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Notations

Notation Abbreviation

⊗ Tensor product

� Kulkarni-Nomizu product of symmetric tensors

∇ Levi-Civita connection

J Almost complex structure

I Identity endomorphism

R Riemann curvature tensor

g Riemannian or pseudo-Riemannian metric

Ric Ricci curvature tensor

Ric] Ricci operator

s Scalar curvature

[Y, Z] Lie bracket of vector fields Y and Z

£ Lie derivative

Hessf Hessian of smooth function f

grad Gradient operator

div Divergence operator

tr Trace

Ker Kernel of operator

∆ Laplacian operator

X(M) Lie algebra of all smooth vector fields on M

Rn Real Euclidean space of dimension n

Cn Complex Euclidean space of dimension n

Sn Sphere of dimension n

Hn Hyperbolic space of dimension n

viii



Notations ix

d Exterior derivative

C∞(M) Set of smooth functions on M

W Weyl conformal curvature tensor

W∗ ∗-Weyl conformal curvature tensor

C Cotton tensor

B Bach tensor

X[ Canonical 1-form associated to the vector field X

R Set of real numbers

N Set of natural numbers

{ui} Orthonormal frame

CPn Complex projective space

CHn Complex hyperbolic space

A Shape operator

O(1, 2) Pseudo-orthogonal group

S̃L(2,R) Special linear group

V b Metric dual to V
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Preface

On the 10th of June 1854, Riemann gave his famous inaugural lecture at Gottingen and

discussed the foundations of geometry, introduced n-dimensional manifolds, formulated

the concept of Riemannian manifolds and defined their curvature. Since every manifold

admits a Riemannian metric, Riemannian geometry often helps us to solve problems

of differential topology. Most remarkably, by applying Riemannian geometry, Perelman

solved the famous Poincare’s conjecture posed in 1904.

Under the impetus of Einstein’s theory of general relativity (1915) a further general-

ization appeared; the positiveness of the inner product was weakened. Consequently, one

has the notion of pseudo-Riemannian manifolds which is a generalization of a Rieman-

nian manifold in which the metric tensor need not be positive-definite, but need only be

a non-degenerate bilinear form, which is a weaker condition.

The theory of structures on manifolds is a very interesting and very fruitful fields of

Riemannian geometry. In this thesis, we investigate Riemannian and pseudo-Riemannian

manifolds admitting different types of structures. In particular, we study contact Rie-

mannian structures, almost Kenmotsu structures, almost coKaehler structures, almost

contact pseudo-Riemannian structures and almost paracontact metric structures under

several geometric points of view. The entire work in the thesis has been partitioned into

five chapters and are summarized as follows:

Chapter 1 gives a brief summary of the main concepts and results about almost contact

manifolds and Paracontact manifolds which will be used widely in the rest of chapters.

Chapter 2 we study H-Curvature tensor on almost Kenmotsu manifold with nullity

distibution. Also we investigate Generalized Ricci Soliton on Almost Kenmotsu Manifolds.

iv
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In the beginning, we proved that if M is a locally φ-H symmetric alomost Kenmotsu

manifold with characteristic vector field ξ belonging to the (κ, µ)′-nullity distribution and

h 6= 0, then the manifoldM is locally isometric to the Riemannian product Hn+1(−4)×En.

Next we showed that if M is a locally φ-H symmetric alomost Kenmotsu manifold with

characteristic vector field ξ belonging to the generalized (κ, µ)′-nullity distribution and h 6=

0 then M is locally isometric to the Riemannian product Hn+1(−4)×En. Also we proved

that if M is a locally φ-H symmetric almost Kenmotsu manifold with the characteristic

vector field ξ belonging to the (κ, µ)-nullity distribution and h 6= 0, then the manifold

M is an Einstein manifold. And if M is a locally φ − H symmetric almost Kenmotsu

manifold with the characteristic vector field ξ belonging to the generalized (κ, µ)-nullity

distribution and h 6= 0, then the manifold M is Einstein. Finally, we study the two

classes of almost Kenmotsu manifolds. Firstly, we study a closed generalized Ricci soliton

on the Kenmotsu manifold. Secondly, we prove that if a Kenmotsu manifold M admits a

generalized Ricci soliton with conformal vector field V , thenM is Einstein. Next, we show

that a non-Kenmotsu almost Kenmotsu (κ, µ)′-manifold admitting a closed generalized

Ricci soliton is locally isometric to the Riemannian product Hn+1 × Rn, provided that

λ− κ
β
(2nαβ − 1) = − 2

β
.

