ir
s bs, (2.8.34)

which gives

brV
ir
s bs = −b2si, (2.8.35)

provided b2 6= 0.

Putting the value of brV
ir
s bs from (2.9.35) in (2.9.33), we get

brV
ir
k = b2si

k − skb
i. (2.8.36)
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Substituting the value of brV
ir
h from (2.9.36) in (2.9.32), we get

b2si
h =

1

(n − 1)
V ir

r bh + bish. (2.8.37)

If we put vi = 1
(n−1)

V ir, then equation (2.9.37) gives b2si
h = vibh + bish which implies

b2sij = vibj + bisj, where vi = aijv
j. Since sij is skew-symmetric tensor, we have vi = −si

easily. Thus

sij =
1

b2
(bisj − bjsi). (2.8.38)

Theorem 2.8.5. A Finsler space F
n

(n > 2) which is obtained by conformal Kropina

change of a Kropina space F n with (α, β)-metric L =
√

2αβ is of Douglas type if and only

if (2.9.38) is satisfied.

2.9 Conclusion

In Finsler geometry, Douglas curvature is an important projectively invariant, which is

introduced by J. Douglas in 1927. It it also a non-Riemannian quantity, because all the

Riemannian metrics have vanishing Douglas curvature inherently. Finsler metrics with

vanishing Douglas curvature are called Douglas metrics. Roughly speaking, a Douglas

metric is a Finsler metric which is locally projectively equivalent to a Riemannian metric.

In this chapter, we use to find the condition that conformal Kropina change of Finsler

space with special (α, β)-metric of Douglas type yields a space of Douglas type. Further

we find the necessary and sufficient condition under which a Kropina change becomes a

projective change and mainly devoted to find the condition for the Finsler space with Sec-

ond approximate Matsumato metric to be Berwald space, Douglas type and conformally

Berwald and finally, we apply the conformal change of Finsler space with the metric of

Douglas type and also derive the condition for a Finsler space F
n

which is obtained by
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β-Conformal change of Finsler space F n with (α, β)-metric of Douglas type to be also

of Douglas type. Finally we have shown that the Finsler space with Randers Special

(α, β)-metric are also Douglas spaces under β-Conformal change.
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Chapter 3

WEAKLY BERWALD FINSLER
SPACES

3.1 Introduction

Curvatures are the central thought of Finsler geometry. For a Finsler manifold (M, F ), the

flag curvature is a function K (P, y) to the tangent planes P ⊂ TxM and non zero y ε P . A

Finsler metric F is of scalar flag curvature if for any non-zero vector y ε TxM , K = K (x, y)

is of independent P containing y ε TxM (hence K = σ(x) when F is Riemannian). It is

of nearly isotropic flag curvature if

K =
3cxmym

F
+ σ, (3.1.1)

where c = c(x) and σ = σ(x) are scalar functions on M . It is one of the important prob-

lems in Finsler geometry is to study and symbolize Finsler manifolds of almost isotropic

flag curvature [64].

To find out about the geometric properties of a Finsler metric, one also considers

non-Riemannian quantities. In Finsler geometry, there are a number of essential non-

Riemannian quantities. The Cartan torsion C , the Berwald curvature B , the mean

Landsberg curvature J and S-curvature S , etc ([141] [76] [64]). These are geometric

quantities which vanish for Riemannian metrics.

70
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Among the non-Riemannian quantities, the S-curvature S = S(x, y) is closely related

to the flag curvature which built through Z. Shen for given comparison theorems on Finsler

manifolds. An n-dimentional Finsler metric F is said to have isotropic S-curvature if

S = (n + 1)cF, (3.1.2)

for some scalar function c = c(x) on M . In [64], it is proved that if a Finsler metric F of

scalar flag curvature is of isotropic S-curvature (3.1.2), then it has almost isotropic flag

curvature (3.1.1).

The geodisc curves of a Finsler metric F = F (x, y) on a smooth manifold M , are

determined by c̈i + 2Gi(c̈) = 0, where the local functions Gi = Gi(x, y) are called the

spray coefficients. A Finsler metric F is known as a Berwald metric, if Gi are quadratic

in y ε TxM for any x ε M . A Finsler metric F is stated to be isotropic Berwald metric if

its Berwald curvature is in the following form

Bi
jkl = c{Fyjykδi

l + Fykylδi
j + Fylyjδi

k + Fyjykylyi}, (3.1.3)

where c = c(x) is a scalar function on M [141].

3.2 Preliminaries

Let M be a n-dimentional C∞ manifold. Denote by TxM the tangent space at x ε M , by

TM =
⋃

xεM TxM the tangent bundle of M , and by TM0 = TM \ {0} the slit tangent

bundle on M . A Finsler metric on M is a function F : TM → [0,∞) which has the

following properties:

i) F is C∞ on TM0;

ii) F is positively 1 − homogeneous on the fibers of tangent bundle TM ;

iii) for each y ε TxM, the following quadratic form gy on TxM is positive definite,
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gy(u, v) :=
1

2

∂2

∂s∂t
[F 2(y + su + tv)]|s, t = 0, u, v ε TxM.

Let x ε M and Fx := F |TxM . To measure the non-Euclidean feature of Fx, define Cy :

TxM
⊗

TxM
⊗

TxM → R by

Cy(u, v, w) :=
1

2

d

dt
[gy + tw(u, v)]|t = 0, u, v, w ε TxM.

The family C := {Cy}y ε TM0 is referred to as the Cartan torsion. It is nicely acknowledged

that C = 0 if and only if F is Riemannian. For y ε TxM0, define mean Cartan torsion Iy

by using Iy(u) := Ii(y)ui, where Ii := gjkCijk. By Diecke theorem, F is Riemannian if

and only if Iy = 0.

The horizantal covariant derivatives of I alongside geodiscs give upward shove to the

mean Landsberg curvature Jy(u) := Ji(y)ui, where Ji := Ii|sy
s. A Finsler metric is said

to be weakly Landsbergian if J = 0.

Given a Finsler manifold (M, F ), then a global vector field G is induced by F on TMo,

which in a standard coordinate (xi, yi) for TM0 is given by G = yi ∂
∂xi −2Gi(x, y) ∂

∂yi , where

Gi :=
1

4
gil

[
∂2(F 2)

∂xk∂yl
yk − ∂(F 2)

∂∂xl

]
, y ε TxM.

Let G is called the spray assosiated to (M, F ). In local coordinates, a curve c(t) is geodesic

if and only if its coordinates ci(t) satisfy c̈i + 2Gi(c̈) = 0.

For a tangent vector y ε TxM0, define By : TxM ⊗ TxM ⊗ TxM → TxM and Ey :

TxM ⊗TxM → R by By(u, v, w) := Bi
jkl(y)ujvkwl ∂

∂xi |x and Ey(u, v) := Ejk(y)ujvk, where

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl
, Ejk :=

1

2
Bm

jkm.

Let B and E are called the Berwald curvature and mean Berwald curvature, respectively.

Then F is called a Berwald metric and weakly Berwald metric if B = 0 and E = 0,

respectively.
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A Finsler metric F is said to be isotropic mean Berwald metric if its mean Berwald

curvature is in the following form

Eij =
n + 1

2F
chij, (3.2.1)

where c = c(x) is a scalar function on M and hij is the angular metric [141].

Define Dy : TxM ⊗ TxM ⊗ TxM → TxM by Dy(u, v, w) := Di
jkl(y)uivjwk ∂

∂xi |x

where

Di
jkl := Bi

jkl −
2

n + 1
{Ejkδ

i
l + Ejlδ

i
k + Eklδ

i
j + Ejk,lyi}.

We call D := {Dy}y ε TM0 the Douglas curvature. A Finsler metric with D = 0 is called a

Douglas metric. The notion of Douglas metrics was proposed by Basco-Matsumato as a

generalization of Berwald metrics [23].

For a Finsler metric F on an n-dimentional manifold M , the Busemann-Hausdorff

volume form dVF = σF (x)dx1...dxn is defined by

σF (x) :=
V ol(Bn(1))

V ol{(yi)εRn|F (yi ∂
∂xi |x) < 1}

.

In general, the local scalar function σF (x) can now not be expressed in terms of elementary

functions, even F is locally expressed by using elementary functions. Let Gi denote the

geodisc coefficients of F in the equal local coordinate system. The S-curvature can be

defined by

S(Y ) :=
∂Gi

∂yi
(x, y) − yi ∂

∂xi
[In σF (x)] ,

where Y = yi ∂
∂xi |x ε TxM . It is proved that S = 0 if F is a Berwald metric. There are

many non-Berwald metrics satisfying S = 0. S said to be isotropic, if there is a scalar

functions c(x) on M such that S = (n + 1)c(x)F .
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The Riemann curvature Ry = Ri
kdxk ⊗ ∂xi|x : TxM → TxM is a family of linear maps

on tangent spaces, defined by

Ri
k = 2

∂Gi

∂xk
− yj ∂2Gi

∂xj∂yk
+ 2Gi ∂2Gi

∂yj∂yk
− ∂Gi

∂yj

∂Gj

∂yk
.

For a flag P = span{y, u} ⊂ TxM with flagpole y, the flag curvature K = K(p, y) is

defined by

K(P, y) :=
gy(u, Ry(u))

gy(y, y)gy(u, u) − gy(y, u)2
.

We say that a Finsler metric F is of scalar curvature if for any y ε TxM , the flag curvature

K = K(x, y) is a scalar function on the slit tangent bundle TM0. In this case , for some

scalar function K on TM0 the Riemann curvature is in the following form

Ri
k = KF 2{δi

k − F−1Fykyi}.

If K=constant, then F is said to be of constant flag curvature. A Finsler metric F is

called isotropic flag curvature, if K = K(x).

3.3 Weakly Berwald Finsler Spaces

Let F = αφ(s), s = β
α

be an (α, β) − metric, where φ = φ(s) is a C∞ on (−b0, b0) with

certain regularity, α =
√

aij(x)yiyj is a Riemannian metric and β = bi(x)yi is a 1-form

on a manifold M . Let

rij :=
1

2

[
bi|j + bj|i

]
, sij :=

1

2

[
bi|j − bj|i

]
.

rj := birij, sj := bisij.

Where bi|j denote the coefficients of the covariant derivative of β with respect to α. Let

ri0 := rijy
j, si0 := sijy

j, r0 := rjy
j, s0 := sjy

j.
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Put

Q =
φ′

φ − sφ′ , Θ =
(φ − sφ′)φ′ − sφφ′′

2φ((φ − sφ′) + (b2 − s2)φ′′)
, Ψ =

φ′′

2((φ − sφ′) + (b2 − s2)φ′′)
.(3.3.1)

Then the S-curvature is given by

S =
[
Q′ − 2ΨQs − 2(ΨQ)′(b2 − s2) − 2(n + 1)QΘ + 2λ

]
s0

+2(Ψ + λ)r0 + α−1[(b2 − s2)Ψ′ + (n + 1)Θ]r00. (3.3.2)

Let us put

∆ = 1 + sQ + (b2 − s2)Q′,

Φ = −(n∆ + 1 + sQ)(Q − sQ′) − (b2 − s2)(1 + sQ)Q′′.