In Chapter 3, we devoted to the study of K-paracontact manifold admitting parallel

Cotton tensor, vanishing Cotton tensor and to study Bach flatness on K-paracontact

manifold. Also we study vanishing Cotton tensor on (κ, µ)-paracontact manifold for both

κ > −1 and κ < −1. Further we study Yamabe and Quasi Yamabe soliton on (κ, µ)-

paracontact manifold and K-paracontact manifold. First we consider M to be a K-

paracontact manifold. Then M has constant scalar curvature if and only if C(X, ξ)ξ = 0.

Next, we show that if M is a K-paracontact metric manifold, then M has parallel Cotton

tensor if and only if M is an η-Einstein manifold and r = −2n(2n + 1). Also we proved

that ifM is an η-Einstein K-paracontact manifold, and is Bach flat thenM is an Einstein

manifold. Also, we prove that if M is a (κ, µ)-paracontact manifold for κ 6= 1, and if M

has vanishing Cotton tensor for µ 6= κ then M is an η-Einstein manifold. Next, we study

Yamabe and quasi Yamabe soliton on (κ, µ)-paracontact manifold and K-paracontact
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manifold. Here we prove that, if M is non-para-Sasakian manifold and admits Yamabe

soliton for the potential vector field V , then either V is Killing, or M is locally isometric

to the product of a flat (n + 1)-dimensional manifold and n-dimensional manifold of

constant negative curvature equal to −4. Next we prove that if a non-para-Sasakian

(κ, µ)-paracontact manifold admits a quasi Yamabe gradient soliton then for κ > −1,

M is either N(1−n
n

)-manifold, or M is locally isometric to the product of a flat (n + 1)-

dimensional manifold and n-dimensional manifold of constant negative curvature equal

to −4, or the potential function f is constant on M . For κ < −1 either µ 6= −4
n+1

or the

potential function f is constant on M . Lastly, we show that, if a K-paracontact metric g

with Qϕ = ϕQ represents a quasi Yamabe gradient soliton then either the scalar curvature

r = −2n(2n+ 1), or the potential function f is a constant.

In Chapter 4, we study some geometric properties of extended quasi generalized ϕ-

recurrent para-Kenmotsu manifolds. And a proper example is also provided to demon-

strate the existence of an extended quasi-generalized ϕ-recurrent Kenmotsu manifold.

Also we study C-Bochner pseudosymmetric para-Kenmotsu manifold. Firstly we proved

that if M is a para-Kenmotsu manifold and if M is an extended quasi ϕ- recurrent

manifold, then M is super generalized Ricci-recurrent manifold. Also we show that if

a para-Kenmotsu manifold M is an extended quasi ϕ- recurrent manifold, then M is

an Einstein manifold. Moreover, the associated vector fields χ1 and χ2 of 1-forms Π1

and Π2 respectively are co-directional. And if a para-Kenmotsu manifold M admitting

an extended quasi generalized ϕ-recurrent, then M is of constant sectional curvature

−1. Next we prove that if M is a para-Kenmotsu manifold and if M is an extended

quasi ϕ- recurrent manifold, then the 1-forms Π1 and Π2 are related by the equation

dr(W ) = [2n(2n + 1) + r]Π1(W ) − 2(n + 1)(2n + 1)Π2(W ). Finally we showed that if

a n-dimensional para-Kenmotsu manifold M is C-Bochner Pseudo-symmetric then Mn

is locally isometric to a sphere or LB = 1. And we examine if a n-dimensional para-

Kenmotsu manifold M satisfies B(ξ,X) · B = 0 then M is isometric to a hyperbolic

space. Later we showed that an n-dimensional para-Kenmotsu manifold satisfying the

condition B(ξ,X) · R = 0 is locally isometric to a sphere or τ = 2n. Also we proved
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that a n-dimensional para-Kenmotsu manifold satisfying B(ξ,X) · S = 0 is an Einstein

manifold.