In [142], Cheng-Shen characterize (α, β)-metrics with isotropic S-curvature.

Lemma 3.3.1. Let F = αφ(β/α) be an (α, β)-metric on an n-manifold.Then, F is of

isotropic S-curvature S = (n + 1)cF , if and only if one of the following holds

(i) β satisfies

rij = ε{b2aij − bibj}, sj = 0, (3.3.3)

where ε = ε(x) is a scalar function, and φ = φ(s) satisfies

Φ = −2(n + 1)k
φ∆2

b2 − s2
, (3.3.4)

where k is a constant. In this case, c = kε.

(ii) β satisfies

rij = 0, sj = 0. (3.3.5)

In this case, c = 0.
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Let

Ψ1 :=
√

b2 − s2∆
1
2

[√
b2 − s2Φ

∆
3
2

]′
,

Ψ2 := 2(n + 1)(Q − sQ′) + 3
Φ

∆
,

θ :=
Q − sQ′

2∆
. (3.3.6)

Then the formula for the mean Cartan torsion of an (α, β)-metric is given by following

Ii =
1

2

∂

∂yi

[
(n + 1)

φ′

φ
− (n − 2)

sφ′′

φ − sφ′ −
3sφ′′ − (b2 − s2)φ′′′

φ − sφ′ + (b2 − s2)φ′′

]
(3.3.7)

= −Φ(φ − sφ′)

2∆φα2
(αbi − syi). (3.3.8)

In [143], it is proved that the condition Φ = 0 characterizes the Riemannian metrics

among (α, β)-metrics. Hence, in the continue, we suppose that Φ 6= 0.

Let Gi = Gi(x, y) and Ḡi
α = Ḡi

α(x, y) denote the coefficients of F and α respectively

in the same coordinate system. By definition, we have

Gi = Ḡi
α + Pyi + Qi, (3.3.9)

where

P := α−1Θ [−2Qαs0 + r00]

Qi := αQsi
0 + Ψ [−2Qαs0 + r00] b

i.

Simplifying (3.3.9) yields the following

Gi = Ḡi
α + αQsi

0 + θ(−2αQs0 + r00)

[
yi

α
+

Q′

Q − sQ′ b
i

]
. (3.3.10)

Clearly, if β is parallel with respect to α (rij = 0 and sij = 0), then P = 0 and Qi = 0.

In this case, Gi = Ḡi
α are quadratic in y, and F is a Berwald metric.
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For an (α, β)-metric F = αφ(s), the mean Landsberg curvature is given by

Ji = − 1

2∆α4
{ 2α2

b2 − s2
[
Φ

∆
+ (n + 1)(Q − sQ

′
](s0 + r0)hi +

α

b2 − s2
[Ψ1 + s

Φ

∆
](r00 − 2Qαs0)hi + α[−αQ

′
s0hi +

αQ(α2si − yis0) + α2∆si0 + [α2(ri0 − 2αQsi) − (r00 − 2αQs0)yi]
Φ

∆
}.(3.3.11)

Besides, they also obtained

J̄ = Jib
i = − 1

2∆α2
{Ψ1(r00 − 2αQs0) + αΨ2(r0 + s0)}. (3.3.12)

The horizontal covariant derivatives Ji;m and Ji|m of Ji with respect to F and α respectively

are given by

Ji;m = ∂Ji

∂xm − JlΓ
l
im − ∂Ji

∂yl N
l
m, Ji|m = ∂Ji

∂xm − JlΓ̄
l
im − ∂Ji

∂yl N̄
l
m,

where, Γl
ij = ∂Gl

∂yi∂yj , N l
j = ∂Gl

∂yj and Γ̄l
ij = ∂Ḡi

∂yi∂yj , N̄ l
j = ∂Ḡl

∂yj .

Then we have

Ji;mym = {Ji|m − Jl(Γ
l
im − Γ̄l

im) − ∂Ji

∂yl
(N l

m − N̄ l
m)ym

= Ji|mym − Jl(N
l
i − N̄ l

i ) − 2
∂Ji

∂yl
(Gl − Ḡl). (3.3.13)

Let F be a Finsler metric of scalar flag curvature K. By Akbar-Zadeh’s theorem it satisfies

following

Aijk;s;mysym + KF 2Aijk +
F 2

3
[hijK k + hjkK j + hkiK j] = 0, (3.3.14)

where Aijk = FCijk is the Cartan torsion and K i = ∂K
∂yi [49]. Contracting (3.3.14) with

gij yields

Ji;mym + KF 2Ii +
n + 1

3
F 2K i = 0. (3.3.15)
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By (3.3.13) and (3.3.14), for an (α, β)-metric F = αφ(s) of constant flag curvature K ,

then

Ji|mym − Jl
∂(Gl − Ḡl)

∂yi
− 2

∂Ji

∂yi
(Gl − Ḡl) + Kα2φ2Ii = 0. (3.3.16)

Contracting (3.3.16) with bi implies that

J̄|m − Jia
ikbk|mym − Jl

∂(Gl − Ḡl)

∂yi
bi − 2

∂J̄

∂yl
(Gl − Ḡl) + Kα2φ2Iib

i = 0. (3.3.17)

There exists a relation between mean Berwald curvature E and the S-curvature S. Indeed,

taking twice vertical covariant derivatives of the S-curvature gives rise the E-curvature.

It is easy to see that, every Finsler metric of isotropic S-curvature (3.1.2) is of isotropic

mean Berwald curvature (3.2.1). Now, is the equation S = (n + 1)cF equivalent to the

equation E = n+1
2

cF−1h?.

Recently, Cheng-Shen prove that a Randers metric F = α+β is of isotropic S-curvature

if and only if it is of isotropic E-curvature [141]. Then, Chun-Huan-Cheng [144] extend

this equivalency to the Finsler metric F = α−m(α + β)m+1 for every real constant m,

including Randers metric .

Now in this chapter we prove the following theorem.

Theorem 3.3.2. Let F = α2

α−β
+ β be a special metric on a manifold M of dimention n.

Then the following are equivalent

(i) F is of isotropic S-curvature, S = (n + 1)c(x)F ;

(ii) F is of isotropic mean Berwald curvature, E = n+1
2

c(x)F−1h;

where c = c(x) is a scalar function on the manifold M .

In this case, S=0. Then β is a Killing 1-form with constant length with respect to α,

that is, r00 = 0.
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Proof : (i) → (ii) is obvious. Conversely, suppose that F has isotropic mean Berwald

curvature, E = n+1
2

c(x)F−1h. Then we have

S = (n + 1)[cF + η], (3.3.18)

where η = ηi(x)yi is a 1-form on M . L = α2

α−β
+ β, we have

Q =
s2 + 1

s(s − 2)
, Θ = −1

2

s(s3 + 3s − 4)

(s + s2 − 1)(−s3 + 2b2)
, Ψ =

1

−s3 + 2b2
. (3.3.19)

By substituting (3.3.18) and (3.3.19) in (3.3.2), we have

S = [−2(−3s4 + 2sb2 + 2s3 − 2b2 + 2s2b2 − 2s2)

s2(s − 2)2(−s3 + 2b2)

2(−3s6 + 4s5 + 4s2b2 − 5s4 + 8s3 + 4sb2 − 4b2)

s2(−s3 + 2b2)2(s − 2)2

×(b2 − s2) − (n + 1)(s2 + 1)(−4 + s3 + 3s)

(s − 2)(−1 + s + s2)(−s3 + 2b2)
+ 2λ]s0 + 2[

1

−s3 + 2b2
+ λ]r0

−[
3s2(b2 − s2)

α(−s3 + 2b2)2
]r00 − [

(n + 1)s(s3 + 3s − 4)

2α(−1 + s + s2)(−s3 + 2b2)
]r00.

= (n + 1)[cα(1 + s +
1

s
) + η]. (3.3.20)

Multiplying (3.3.20) with s(1 + s + s2)(s3 + 2b2)2(s + 2)α5 implies that

M1 + M2α
2 + M3α

4 + M4α
6 + M5α

8 + M6α
10 + α[M7 + M8α

2 + M9α
4

+M10α
6 + M11α

8] + M12α
10 = 0, (3.3.21)
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where

M1 = [−β2c(n + 1) + 2βλ(s0 + r0) − βη(n + 1) +
r00

2
(n + 1)]β9,

M2 = −1

2
[10β2c(n + 1) − 12βλ(s0 + r0) + 12βs0 + 6βη(n + 1) + 3r00(n + 3)]β7,

M3 = −[−5β2c(n + 1) + 2βb2s0(n + 2) − 4βηb2(n + 1) + 8βλb2(s0 + r0)

+2β(s0(2n + 3) + r0) + r00(2n − 1)(b2 + 2)]β5,

M4 = −2[−2β2b4c(n + 1) − 2βb4η(n + 1) + 4βb4λ(s0 + r0) − β((−ns0 + 2r0) + 3s0)

+4βb4λ(s0 + r0) + 4βηb2(n + 1) − 8βb2λ(s0 + r0) + 2βb2((2n + 3)s0 + r0)

+r00b
2(5n + 8)]β3,

M5 = −2b2[−4βc(n + 1) + 10βb2c(n + 1) − 12b2λ(s0 + r0) + 3(ns0 − 2r0) + 6b2η(n + 1)]β2,

M6 = 20b4c(n + 1)β,

M7 = [2βλ(s0 + r0) + βs0(n + 1) − βη(n + 1) + r00(n + 4)]β8,

M8 = [−4β2b2c(n + 1) − 4βλ(s + 0 + r0) − 4βλ(s0 + r0) − 2βη(n − 1) + 8βλb2(s0 + r0)

+2β(r0 − 2n(ηb2 + s0)) + r00n((b2 + 5) − 2r00(b
2 + 2)]β6,

M9 = [20β2b2c(n + 1) − 2β2c(n + 1) + 12βηb2(n + 1) − 24βλb2((s0 + r0) + 3β(ns−2r0))

3βs0(2b
2 − 3) + 3r00b

2(4 + n)]β4,

M10 = 2b2[−10β2c(n + 1) − 2βb2η(n + 1) + 4βb2λ(s0 + r0) + β(4s0n + 2r0 + 9s0)

+4r00(n + 1)]β2,

M11 = 8b2[b2η(n + 1) − 2b2λ(s0 + r0) − r0 + ns0]β,

M12 = −8b4c(n + 1).

The term of (3.3.21) which is seemingly does not contain α2 is M1. Since β9 is not divisible

by α2, then c = 0 which implies that

M1 = M7 = 0.
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Therefore (3.3.21) reduces to following

M2 + M3α
2 + M4α

4 + M5α
6 + M6α

8 = 0, (3.3.22)

M8 + M9α
2 + M10α

4 + M11α
6 + M12α

8 = 0. (3.3.23)

By plugging c = 0 in M2 and M8, the only equations that don’t contain α2 are the

following

− β[2λ(s0 + r0) − (n + 1)η + 3r00(n + 3)] = τ1α
2, (3.3.24)

4βb2[2λ(r0 + s0) − (n + 1)η] + r00(2n − 1)(b2 + 2) = τ2α
2, (3.3.25)

where τ1 = τ1(x) and τ2 = τ2(x) are scalar functions on M . By eliminating [2λ(r0 + s0)−

(n + 1)η] from (3.3.24) and (3.3.25), we get

r00 = τα2, (3.3.26)

where τ = τ2−4b2τ1
(b2+2)(4b2(2n−1))−3(n+3)

.

By (3.3.24) or (3.3.25), it follows that

2λ(r0 + s0) − (n + 1)η = 0. (3.3.27)

By (3.3.26), we have r0 = τβ. Putting (3.3.26) and (3.3.27) in M8 and M9 yields

M8 = [n(b2 + 5) − 2(b2 + 2)]τα2β6, (3.3.28)

M9 =
[
[(6b2 + 3n − 9)s0 − 6r0]β − 3b2(n + 4)r00τα2

]
β4. (3.3.29)

By putting (3.3.28) and (3.3.29) into (3.3.23), we have

[(6b2 + 3n − 9)s0 − 6r0]β
5 − 3b2(n + 4)r00τα2β4

n(b2 + 5) − 2(b2 + 2)τα2β6 − M10α
2 + M11α

4 + M12α
6 = 0. (3.3.30)
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The only equations of (3.3.30) that do not contain α2 is [n(b2 + 5)− 2(b2 + 2)τβ + (6b2 +

3n − 9)s0 − 6r0]β
5. Since β6 is not divisible by α2, then we have

[n(b2 + 5) − 2(b2 + 2)τβ6 + (6b2 + 3n − 9)s0 − 6r0] = 0. (3.3.31)

By lemma 3.3.1, we always have sj = 0. Then (3.3.31), reduces to following

[n(b2 + 5) − 2(b2 + 2)]τβ − 6r0 = 0. (3.3.32)

Thus

[n(b2 + 5) − 2(b2 + 2)]τbi − 6τbi = 0. (3.3.33)

By multiplying (3.3.33) with bi, we have

τ = 0.

Thus by (3.3.29), we get η = 0 and then S = (n + 1)cF . By (3.3.26), we get rij = 0.

Therefore lemma 3.3.1, implies that S = 0. This completes the proof.

Theorem 3.3.3. Let F = α2

α−β
+ β be a non-Riemannian metric on a manifold M of

dimention n. Then F is of scalar flag curvature with isotropic S-curvature(3.1.2), if

and only if it has isotropic Berwald curvature(3.1.3) with almost isotropic flag curva-

ture(3.1.1). In this case, F must be locally Minkowskian.

Proof: Let F be an isotropic Berwald metric (3.1.3) with almost isotropic flag cur-

vature (3.1.1). It is proved that every isotropic Berwald metric (3.1.3) has isotropic

S-curvature (3.1.2).

Conversely, suppose that F is of isotropic S-curvature (3.1.2) with scalar flag curvature

K . In [63], it is showed that every Finsler metric of isotropic S-curvature (3.1.2) has
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almost isotropic flag curvature (3.1.1). Now, we are going to prove that F is a isotropic

Berwald metric. In [141], it is proved that F is an isotropic Berwald metric (3.1.3) if

and only if it is a Douglas metric with isotropic mean Berwald curvature (3.2.1). On

the other hand, every Finsler metric of isotropic S-curvature (3.1.2) has isotropic mean

Berwald curvature (3.2.1). Thus for completing the proof, we must show that F is a

Douglas metric. By proposition 3.2, we have S = 0. Therefore by theorem 1.1 in [64], F

must be of isotropic flag curvature K = σ(x). By proposition 3.2, β is a Killing 1-form

with constant length with respect to α, that is, rij = sj = 0. Then (3.3.10), (3.3.11) and

(3.3.12) reduce to

Gi − Ḡi = αQsi
0, Ji = −Φsi0

2α∆
, J̄ = 0.

By (3.3.9), we get

Iib
i := −Φ(φ−sφ

′
)

2∆F
(b2 − s2).

Now we consider two cases:

Case I: Let dimM ≥ 3. In this case, by Schur lemma F has constant flag curvature and

(3.3.17) holds, the equation (3.3.17) reduces to following

Φsi0

2∆α
aiksk0 +

Φsl0

2∆α
(sQsl

0 + Q
′
sl
0(b

2 − s2)) −KF
Φ

2∆
(φ − sφ

′
)(b2 − s2) = 0. (3.3.34)

By assumption Φ 6= 0. Thus by (3.3.34), we get

si0s
i
0 + sl0(αQsl

0).ib
i −KFα(φ − sφ

′
)(b2 − s2) = 0. (3.3.35)

The following holds

(αQsl
0).ib

i = sQsi
0 + Q′si

0(b
2 − s2) = 0.

Then (3.3.35) can be rewritten as follows

si0s
i
0∆ −Kα2φ(φ − sφ

′
)(b2 − s2) = 0. (3.3.36)
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By (3.3.6), (3.3.19) and (3.3.36), we obtain[
1 +

s2 + 1

s − 2
− 2(b2 − s2)(−1 + s + s2)

s2(s − 2)2

]
si0s

i
0

−Kα2(
(−1 + s + s2)(s − 2)

s2
(b2 − s2)) = 0. (3.3.37)

Multiflying (3.3.37) with −s2(s − 2)2α5 yields

A + αB = 0,

where

A = −K20b2βα6 + (5Kβ3b2 + 2b2βsi0s
i
0 + 20Kβ3)α4 + (β3si0s

i
0 − 5Kβ5 + Kβ5b2)α2

−Kβ7 − si0s
i
0β

5

B = 8K b2α6 + (10K b2β2 − 8Kβ2 − 2si0s
i
0b

2)α4 + (−5K b2β4 + 2si0s
i
0b

2β2 − 10Kβ4)α2

+(5Kβ6 − si0s
i
0β

4). (3.3.38)

Obviously, we have A = 0 and B = 0.

If A = 0 and the fact that β7 is not divisible by α2, we get K = 0. Therefore (3.3.37)

reduces to following

si0s
i
0 = aijs

j
0s

i
0 = 0.

Because of positive-definiteness of the Riemannian metric α, we have si
0 = 0, i.e., β is

closed. By r00 = 0 and s0 = 0, it follows that β is parallel with respect to α. Then

F = α2

α−β
+ β is a Berwald metric. Hence F must be locally Minkowskian.

Case II: Let dim M = 2. Suppose that F has isotropic Berwald curvature (3.1.3).

In [144], it is proved that every isotropic Berwald metric [70] has isotropic S-curvature,

S = (n+1)cF . By proposition 3.2, c = 0. Then by [144], F reduces to a Berwald metric.

Since F is non-Riemannian, then by Szabo’s rigidity theorem for Berwald surface (see

[49] page 278), F must be locally Minkowskian.
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3.4 Characterization of Weakly-Berwald (α, β)-metrics

of Scalar flag curvature

In n-dimensional Finsler manifold (n ≥ 3), we characterize the two important class of

weakly-Berwald (α, β)-metrics of scalar flag curvature. So first we have to prove the

following lemma.

Lemma 3.4.1. Let (M, F) be an n-dimensional Finsler manifold (n ≥ 3). Suppose

that (α, β)-metrics F = (α+β)2

α
and F =

√
c1α2 + c2αβ + c3β2 (where c1, c2 and c3 are

constants) are of non-Randers type. Then Φ 6= 0.

Proof : We just give the proof for F = (α+β)2

α
. Because the proof for F =

√
c1α2 + c2αβ + c3β2

(where c1, c2 and c3 are constants) is also similar. So we omit it.

By a direct computation, we have

Φ = − Aφ
(1−ks2)4

,

where

φ = 1 + 2s + s2,

A = −12ns3 + 6(1 + n)s2 + 4n(1 + 2b2) + 4(1 − b2) − 2(n + 1)(1 + 2b2).

Assume that Φ = 0. Then A=0. Multiplying A=0 with α3 yields

[(4βn(2b2 + 1) − 4β(b2 − 1))α2 − 12nβ3] − α[2(n + 1)(2b2 + 1) + 6β2(n + 1)] = 0.

Hence we have,

(4βn(2b2 + 1) − 4β(b2 − 1))α2 − 12nβ3 = 0, (3.4.1)

2(n + 1)(2b2 + 1) + 6β2(n + 1) = 0.

Clearly, observe that β3 is not divisible by α2. Since we have k=0 by (3.4.1), which is a
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contradiction with k 6= 0. So Φ 6= 0.

By using this, now we prove the following:

Theorem 3.4.2. Let (M, F) be an n-dimensional Finsler manifold (n ≥ 3). Assume

that (α, β)-metrics F = (α+β)2

α
and F =

√
c1α2 + c2αβ + c3β2 (where c1, c2 and c3 are

constants) are of scalar flag curvature K=K (x, y). Then F is weak Berwald metric if

and only if F is Berwald metric and K=0. In this case, F must be locally Minkowskian.

Proof: By the lemma 3.4.1 and (3.3.7) we know that the metrics F = (α+β)2

α
and

F =
√

c1α2 + c2αβ + c3β2 (where c1, c2 and c3 are constants) can not represents the

Riemannian metrics, where k 6=0 a constant and β 6= 0.

The sufficiency is obvious. We just prove the necessity.

First, we assume that the metric F is weak Berwald. By lemma 3.4.1, we know that

S = (n + 1)c(x)F with c(x)=0 and

r00 = 0, s0 = 0. (3.4.2)

Let (M, F ) be an n-dimensional Finsler manifold of scalar flag curvature with flag curva-

ture K=K (x, y). Suppose that the S-curvature is isotropic, S=(n+1)c(x)F (x, y), where

c=c(x) is a scalar function on M. Then there is a scalar function σ(x) on M such that

K =
3cxm(x)ym

F (x, y)
+ σ(x). (3.4.3)

F must be of isotropic flag curvature K=σ(x).

Further , by schur lemma[128], F must be of constant flag curvature.

From (3.4.2), we can simplify (3.3.10),(3.3.11) and (3.3.12) as follows

Gi − Ḡi = αQsi
0, Ji = −Φsi0

2α∆
, J̄ = 0.