in the final Chapter 5 focuses on the study some symmetric properties on (LCS)n-

Manifolds. First, we show that a B-pseudosymmetric (LCS)n-manifold is an Einstien

manifold if LB 6= (α2 − ρ) and we show that if (LCS)n manifold is Q-pseudosymmetric,

then it is an Einstein manifold. Also show that a Q-pseudosymmetric (LCS)n-manifold

is Q-semisymmetric if and only if LQ = 0. Finally we show that a Q-Ricci semisymmetric

(LCS)n-manifold is an Einstien manifold if Ψ 6= (α2 − ρ)(n − 1). In addition to this we

study conditions Q(ξ,X)·Q(Y, U)Z = 0 and Q-pseudosymmetric and φ-Q-flat on (LCS)n-

manifolds. Next, we show that the geometric aspects of a Reeb vector field ξ and an

orthogonal vector field V on a Lorentzian para-Sasakian manifoldM is a conformal vector

field, then it is Killing onM . Next, we prove that if an infinitesimal contact transformation

on a Lorentzian para-Sasakian manifold is a holomorphically planar conformal vector field,

then it is either collinear with ξ, or strictly infinitesimal contact transformation ofM . And

finally we showed that if M is a Lorentzian para-Sasakian manifold and V is a orthogonal

vector field which is non-zero, then V never be a holomorphically planar conformal vector

field on M .



Chapter 1

Introduction

Geometry is an essential part of mathematics concerned with shape, size and corre-

sponding position of figures and with properties of spaces. Many pioneers studied and

proved that geometry plays a vital role in describing the beauty of nature in a system-

atic and effective manner. Geometry was put into a axiomatic form by a great Greek

mathematician Euclid. Later in 1854, Bernhard Riemann’s ideas concerning geometry of

space had a profound effect on the development of modern theoretical physics. The geom-

etry of space was made by Riemann, different to the hyperbolic geometry of Bolyai and

Lobachevsky which came to known as elliptic geometry. Riemann developed Riemannian

geometry as well as the concept of a manifold, which generalized the ideas of curves and

surfaces.

The succesful integration of ideas enabled Riemann to advance when constructing

both particular cases of non-Euclidean spaces and a theory of arbitrarily curved spaces.

Firstly, Riemann discovered an elliptical geometry which was the opposite to the hyper-

bolic geometry of Lobachevski. Thus, he was the first to indicate the possiblity of a finite

geometrical space. The idea immediately took root and brought about the question as

1
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whether our physical space is finite or not. Secondly, he had the courage to build much

more general geometries than Euclid’s or narrowly the non Euclidean geometry. Nowa-

days, this geometry is referred to as Riemannian geometry. This geometry is also referred

as the second non-Euclidean geometry on a three dimensional hypersphere. The essential

property of this three dimensional space is that its volume is finite, so that if a point

moves in the same direction it may eventually return to the starting point. Instead of

straight lines in Euclidean space, we have in Riemannian spherical geometry of geodesics,

or the arcs of great circles.

In the word of Chern, fundamental objects of study in differential geometry are man-

ifolds. Roughly, an n-dimensional manifold is a mathematical object that locally looks like

Rn. The theory of manifolds has a long and complicated history. For centuries, manifolds

have been studied as subsets of Euclidean space, given for examples as level sets of equa-

tions. The term manifold goes back to the 1851 thesis of Benhard Riemann, Grundlagen

für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse (foun-

dations for a general theory of functions of complex variable) and his 1854 habilitation

address Über die Hypothesen, welche der Geometrie zugrundle liegen (on the hypotheses

underlying geometry). However, in neither refrence Riemann makes an attempt to give a

precise definition of the concept. This was done subsequently by many authors, including

Riemann himself. Henri Poincaré in his 1895 work analysis situs, introduces the idea of a

manifold atlas

Albert Einstein’s theory of General Relativity from 1916 gave a mojor boost to
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this new point if view; In his theory, space-time was regarded as a 4-dimensional curved

manifold with no distinguished coordinates (not even a distinguished separation into space

and time) a local observer may want to introduce local (x, y, z, t) coordinates to perform

measurements, but all physically meaningful quantities must admit formulations that

are coordinate-free. At the same time, it would seem unnatural to try to embed the

4-dimensional curved space-time continuum into some higher dimensional flat space, in

the absence of any physical significance for additional dimensions. Some years later,

gauge theory once again emphasized coordinate-free formulations, and provided physics

motivations for more elaborate constructions such as fiber bundles and connections.