In addition, from (3.3.7), we obtain

Iib
i := −Φ(φ−sφ

′
)

2∆F
(b2 − s2).
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Thus (3.3.17) can be expressed as follows

Φsi0

2∆α
aiksk0 + Φsl0

2∆α
(sQsl

0 + Q
′
sl
0(b

2 − s2)) −KF Φ
2∆

(φ − sφ
′
)(b2 − s2) = 0.

By lemma 3.4.1, we have

si0s
i
0 + sl0(αQsl

0).ib
i −KFα(φ − sφ

′
)(b2 − s2) = 0.

Note that F = αφ(s), s = β/α. We have

si0s
i
0∆ −Kα2φ(φ − sφ

′
)(b2 − s2) = 0. (3.4.4)

Case I: F = (α+β)2

α
. In this case,

∆ = φ(1+2b2−3s2)
(s−1)2

.

Then (3.4.4) becomes

(1 + 2b2 − 3s2)si0s
i
0 −Kα2(b2 − s2)(s + 1)3(s − 1)3= 0.

Multiplying this equation with α6 yields

K b2α8 + {(1 + 2kb2)si0s
i
0 − kβ2(1 + 3kb2)}α6 + 3β2{kβ2(1 + kb2) +

si0s
i
0}α4 −Kβ6(3 + b2)α2 = −Kβ8. (3.4.5)

Note that, the left of (3.4.5) is divisible by α2. Hence we can obtain that the flag curvature

K=0, because k 6= 0 and β8 is not divisible by α2. Substituting K=0 into (3.4.4), we

have si0s
i
0 = aij(x)sj

0s
i
0 = 0. Because (aij(x)) is positive definite, we have si

0 = 0, i.e., β

is closed. By (3.4.2), we know that β is parallel with respect to α. Then F = (α+β)2

α
is a

Berwald metric, where k 6= 0 a constant. Hence F must be locally Minkowskian.

Case II: F =
√

c1α2 + c2αβ + c3β2 (where c1, c2 and c3 are constants). In this case,

∆ =
4c2

1 + 6c1c2s + 3c2
2s

2 + 2c2c3s
3 − c2

2b
2 + 4b2c3c1

(2c1 + c2s)3
. (3.4.6)

Then (3.4.4) becomes
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(4c2
1 + 3c2

2s
2 − b2c2

2 + 2c2c3s
3 + 6c1c2s + 4b2c1c3)si0s

i
0 −Kα2(b2 − s2)(2c1 + c2s)

3 = 0.

Implies A + αB = 0,

where

A = [−(12K c2
1c2βb − 8K c3

1β)b − 8K c3
1βb]α4 + [6si0s

i
0c1c2β − (K c3

2β
3b − 6K c1c

2
2β

3)b

−(6K c1c
2
2β

2b − 12K c2
1c2β

2)β]α2 + [2si0s
i
0c2c3β

3 + K c3
2β

5],

B = −8K c3
1b

2α4 + [si0s
i
0(−b2c2

2 + 4c1(c1 + c3b
2)) − 6Kβ2c1c2(c2b − 2c1)b − (12Kβc2

1c2b

−8Kβc3
1)β]α2 + [3si0s

i
0c

2
2β

4 + Kβ4c3
2b − (Kβ3c3

2b − 6Kβ3c1c
2
2)β].

Obviously, we have A=0 and B=0.

By A=0 and clearly note that β3 is not divisible by α2. Then we obtain si0s
i
0 = 0. Hence

β is closed. By (3.4.2), we know that β is parallel with respect to α. Then F is a Berwald

metric. From (3.4.4), we find that K=0. Hence F is locally Minkowskian.

3.5 Conclusion

In the past several years, Finsler geometry has carried out rapid and great progress. Var-

ious Riemannian curvatures and non-Riemannian curvatures in Finsler geometry have

been studied deeply and their geometric meanings are better understood. Finsler geom-

etry has been applied extensively in phisics, biology (ecology) and other fields in natural

science. These are in part duo to the study of (α, β)-metrics.

In this chapter, we prove metric F = α2

α−β
+ β with some non-Riemannian curvature

properties and be a non-Riemannian metric on a manifold M of dimention n. Then F is

of scalar flag curvature with isotropic S-curvature (3.1.2), if and only if it has isotropic

Berwald curvature (3.1.3) with almost isotropic flag curvature (3.1.1). In this case, F
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must be locally Minkowskian and we characterize the two important class of weakly-

Berwald (α, β)-metrics F = (α+β)2

α
and F =

√
c1α2 + c2αβ + c3β2 (where c1, c2 and c3

are constants) are of scalar flag curvature.
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Chapter 4

NONHOLONOMIC FRAMES FOR
FINSLER SPACE WITH SPECIAL
(α, β)-METRICS

4.1 Introduction

In 1982, P.R. Holland [[66] ,[67]] studies a unified formalism that makes use of a nonholo-

nomic frame on space-time arising from consideration of a charged particle transferring in

an external electromagnetic field. In fact, R.S. Ingarden [75] was first to factor out that

the Lorentz force law can be written in this case as geodesic equation on a Finsler space

known as Randers space. The creator Beil R.G.[[21][22]], have studied a gauge transfor-

mation viewed as a nonholonomic frame on the tangent bundle of a four dimensional base

manifold. The geometry that follows from these considerations gives a unified strategy to

gravitation and gauge symmetries. The above authors used the common Finsler thinking

to learn about the existence of a nonholonomic frame on the vertical subbundle V TM of

the tangent bundle of a base manifold M.

Consider aij(x), the components of a Riemannian metric on the base manifold M ,

a(x, y) > 0 and b(x, y) > 0 two functions on TM and B(x, y) = Bi(x, y)dxi a vertical

90
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1-form on TM . Then

gij(x, y) = a(x, y)aij(x) + b(x, y)Bi(x)Bj(x) (4.1.1)

is a generalized Lagrange metric, called the Beil metric . We say additionally that the

metric tensor gij is a Beil deformation of the Riemannian metric aij. It has been studied

and applied by means of R.Miron and R.K. Tavakol in General Relativity for a(x, y) =

exp(2σ(x, y)) and b = 0. The case a(x, y) = 1 with a number alternatives of b and Bi i

used to be brought and studied with the aid of R.G. Beil for establishing a new unified

field theory [22].

4.2 Preliminaries

4.2.1 Nonholonomic frame for Finsler metrics

In the existing section, we study an important class of Finsler spaces is the class of

Finsler spaces with (α, β)-metrics [99]. The first Finsler spaces with (α, β)-metrics were

introduced via the physicist G. Randers in 1941, are called Randers spaces[116]. Recently,

R.G. Beil advised to think about a extra commonplace case, the classification of Lagrange

spaces with (α, β)-metric, which used to be mentioned by means of R. Miron in [37]. Next

we look for some different Finsler space with (α, β)-metrics.

Definition 2.2.1. A Finsler space F n = (M, F (x, y)) is stated to have an (α, β)-metric

if there exists a 2-homogeneous function L of two variables such that the Finsler metric

F : TM → R is given by,

F 2(x, y) = L(α(x, y), β(x, y)), (4.2.1)
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where α2(x, y) = aij(x)yiyj, α is a Riemannian metric on M and β(x, y) = bi(x)yi is a

1-form on M .

Consider gij = 1
2

∂2F 2

∂yi∂yj the fundamental tensor of the Randers space (M, F ). Taking

into account the homogeneity of α and F we have the following formulae:

pi =
1

α
yi = aij ∂α

∂yj
; pi = aijp

j =
∂α

∂yi
;

li =
1

L
yi = gij

∂L

∂yj
; li = gij ∂L

∂yj
= pi + bi; (4.2.2)

li =
1

L
pi; lili = pipi = 1; lipi =

α

L
;

pili =
L

α
; bip

i =
β

α
; bil

i =
β

L
.

With recognize to these notations, the metric tensors aij and gij are related by [90],

gij =
L

α
aij + bipj + pibj + bibj −

β

α
pipj =

L

α
(aij − pipj) + lilj. (4.2.3)

Theorem 4.2.1. For a Finsler space (M, F ), consider the matrix with the entries:

Y i
j =

√
α

L

(
δi
j − lilj +

√
α

L
pipj

)
, (4.2.4)

defined on TM . Then Yj = Y i
j ( ∂

∂yi ), j ∈ 1, 2, ..., n is an nonholonomic frame.

Theorem 4.2.2. With recognize to frame the holonomic elements of the Finsler metric

tensor (aαβ) is the Randers metric (gij), i.e.,

gij = Y α
i Y β

j aαβ. (4.2.5)

Throughout this area we shall upward shove and lower indices only with the Rie-

mannian metric aij(x), i.e., yi = aijy
j, bi = aijbj and so on. For a Finsler space with

(α, β)-metric F 2(x, y) = L(α(x, y), β(x, y)) we have the Finsler invariants [90],

ρ1 =
1

2α

∂L

∂α
; ρ0 =

1

2

∂2L

∂β2
; ρ−1 =

1

2α

∂2L

∂α∂β
; ρ−2 =

1

2α2

(
∂2L

∂α2
− 1

α

∂L

∂α

)
,(4.2.6)
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where, subscripts {1, 0,−1,−2} gives us the degree of homogeneity of these invariants.

For a Finsler space with (α, β)-metric we have:

ρ−1β + ρ−2α
2 = 0. (4.2.7)

With respect to these notations, we have that the metric tensor gij of a Finsler space with

(α, β)-metric is given by [90]:

gij(x, y) = ρaij(x) + ρ0bi(x) + ρ−1(bi(x)yj + bj(x)yi) + ρ−2yiyj. (4.2.8)

From (4.2.8), we can see that gij is the result of two Finsler deformations:

i) aij 7→ hij = ρaij +
1

ρ−2

(ρ−1bi + ρ−2yi)(ρ−1bj + ρ−2yj),

ii) hij 7→ gij = hij +
1

ρ−2

(ρ0ρ−2 − ρ2
−1)bibj. (4.2.9)

The Finslerian nonholonomic frame that corresponds to the first deformation (4.2.9) is,

according to the theorem 7.9.1 in [36], given by:

X i
j =

√
ρ1δ

i
j −

1

B2
(
√

ρ1 ±

√
ρ1 +

B2

ρ−2

)(ρ−1b
i + ρ−2y

i)(ρ−1bj + ρ−2yj), (4.2.10)

where

B2 = aij(ρ−1b
i + ρ−2y

i)(ρ−1b
j + ρ−2y

j) = ρ2
−1b

2 + βρ−1ρ−2.

The metric tensors aij and hij are related by:

hij = Xk
i X l

jakl. (4.2.11)

Again the frame that corresponds to the second deformation (4.2.9) is given by:

Y i
j = δi

j −
1

C2

(
1 ±

√
1 +

ρ−2C2

ρ0ρ−2 − ρ2
−1

)
bibj, (4.2.12)

where

C2 = hijb
ibj = ρ1b

2 +
1

ρ−2

(ρ−1b
2 + ρ−2β)2.
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The metric tensors hij and gij are related by the formula:

gmn = Y i
mY j

n hij. (4.2.13)

Theorem 4.2.3. [36] Let F 2(x, y) = L(α(x, y), β(x, y)) be the metric function of a Finsler

space with (α, β)-metric for which the condition (4.2.7) is true, then

V i
j = X i

kY
k
j , (4.2.14)

is a Finslerian nonholonomic frame with X i
k and Y k

j are given by (4.2.10) and (4.2.12)

respectively.

4.3 Nonholonomic frame for Finsler spaces with (α, β)-

metrics

In this part we consider Finlser metric with (α, β)-metrics, such as Ist Finsler frame

product of Infinite series metric and Kropina metric and IInd Finsler frame product of

Cube root metric and Kropina metric and one of a kind (α, β)-metric then we construct

Finslerian nonholonomic frame for these.
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4.3.1 Finslerian Nonholonomic frame for (α, β)-metrics

L2 = ( β4

(β−α)2 )(
α2

β ):

In the first case, for a Finsler metric with the fundamental function L2 = ( β4

(β−α)2
)(α2

β
) =

L2 = α2β4

β(β−α)2
, the Finsler invariants (4.2.6) are given by:

ρ1 =
−β4

(α − β)3
, ρ0 =

3α4β

(α − β)4
,

ρ−1 = −β3(4α − β)

(α − β)4
, ρ−2 =

3β4

α(α − β)4
. (4.3.1)

B2 =
β6(4α − β)(4α2b2 − αβb2 − 3β2)

α(α − β)8

Using (4.3.1) in (4.2.10) we have,

X i
j =

√
−β4

(α − β)3
δi
j −

1

β6(4α − β)(4α2b2 − αβb2 − 3β2)
×{

α(α − β)8

[√
−β

(α − β)3
± 1

3

√
−9β4

(α − β)3
+

3β2(4α − β)(4α2b2 − αβb2 − 3β2)

(α − β)4

]}
(
−β3(4α − β)

(α − β)4
bi +

3βyi

α(α − β)4

)
.

(
−β3(4α − β)

(α − β)4
bj +

3β4yj

α(α − β)4

)
. (4.3.2)

Again using (4.3.1) in (4.2.12) we have,

Y i
j = δi

j −
1

C2

(
1 ±

√
1 +

C2α2β

(2β + α)(α2 + αβ + β2)

)
bibj; (4.3.3)

where

C2 = − β4b2

(α − β)3
+

(4α2b2 − αβb2 − 3β2)2β2

3α(α − β)4
.

Theorem 4.3.1. Consider a Finsler metric L2 = ( β4

(β−α)2
)(α2

β
), for which the condition

(4.2.7) is true. Then

V i
j = X i

kY
k
j

is a Finslerian nonholonomic frame with X i
k and Y k

j are given by (4.3.2) and (4.3.3)

respectively.
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4.3.2 Finslerian Nonholonomic frame for (α, β)-metrics L = (c1α
2β+

c2β
3)(α2

β ):

In the second case, for a Finsler metric with the fundamental function L = (c1α
2β +

c2β
3)(α2

β
), the Finsler invariants (4.2.6) are given by:

ρ1 = 2c1α
2 + c2β

2, ρ0 = c2α
2,

ρ−1 = 2c2β, ρ−2 = 4c1, (4.3.4)

B2 = 4c2β
2(c2b

2 + 2c1)

Using (4.3.4) in (4.2.10) we have,

X i
j =

√
2(c1α2 + c2β2)

β2
δi
j

− 1

4



(√

2c1α2 + c2β2 ±
√

2c21α2+c1c2β2+c2β2(c2b2+2c1)

c1

)
c2β2(c2b2 + 2c1)

 (4.3.5)

(2c2βbi + 4c1yi) (2c2βbj + 4c1yj)]

Again using (4.3.4) in (4.2.12) we have,

Y i
j = δi

j −
1

C2

(
1 ±

√
1 − C2c1

c2(c1α2 − c2
2β

2)

)
bibj (4.3.6)

where

C2 = (2c1α
2c2β

2)b2 +
b2(c2b

2 + 2c1)
2

c1

.

Theorem 4.3.2. Consider a Finsler space L = (c1α
2β+c2β

3)(α2

β
), for which the condition

(4.2.7) is true. Then

V i
j = X i

kY
k
j

is a Finslerian nonholonomic frame with X i
k and Y k

j are given by (4.3.5) and (4.3.6)

respectively.
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4.3.3 Nonholonomic frame for Infinite series (α, β)-metric:

In the third case, for a Finsler metric with the fundamental function L = F 2 = β4

(β−α)2
,

the Finsler invariants (4.2.6) are given by:

ρ1 =
α2 − αβ + β2

α4
, ρ0 =

3α2 − 2αβ + 2β2

α2
,

ρ−1 =
α3 − 3αβ2 + 4β3

α4
, ρ−2 =

β(α3 − 3αβ2 + 4β3

α6
, (4.3.7)

B2 =
α3 − 3αβ2 + 4β3(b2α2 − β2)

α10
.

Using (4.3.7) in (4.2.10) we have,

X i
j =

√
α2 − αβ + β2)(α2 − β)2

α4
δi
j −

α4

(b2α2 − β2)
(4.3.8)(√

(α2 − αβ + β2)(α2 − β2) ±

√
(α2 − αβ + β2)(α2 − β2) − α3 − 3αβ2 + 4β3

β

)
(

bi −
β

α2
yi

)(
bj −

β

α2
yj

)
Again using (4.3.7) in (4.2.12) we have,

Y i
j = δi

j −
1

C2

(
1 ±

√
1 +

α2βc2

α3 + 3αβ(−α + β) − 2β3

)
bibj (4.3.9)

where

C2 =
b2(α6 + αβ + β2)(α2 − β2)

α4
− (α3 − 3αβ2 + 4β3)(b2α2 − β2)2

α6β
.

Theorem 4.3.3. Consider a Finsler meric L =
(
α − β + β2

α

)2

, for which the condition

(4.2.7) is true, then

V i
j = X i

kY
k
j ,

is a Finslerian nonholonomic frame with X i
k and Y k

j are given by (4.3.8) and (4.3.9)

respectively.
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4.4 Conclusion

The frequent Finsler concept used by the physicists Beil and Holland is the existence of

a nonholonomic frame on the vertical subbundle V TM of the tangent bundle of a base

manifold M . This nonholonomic frame relates a semi-Riemannian metric (the Minkowski

or the Lorentz metric) with an induced Finsler metric. In 2001,Antonelli and Bucataru

have decided such a nonholonomic frame for two important classes of Finsler spaces that

are dual in the sense of Randers and Kropina spaces.

In this chapter, the fundamental tensor field might be taught as the result of two

Finsler deformation. Then we can determine a corresponding frame for each of these two

Finsler deformations. Consequently, a Finslerian nonholonomic frame for a Finlser spaces

with (α, β)-metrics, such a Ist Finsler frame product of product of Infinite series metric and

Kropina metric and IInd Finsler frame product of Cube root metric and Kropina metric

and special (α, β)-metric then we construct Finslerian nonholonomic frame for these. We

study the different types of Finsler space with (α, β)-metrics which have nonholonomic

frames.
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Chapter 5

L-DUALLY OF RANDERS
CHANGE OF MATSUMOTO
METRIC

5.1 Introduction

Matsumoto metric is an interesting (α, β)-metric introduced by using gradient of slope,

speed and gravity used to be studied by [91]. This metric formulates the mannequin

of a Finsler space. Many authors ([63],[91],[139]) have studied this metric via different

perspectives.

The L-duality of Finsler and Lagrange spaces used to be introduced via R. Miron[101]

and was intensively studied by using others. Concrete cases of Hemiltonians acquired by

means of L-duality methods were also constructed. In special, the L-dual of some (α, β)-

metrics like Randers and Kropina are quite interesting ([50], [51]). In 2007, Masca[72],

has studied the L-dual of a Matsumoto space, very lately G.Shanker[90] have succeeded

to compute the L-dual of a Generalized Matsumoto space. One of the remarkable re-

sults obtained are the concrete L-dual of Randers,Kropina and Matsumoto metrics([50],

[51],[90]). However, the importance of L-duality is by far limited to computing the dual

of some Finsler fundamental functions.
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The cause of this chapter is to investigate the L-duality of the special (α, β)-metric

α2

α−β
+ β which is regarded to be Randers change of Matsumoto metric.

5.2 The Legendre Transformation

Let F n = (M, F ) be an n-dimensional Finsler space. The fundamental function F (x, y)

is called an (α, β)-metric if F is homogeneous of α and β of degree one, where α2 =

a(y, y) = aijy
iyj, y = yi ∂

∂xi |x ∈ TxM is Riemannian metric, and β = bi(x)yi is a 1-form on

˜TM = TM − 0.

A Finsler space with fundamental function:

F (x, y) = α(x, y) + β(x, y) (5.2.1)

is called a Randers space, where as the space having the fundamental function:

F (x, y) =
α2(x, y)

β(x, y)
(5.2.2)

is called a Kropina space.

A Finsler space with fundamental function:

F (x, y) =
α2(x, y)

α(x, y) − β(x, y)
(5.2.3)

is called a Matsumoto space.

The generalized metrics:

F (x, y) =
αm+1(x, y)

βm(x, y)
, (m 6= 0,−1) (5.2.4)

and

F (x, y) =
αm+1(x, y)

(α(x, y) − β(x, y))m
, (m 6= 0,−1) (5.2.5)
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are called generalized Kropina and Matsumoto metrics respectively and the spaces equipped

with the corresponding metrics are called generalized m-Kropina and generalized Mat-

sumoto space respectively.

Definition 1. A Cartan space Cn is a pair (M, H) which consists of a real n-dimensional

C∞-manifold M and a Hamiltonian function H : T xM \ {0} −→ <, where (TmM, πx, M)

is the cotangent bundle of M such that H(x, p) has the following properties:

1. It is two homogeneous with respect to pi(i, j, k, = 1, 2, ..., n).

2. The tensor field gij(x, p) = 1
2

∂2H
∂pi∂pj

is nondegenerate.

Let Cn = (M, K) be an n-dimensional Cartan space having the fundamental function

K(x, p). We also consider Cartan spaces having the metric function of the following forms

([50]):

K(x, p) =
√

aij(x)pipj + bi(x)pi. (5.2.6)

or

K(x, p) =
aijpipj

bipi

. (5.2.7)

or

K(x, p) =
aijpipj√

aij(x)pipj − bi(x)pi

. (5.2.8)

with aija
jk = δk

i and we will again call these spaces Randers, Kropina and Matsumoto

spaces respectively on the cotangent bundle T ∗M .

Definition 2. A regular Lagrangin (Hamiltonian) on a domain D ⊂ TM(D∗ ⊂ T ∗M) is

a real smooth function L : D −→ <(H : D∗ −→ <) such that the matrix with entries

gab(x, y) = ∂̇a∂̇bL(x, y)(g∗ab(x, y) = ∂̇a∂̇bH(x, y))
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is everywhere nondegenerate on D(D∗).

A Lagrange (Hamilton) manifold is a pair (M, L(H)), where M is a smooth manifold and

L(H) is regular Lagrangian (Hamiltonian) on D(D∗).

Example 1:

(a) Every Finsler space F n = (M, F (x, y)) is a Lagrange manifold with L = 1
2
F 2.

(b) Every Cartan space Cn = (M, F̄ (x, p)) is a Hamilton manifold with H = 1
2
F̄ 2. (Here

F̄ is positively 1-homogeneous in pi and the tensor ḡab = 1
2
∂̇a∂̇bF̄

2 is nondegenerate).

(c) (M, L) and (M, H) with

L(x, y) =
1

2
aij(x)yiyj + bi(x)yi + c(x)

and

H(x, y) =
1

2
āij(x)pipj + b̄i(x)pi + c̄(x).

are Lagrange and Hamilton manifolds respectively. (Here aij, ā
ij are the fundamental

tensors of Riemannian manifold, bi are components of covector field,b̄i are the components

of a vector fields, C and C̄ are the smooth functions on M).

Let L(x, y) be a regular Lagrangian on a domain D ⊂ TM and let H(x, p) be a regular

Hamiltonian on a domain D∗ ⊂ T ∗M . If L is a differential map, we can consider the fiber

derivative of L, locally given by the diffeomorphism between the open set U ⊂ D and

U∗ ⊂ D∗ ([101],[102]):

ϕ(x, y) = (xi, ∂̇aL(x, y)). (5.2.9)

which is called the Legendre transformation. We can define, in this case, the function

H : U∗ 7→ R :

H(x, y) = pay
a − L(x, y). (5.2.10)

where y = ya is the solution of the equation:

pa = ∂̇aL(x, y). (5.2.11)
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In the same manner, the fiber derivative of H is locally given by:

ϕ(x, p) = (xi, ∂̇aH(x, p)), (5.2.12)

where ϕ is a diffeomorphism between the same open sets U ⊂ D and U∗ ⊂ D∗ and we

can consider the function L : U 7→ R, such that

L(x, y) = pay
a − H(x, p), (5.2.13)

where p = (pa) is the solution of the equations:

ya = ∂̇aH(x, p). (5.2.14)

The Hamiltonian given by (5.2.10) is the Legendre transformation of the Lagrangian L and

the Lagrangian given by (5.2.13) is called the Legendre transformation of the Hamiltonian

H.

If (M, K) is a Cartan space, then (M, H) is a Hamiltonian manifold ([101],[102]),

where H(x, p) = 1
2
K2(x, p) is 2-homogenous on a domain of T ∗M . So we get the following

transformation of H on U :

L(x, y) = pay
a − H(x, p) = H(x, p). (5.2.15)

Theorem 5.2.1. The scalar field L(x, y) defined by (5.2.16) is a positively 2-homogeneous

regular Lagrangian on U .

Therefore, we get Finsler metric F of U , so that

L =
1

2
F 2 (5.2.16)

Thus for the Cartan space (M, K) we always can locally associate a Finsler space

(M, F ) which will be called the L-dual of a Cartan space (M, C|U∗) vice versa, we can

associate, locally, a Cartan space to each and every Finsler space which will be called the

L-dual of a Finsler space (M, F|U).
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5.3 The L-Dual of Randers change of Matsumoto

metric

In this section, we consider the Finsler (α, β)-metric F = α2

α−β
+ β we put, α2 = yiy

i, β =

biy
i, β∗ = bipi, p

i = aijpj, α
∗2 = pip

i = aijpipj.

We have :

pi =
1

2
˙∂iF 2 = F

[
2Fyi

α2
− F

α(α − β)
(yi − biα)

]
(5.3.1)

Contracting (5.3.1) by pi and bi respectively, we get

α∗2 = F

[
2F 3

α2
− F

α(α − β)
(F 2 − αβ∗) + β∗

]
, (5.3.2)

β∗ = F

[
2Fβ

α2
− F

α(α − β)
(β − b2α) + b2

]
, (5.3.3)

In [50], for a Finsler (α, β)-metric F on a manifold M , there is a positive function φ = φ(s)

on (−b0; b0) with φ(0) = 1 and F = αφ(s), s = β
α
, where α =

√
aijyiyj and β = biy

i with

||β||x < b0,∀x ∈ M . φ satisfies φ(s) − sφ′(s) + (b2 − s2)φ′′(s) > 0, (|s| ≤ b0).

A Randers change of Matsumoto metric is a special (α, β)-metric with φ = [1+ s− 1
s
].

Using Shens notation[127] s = β
α
, (5.3.1) and (5.3.2) become

α∗2 = F

[
2F

(1 − s)2
− 1

(1 − s)3
+

β∗

(1 − s)2
+ β∗

]
, (5.3.4)

and

β∗ = F

[
2s

(1 − s)
− 1

(1 − s)2
(s − b2) + b2

]
. (5.3.5)

Putting (1 − s) = t, so that s = (1 − t) in (5.3.4) and (5.3.5), we get

α∗2 = F

[
2F 2

t2
− F 2

t3
+ F (1 +

1

t2
)β∗
]

, (5.3.6)

and

β∗ = F

[
2(1 − t)

t
− 1

t2
(1 − t − b2) + b2

]
. (5.3.7)



L-Dually of Randers Change of Matsumato Metric 105

Now, we have following two cases:

Case I. For b2 = 1, from (5.2.7), we get

F =

[
β∗t

(3 − t)

]
. (5.3.8)

From (5.3.6) and (5.3.8), we get

(K − 1)s3 + 3Ks2 + 4s − (4K + 5) = 0, (5.3.9)

where K = α∗2

β∗2 .

Solving (5.3.9) for s, using maple, we get

s =

[
−q

2
+

√
q2

4
+

p3

27

] 1
3

+

[
−q

2
−
√

q2

4
+

p3

27

] 1
3

− A

3
, (5.3.10)

where

p =

[
A2 − 2A3 + B

3

]
, q =

[
3C − AB

3

]
, (5.3.11)

and

A =
3K

(K − 1)
, B =

4

(K − 1)
, C =

4K + 5

1 − K
. (5.3.12)

From (5.3.8), we get

F =

β∗

[
1 −

[
−q
2

+
√

q2

4
+ p3

27

] 1
3

−
[
−q
2
−
√

q2

4
+ p3

27

] 1
3

+ A
3

]

2 +

[
−q
2

+
√

q2

4
+ p3

27

] 1
3

+

[
−q
2
−
√

q2

4
+ p3

27

] 1
3

− A
3

. (5.3.13)

From (5.2.15) and (5.2.16), we get

H(x, p) =

β∗2

2

[
1 −

[
−q
2

+
√

q2

4
+ p3

27

] 1
3

−
[
−q
2
−
√

q2

4
+ p3

27

] 1
3

+ A
3

]2

[
2 +

[
−q
2

+
√

q2

4
+ p3

27

] 1
3

+

[
−q
2
−
√

q2

4
+ p3

27

] 1
3

− A
3

]2 . (5.3.14)

Hence we have the following theorem :
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Theorem 5.3.1. Let (M, F ) be a Randers change of Matsumoto space and b = (aijb
ibj)

1
2

the Riemannian length of bi. Then if b2 = 1, the L-dual of (M, F ) is the space having the

fundamental function (5.3.14).

Case II. For b2 6= 1, from (5.3.7), we get

F =

[
β∗t2

(b2 − 2)t2 + 3t + (b2 − 1)

]
, (5.3.15)

from (5.3.6) and (5.3.15), we get

s4 + A1s
3 + A2s

2 + A3s + A4 = 0, (5.3.16)

where

A1 = (4Kb4 − 10Kb2 − 4b2 + 4K + 6)/A, A2 = (−8Kb4 + 12Kb2 + 8b2 − K − 7)/A

,

A3 = (8Kb4−4Kb2−8b2+1)/A, A4 = (−4Kb4+4b2+1)/A, A = (−Kb4+4Kb2+b2−4K−2)

.

Using maple, after long computations solving (5.3.16) for s,we get

s =

[
−H2 +

√
H2

2 − 4H1H3

2H1

− A1

4

]
, (5.3.17)

where

H1 = B1 + 2C, H2 = −B2, H3 = B2
1 − B3 + 2B1C + C2,

B1 =
−3A2

1

8
+ A2, B2 =

A3
1

8
− A1A2

8
+ A3, B3 =

−3A4
1

256
− A3A1

4
+

A2
1A2

16
+ A4,

C =

(
−P2

2
+

√
P 2

2

4
+

P 3
1

27

)1/3

+

(
−P2

2
−
√

P 2
2

4
+

P 3
1

27

)1/3

− D1

3
,

P1 =

[
D2

1

3
− 2D3

1

3
+ D2

]
, P2 =

[
D3 −

D1D2

3

]
,
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and

D1 =
5

2
B1, D2 = 2B2

1 − B3, D3 =
4B3

1 − B2
2 − 4B1B3

8
.

From (5.3.15), we get

F =

β∗
[
1 − −H2+

√
H2

2−4H1H3

2H1
+ A1

4

]2

(b2 − 2)

[
−H2+

√
H2

2−4H1H3

2H1
+ A1

4

]2

+ 3

[
−H2+

√
H2

2−4H1H3

2H1
+ A1

4

]
+ (b2 − 1)

. (5.3.18)

From (5.2.15) and (5.2.16), we get

H(x, p) =

β∗2

2

[
1 − −H2+

√
H2

2−4H1H3

2H1
+ A1

4

]4

[
(b2 − 2)

[
−H2+

√
H2

2−4H1H3

2H1
+ A1

4

]2

+ 3

[
−H2+

√
H2

2−4H1H3

2H1
+ A1

4

]
+ (b2 − 1)

]2 .

(5.3.19)

Hence we have the following theorem :

Theorem 5.3.2. Let (M, F ) be a Randers change of Matsumoto space and b = (aijb
ibj)

1
2

the Riemannian length of bi. Then if b2 6= 1, the L-dual of (M, F ) is the space having the

fundamental function (5.3.19).

5.4 Conclusion

As we know, Finsler geometry is just Riemannian geometry without the quadratic restric-

tion. Therefore, it is natural to extending the construction of locally dually flat metrics

for Finsler geometry. In Finsler geometry, Z.Shen extends the idea of locally dually flat-

ness metric in Finsler information geometry, which play a very important role in studying

many applications in Finsler information structure.

In this chapter, we proved the following two consequences first one is Let (M, F ) be

a Randers change of Matsumoto space and b = (aijb
ibj)

1
2 the Riemannian length of bi.
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Then if b2 = 1, the L-dual of (M, F ) is the space having the fundamental function(5.3.14)

and second one is Let (M, F ) be a Randers change of Matsumoto space and b = (aijb
ibj)

1
2

the Riemannian length of bi. Then if b2 6= 1, the L-dual of (M, F ) is the space having the

fundamental function(5.3.19).
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Chapter 6

CONFORMAL CHANGE OF
FINSLER SUBSPACES

6.1 Introduction

Let (M, L) be a Finsler space, where M is an n-dimentional differentiable manifold

equipped with a fundamental function L. Given a function σ, the change

L̄(x, y) −→ eσ(x)L(x, y), (6.1.1)

is called a conformal change. The conformal theory of Finsler spaces has been initiated

by many authors. For a differential 1-form β(x, y) = bi(x)yi on M , Randers, introduced

a special Finsler space defined by β-change L̄ = L + β, where L is Riemannian. In 2008,

S. Abed ([61], [62]) introduced the transformation L̄ = eσ(x)L + β, thus generalizing the

conformal, Randers and generalized Randers changes.

General change of Finsler metrics defined by:

L(x, y) → L̄(x, y) = f(eσ(x)L(x, y), β(x, y))

where f is a positively homogeneous function of degree one in L̄ := eσL and β. This change

will be referred to as a generalized β-conformal change. It is clear that this change is a

generalization of the above mentioned changes and deals simultaneously with β-change
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and conformal change. It combines also the special case of Shibata (L̄ = f(L, β)) and

that of Abed (L̄ = eσL, β) .

In 1984, C. Shibata [132] studied β-change of Finsler metrics and discussed certain

invariant tensors under such a change. In 1979, Singh, et. al. [140] studied a Randers

space F n(M, L(x, y) = (gij(x)yiyj)
1
2 +bi(x)yi), n ≥ 2 which undergoes a change L(x, y) 7→

L∗(x, y) = L2(x, y) + (αi(x)yi)2.

6.2 Preliminaries

Let F n = (M, L), n ≥ 2 be an n-dimensional C∞ Finsler manifold with fundamental

function L = L(x, y). Consider the following change of Finsler structures which will be

referred to as a generalized β-conformal change:

L(x, y) −→ L̄(x, y) = f(eσ(x)L(x, y), β(x, y)), (6.2.1)

where f is a positively homogeneous function of degree one in eσL and 1-form β where,

β = bi(x)dxi.

We define

f1 :=
∂f

∂L
, f2 :=

∂f

∂β
, f12 :=

∂2f

∂L∂β
, .....,

where L̃ = eσL.

The angular metric tensor h̄ij of the space F̄ n is given by [146]

h̄ij = eσphij + q0mimj (6.2.2)

where

p = ff1/L, q = ff2, q0 = ff22, p0 = f 2
2 + q0, q−1 = ff12/L,

p−1 = q−1 + pf2/f, q−2 = f(eσf11 − f1/L)/L2, p−2 = q−2 + eσp2/f2, (6.2.3)

mi = bi − βyi/L2 6= 0, σi = ∂iσ.
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hij being the angular metric tensor of F n. The fundamental metric tensor ḡij and its

inverse ḡij of F̄ n are expressed as

ḡij = eσpgij + p0bibj + eσp−1(biyj + bjyi) + eσp−2yiyj, (6.2.4)

ḡij = (e−σ/p)gij − s0b
ibj − s−1(b

iyj + bjyi) − s−2y
iyj, (6.2.5)

where

s0 = e−σf 2q0/(εpL
2), s−1 = p−1f

2/(εpL2),

s−2 = p−1(e
σm2pL2 − b2f 2)/(εpβL2), (6.2.6)

ε = f 2(eσp + m2q0)/L
2 6= 0, m2 = gijmimj.

gij and gij respectively being the metric tensor and inverse metric tensor of F n. The

Cartan tensor C̄ijk and the associate Cartan tensor C̄ l
ij of F̄ n are given by the following

expressions:

C̄ijk = eσpCijk +
1

2
eσp−1(hijmk + hjkmi + hkimj) +

1

2
p02mimjmk, (6.2.7)

The (h)hv-torsion tensor C̄ l
ij is expressed in terms of C l

ij as

C̄ l
ij = C l

ij + M l
ij, (6.2.8)

where

M l
ij =

1

2p
[e−σml − pm2(s0b

l + s−1y
l)](eσp−1hij + p02mimj)

− eσ(s0b
l + s−1y

l)(pCisjb
s + p−1mimj) +

p−1

2p
(hl

imj + hl
jmi), (6.2.9)

hi
j = gilhlj, p02 =

∂p0

∂β

Cijk and C l
ij respectively being the Cartan tensor and associate Cartan tensor of F n. The

spray coefficients Ḡi of F̄ n in terms of the spray coefficients Gi of F n are expressed as

Ḡi = Gi + Di, (6.2.10)
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where

Di =
σ0

2p
{[2p − βp−1 − eσp2L2s−2 − ps−1(2e

σpβ + eσp−1L
2m2)]yi − 2eσp2βs0b

i}

+
q

p
e−σF i

0 −
1

2
L2σi +

1

2
(eσpE00 − 2qFβ0 + eσpL2σβ)(s0b

i + s−1y
i), (6.2.11)

Ejk = (1/2)(bj|k + bk|j), Fjk = (1/2)(bj|k − bk|j), F i
j = gikFkj,

the symbol ’|’ denote the h-covariant derivative with respect to the Cartan connection

CΓ and the lower index ’0’ (except in s0) denote the contraction by yi.

The relation between the coefficients N̄ i
j of Cartan nonlinear connection in F̄ n and the

coefficients N i
j of the corresponding Cartan nonlinear connection in F n is given by

N̄ i
j = N i

j + Di
j, (6.2.12)

where

Di
j =

e−σ

p
Ai

j − (s0b
i + s−1y

i)Atjb
t − (qb0|j + eσpL2σj)(s−1b

i + s−2y
i), (6.2.13)

Aij = E00Bij + Fi0Qj + qFij + Ej0Qi − 2(eσpCsij + Vsij)D
s

+
1

2
σ0[2e

σpgij + 2eσp−1mjyi − 2βBij + eσp−1(biyj − bjyi)] (6.2.14)

− 1

2
σi(e

σL2p−1mj + 2eσpyj) +
1

2
σj(2e

σpyi + eσL2p−1mi),

Ai
j = gliAlj, 2Bij = eσp−1hij + p02mimj, Qi = eσp−1yi + p0bi

. The coefficients F̄ i
jk of Cartan connection CΓ̄ in F̄ n and the coefficients F i

jk of the

corresponding Cartan connection CΓ in F n are related as

F̄ i
jk = F i

jk + Di
jk, (6.2.15)
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where

Di
jk = {(e−σ/p)git − (s0b

i + s−1y
i)bt − (s−1b

i + s−2y
i)yt}{FtkQj + FtjQk + EjkQt

+
1

2
Θ(j,k,t)(2e

σpCjkmDm
t + 2VjkmDm

t − Kjkσt − 2Bjkb0|t)} (6.2.16)

Vijk =
1

2
eσp−1(hijmk + hjkmi + hkimj) +

1

2
p02mimjmk

Kij = A1gij + A2bibj + A3(biyj + bjyi) + A4yiyj,

A1 = eσ(2p − βp−1), A2 = −βp02, A3 = eσp−1 + (β2/L2)p02,

A4 = eσp−2 − (β3/L4)p02, Θ(j,k,t){Ajkt} = Ajkt − Aktj − Atjk,

The tensor Di
jk has the properties:

Di
j0 = Bi

j0 = Di
j; Di

00 = 2Di, where Bi
jk = ∂kD

i
j.

6.3 Conformal transformation of Finsler space with

Killing vector fields

Let us consider an infinitesimal transformation

′xi = xi + εvi(x), (6.3.1)

where ε is an infinitesimal constant and vi(x) is a contravariant vector field.

The vector field vi(x) is said to be a Killing vector field in F n if the metric tensor of

the Finsler space with respect to the infinitesimal transformation (6.3.1) is Lie invariant,

that is,

£vgij = 0, (6.3.2)

£v being the operator of Lie differentiation. Equivalently, the vector field vi(x) is Killing
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in F n if

vi|j + vj|i + 2C l
ijvl|0 = 0. (6.3.3)

where vi = gilv
l.

Now, we prove the following result which gives a necessary and sufficient condition for a

Killing vector field in F n to be Killing in F̄ n:

Theorem 6.3.1. A Killing vector field vi(x) in F n is Killing in F̄ n if and only if

M l
ijvl|0 + Crjtv

tDr
i + Critv

tDr
j + vr(e

−σF−r
ij −F r

ij) + eσC̄ l
ij(2Crltv

tDr + vrD
r
l ) = 0, (6.3.4)

where C̄ l
ij is the associate Cartan tensor of F̄ n.

Proof: Assume that vi(x) is Killing in F n. Then (6.3.3) is satisfied. By definition, the

h-covariant derivatives of vi with respect to CΓ̄ and CΓ are respectively given as

(a) vi||j = ∂jvi − eσ(∂̇rvi)Ḡ
r
j − eσvrF̄

r
ij, (b) vi|j = ∂jvi − (∂̇rvi)G

r
j − vrF

r
ij, (6.3.5)

where ∂j = ∂/∂xj and ′‖′ denote the h-covariant differentiation with respect to CΓ̄.

Equation (6.3.5)(a), by virtue of (6.2.10), (6.2.15) and (6.3.5)(b), takes the form

vi||j = vi|j − 2Critv
tDr

j − vr(e
−σF−r

ij − F r
ij). (6.3.6)

Now, from (6.3.6), we have

vi||j + vj||i + 2eσC̄ l
ijvl||0 = vi|j + vj|i + 2eσC l

ijvl|0 − 2Critv
tDr

j − 2Crjtv
tDr

i

− 2vr(e
−σF−r

ij − F r
ij) − 2eσC̄ l

ij(2Crltv
tDr + vrD

r
l ). (6.3.7)

Using (6.2.10) in (6.3.7) and applying (6.3.3), we get

vi||j + vj||i + 2eσC̄ l
ijvl||0 = 2M l

ijvl|0 − 2Critv
tDr

j − 2Crjtv
tDr

i

− 2vr(e
−σF−r

ij − F r
ij) − 2eσC̄ l

ij(2Crltv
tDr + vrD

r
l ). (6.3.8)
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Proof completes with the observation that vi(x) is Killing in F̄ n if and only if vi||j + vj||i +

2eσC̄ l
ijvl||0 = 0, that is, if and only if (6.3.4) holds.

If a vector field vi(x) is Killing in F n and F̄ n, then from Theorem 3.1, (6.3.4) holds,

which on transvection by yi yields

2Crltv
tDr + vr(e

−σF−r
ij − F r

ij) = 0. (6.3.9)

Equation (6.3.4), in view of (6.3.9), enables us to state the following:

Corollary 6.3.2. If a vector field vi(x) is Killing in F n and F̄ n, then

Critv
tDr

j + Crjtv
tDr

i + vr(e
−σF−r

ij − F r
ij) − M l

ijvl|0 = 0. (6.3.10)

As another important consequence of Theorem 6.3.1, we have the following:

Corollary 6.3.3. If a vector field vi(x) is Killing in F n and F̄ n, then the vector vi(x, y)

is orthogonal to the vector Di(x, y).

Proof: As vi(x) is Killing in F n and F̄ n, (6.3.4) holds, which on transvection by yi

gives (6.3.9). Again transvecting (6.3.9) by yj , it follows that vrD
r = 0. This proves the

result.

6.4 Finslerian Subspaces given by conformal β-change

Let Mn be an n-dimensional smooth manifold and F n = (Mn, L) be an n-dimensional

Finsler space equipped with a fundamental function L(x, y) on Mn. Then the metric

tensor gij(x, y) and Cartans C-tensor Cijk(x, y) are given by

gij = (∂2L2/∂yi∂yj)/2, Cijk = (∂gij/∂yk)/2,
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and we can introduce in F n the Cartan connection CΓ = (F i
jk, G

i
j, C

i
jk). An m-dimensional

subspace Mm of the underlying smooth manifold Mn may be parametrically represented

by the equation xi = xi(uα)(i = 1, 2, ......., n), where uα are Gaussian coordinates on Mm

and Greek indices run from 1 to m. Here, we shall assume that the matrix consisting

of the projection factors Bi
α = ∂xi/∂uα is of rank m. The following notations are also

employed : Bi
αβ := ∂2xi/∂uα∂uβ, Bi

0β := vαBi
αβ, Bij...

αβ.... := Bi
αBj

β....... If the supporting

element yi at a point (uα) of Mm is assumed to be tangential to Mm, we may then write

yi = Bi
α(u)vα, so that vα is thought of as the supporting element of Mm at the point

(uα). Since the function L(u, v) := L(x(u), y(u, v)) gives rise to a Finsler metric of Mm,

we get an m-dimensional Finsler space Fm = (Mm, L(u, v)).

At each point (uα) of Fm, the unit normal vectors N i
α(u, v) are defined by

gijB
i
αN j

a = 0, gijN
i
aN

j
b = δab (a, b, ...... = m + 1, ......, n). (6.4.1)

If (Bα
i , Na

i ) is the inverse matrix of (Bi
α, N i

a), we have

Bi
αBβ

i = δβ
α, Bi

αNa
i = 0, N i

aB
α
i = 0, N i

aN
b
i = δb

a, (6.4.2)

and further

Bi
αBα

j + N i
aN

a
j = δi

j. (6.4.3)

Making use of the inverse matrix (gαβ) of (gαβ), we get Bα
i = gαβgijB

j
β. By (6.4.1) and

(6.4.3), we also have δabN
b
i = gijN

j
a .

For the induced Cartan connection CΓ = (Fα
βγ, G

α
β , Cα

βγ) on Fm, the second funda-

mental h-tensor Ha
αβ and the normal curvature vector Ha

α in a normal direction N i
a are
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given by

Ha
αβ = Na

i (Bi
αβ + F i

jkB
jk
αβ) + Ma

αbH
b
β, (6.4.4)

Ha
α = Na

i (Bi
0α + Gi

jB
j
α),

where Ma
αb := Cj

ikB
i
αNa

j Nk
b and Bi

0α = Bi
βαvβ. Contracting Ha

βα by vβ, we immediately

get

Ha
0α := Ha

βαvβ = Ha
α. (6.4.5)

Lets introduce in F n = (Mn, L̄) the Cartan connection CΓ̄ = (F̄ i
jk, Ḡ

i
j, C̄

i
jk) from a

generalized conformal β-change of the metric.

We now consider a Finslerian subspace Fm = (Mm, L̄(u, v)) of F n and another Finsle-

rian subspace F̄m = (Mm, L̄(u, v)) of the F̄ n given by the generalized conformal β-change.

Let N i
a be unit normal vectors at each point of Fm, and (Bα

i , Na
i ) be the inverse matrix

of (Bi
α, N i

a). The functions Bi
α(u) may be considered as components of m linearly inde-

pendent vectors tangent to Fm and they are invariant under the generalized conformal

β-change. The unit normal vectors N̄ i
a(u, v) of F̄m are uniquely determined by

ḡijB
i
αN̄ j

a = 0, ḡijN̄
i
aN̄

j
b = δab. (6.4.6)

The fundamental tensor ḡij = (∂2L̄2/∂yi∂yj)/2 of the Finsler space F̄ n given by (6.2.4),

(6.2.5).

Now contracting (6.4.1) by vα, we immediately get

yiN
i
a = 0 (6.4.7)

Further contracting (6.2.5) by N i
aN

j
b and paying attention to (6.4.1), (6.4.6) and (6.4.7),

we have

ḡijN
i
aN

j
b = eσpδab + p0(biN

i
a)(bjN

j
b ). (6.4.8)
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Putting a = b, then we obtain

ḡij(±N i
a/
√

eσp + p0(biN i
a)

2)(±N j
a/
√

eσp + p0(biN i
a)

2) = 1, (6.4.9)

provided eσp + p0(biN
i
a)

2 > 0. Therefore we can put

N̄ i
a = N i

a/
√

eσp + p0(biN i
a)

2, (6.4.10)

where we have chosen the sign ” + ” in order to fix an orientation. On using (6.4.1) and

(6.4.7), the first condition of (6.4.6) gives us

(biN
i
a)(p0bjB

j
α + eσyjB

j
α) = 0. (6.4.11)

Now, assuming that p0bjB
j
α + eσp−1yjB

j
α = 0 and contracting this by vα, we find p0β +

eσp−1L
2 = 0. By (6.2.4) this equation lead us to ffβ = 0, where we have used LfLβ +

βfββ = 0 and LfL + βfβ = f owing to the homogeneity of f . Thus we have fβ = 0

because of f 6= 0. This fact means L̄ = f(L) and contradicts the definition of a generalized

conformal β-change of metric. Consequently (6.4.11) gives us

biN
i
a = 0. (6.4.12)

Therefore (6.4.10) is rewritten as

N̄ i
a = N i

a/
√

eσp (p > 0). (6.4.13)

and then it is clear N̄ i
a satisfies (6.4.6). Summarizing the above, we obtain

Theorem 6.4.1. For a field of linear frame (Bi
1, ......., B

i
m, N i

m+1, ....., N
i
n) of F n, there

exists a field of linear frame (Bi
1, ......., B

i
m, N̄ i

m+1, ....., N̄
i
n) of F̄ n given by the generalized

conformal β-change such that (6.4.6) is satisfied along F̄m, and then we get (6.4.12).

The quantities B̄α
i are uniquely defined along F̄m by

B̄α
i = ḡαβ ḡijB

j
β, (6.4.14)
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where ḡαβ is the inverse matrix of ḡαβ. Let (B̄α
i , N̄a

i ) be the inverse matrix of (Bi
α, N̄ i

a),

we have

Bi
αB̄β

i = δβ
α, Bi

αN̄a
i = 0, N̄ i

aB̄
α
i = 0, N̄ i

aN̄
b
i = δb

a, (6.4.15)

and further

Bi
αB̄α

j + N̄ i
aN̄

a
j = δi

j. (6.4.16)

we also get δabN̄
b
i = ḡijN̄

j
a , that is,

N̄a
i =

√
eσpNa

i . (6.4.17)

Now assuming that the covector field bi(x) is gradient, we have from (6.2.13)

Na
i Di = 0. (6.4.18)

Differentiating (6.4.18) by yj and contracting it by Bj
α, we get

Na
i Di

jB
j
α = 0. (6.4.19)

If each geodesic of Fm with respect to the induced metric is also a geodesic of F n,

then Fm is called totally geodesic. A totally geodesic subspace Fm is characterized by

each Ha
α = 0. From (6.4.4) and (6.4.17) we have

H̄a
α =

√
eσp(Ha

α + Na
i Di

jB
j
α). (6.4.20)

Thus from (6.4.19) we obtain H̄a
α =

√
eσpHa

α. Hence we have

Theorem 6.4.2. Assume that the covector field bi(x) is gradient. Then the subspace Fm

is totally geodesic, if and only if the subspace F̄m is totally geodesic.

From (6.4.4), (6.4.17) and Lemma 2.1, we have H̄a
α =

√
eσpHa

α. Thus we obtain

Theorem 6.4.3. Let bi(x) be parallel with respect to CΓ on F n. Then the subspace Fm

is totally geodesic, if and only if the subspace F̄m is totally geodesic.
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If each h-path of Fm with respect to the induced connection is also an h-path of

F n, then Fm is called totally h-autoparallel. A totally h-autoparallel subspace Fm is

characterized by each Ha
αβ = 0. From (6.4.4), (6.4.5), (6.4.17) and Lemma 2.1, we obtain

Theorem 6.4.4. Let bi(x) be parallel with respect to CΓ on F n. Then the subspace Fm

is totally h-autoparallel, if and only if the subspace F̄m is totally h-autoparallel.

6.5 Conclusion

The infinitesimal symmetries of space-time are expressed by so-called Killing vector fields

in general relativity. Therefore, it is an important problem to determine the Killing vector

fields of different classes of generalized metrics. In a Euclidean space, translations are

distinguished from other types of isometries by the property that their orbits are straight

lines. This property is used to generalize the notion of translations to more general classes

of metrics, translations are Killing vector fields whose integral curves are at the same time

geodesics.

In this chapter, we consider a general Finsler space F n(M, L) which undergoes con-

formal and β-change, that is L(x, y) → L̄(x, y) = f(eσ(x)L(x, y), β(x, y)) where β(x, y) =

bi(x)yi is a 1-form. We study Finslerian subspace Fm = (Mm, L̄(u, v)) of F n and another

Finslerian subspace F̄m = (Mm, L̄(u, v)) of the F̄ n subjected to the generalized confor-

mal β-change. Further, we consider a Finsler subspace is totally geodesic and totally

h-autoparallel and we also examine the classical approach to the problem of existence of

Killing vector fields and study how they vary from point to point and how they are related

to Killing vector fields defined on the whole manifold and as its consequences we obtained

Corollaries 6.3.2 and 6.3.3. Since the Killing equation (6.3.2) is a necessary and sufficient

condition for the transformation (6.3.1) to be a motion in F n, condition (6.3.4) obtained
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in Theorem 5.3.1 may be taken as the necessary and sufficient condition for the vectorfield

V i(x), generating a motion in F n, to generate a motion in F̄ n as well. It is clear that

vector field vi(x), generating an affine motion in F n , generates an affine motion in F̄ n if

condition (6.3.4) holds. Our study has applications to link various transformations in F n

with the corresponding transformations in F̄ n.
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