In 1930, Schouten and Dantzing initiated to transfer the result of differential ge-

ometry of spaces with Riemannian metric, and affine connection to the case of spaces

with complex structures. These spaces were also investigated and nurtured by Kähler

in 1933 and are now familiarly known as Kähler spaces, which are even dimensional.

After 1960, a great deal of work is carried out on Kähler manifolds using the complex

structures and differential 1-forms on manifolds. These are known as contact manifolds

and are odd dimensional. Contact geometry has been widely used to analyse various

physical phenomena, and connected to distinct mathematical structures. The contact

structures have wide connection with Riemannian geometry and low dimensional topol-

ogy,‘ and provide an interesting class of sub elliptic operators. In connection with this,

many geometers investigated the different structures Sasakian, K-Contact, Kenmotsu,

trans-Sasakian, para-Saskian and others by providing further condition to the contact
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structures.

In differential geometry, a manifold is a topological space that locally looks like Eu-

clidean space close to each point. In particular, each points of an n-dimensional manifold

has a neighbourhood that is homeomorphic to n dimensional Euclidean space. The line

and circles are the one-dimensional manifold and surface is the two-dimensional manifold.

Plane, Sphere and torus are the three dimensional manifold.

LetM be a Hausdroff topological space. If each point p ∈M has a neighbourhood U

which is homeomorphic to an open set E in Rn, then M is called an n-dimensional topo-

logical manifold. A n-dimensional topological manifold with a globally defined differ-

ential structure is called differential manifold or if n-dimensional topological manifold

M has a coordinate neighbouhood system S of class Cr, then M is called n-dimensional

differential manifold.

A differentiable function α : I −→ R3 is called curve in R3 that is α(t) =

(α1(t), α2(T ),

α3(t)) for all t in open interval I. Straight lines and helices are examples for curves.

Differential forms are obtained by adding and multiplying real valued functions with dif-

ferentials dx1, dx2, dx3 of natural coordinate functions. Associative and distributive laws

are commonly holds true for differential forms, but commutative under multiplication is

not true for these forms. A tangent vector WP includes two points, one is vector part

W and other one is point of application P , and the union of all tangent vectors is called

tangent space and is denoted by TpM or χ(M). A differentiable real valued function f
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is said to have derivative with respect to WP if it satisfies WP [f ] = d(f(p+tW ))
dt

at t = 0.

The fundamental ideas of carrying properties along a curve or family of curves in a

consistent and similar manner is called connection. There are various types of connec-

tions in differential geometry, depending on what sort of properties are required to carry.

In Differential geometry we are using many connections particularly, affine connection,

quarter symmetric connection, quarter symmetric non metric connection, semi symmetric

connection, Tanaka Webster Okumar connection (g-TWO), generalized symmetric metric

connection, canonical connections and many more. The affine connection is the most im-

portant type of connection, gives a means for transporting tangent vectors to a manifold

from one point to another along a curve. All connections are typically defined in the form

of covariant derivative, which gives the means for taking directional derivatives of vector

fields: the infinitestimal transport of a vector field in a given direction.

In the following, we present a breif summary of results about a contact manifolds,

almost contact manifolds, almost para-contact metric manifolds, Lorentzian manifolds

which will be widely used to study our main concepts.

1.1 Contact manifold

Contact Riemannian manifolds are an odd dimensional analogue of symplectic mani-

folds and has been used as a proper different context(particularly) those related to physics.

It has been used as a proper framework for classical thermodynamics, and as a geometrical

approach to magnetic field. Also, it was studied in relation with the Yang-Mills theory,
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quantum mechanics, gravitational waves etc.

A differentiable manifold M is said to be a contact manifold, if it carried a global

differential 1-form η such that [3]

η ∧ dηn 6= 0, (1.1)

everywhere on M . For a given contact form η, it is well known that there exists a unique

vector field ξ, called the characterstic vector field of η satisifying

η(ξ) = 1 and dη(X, ξ) = 0, (1.2)

for every vector field X on M .

A Riemannian metric g is said to be associated with a contact manifold if there

exists a tensor field φ of type (1, 1), such that

η(X) = g(X, ξ), (1.3)

dη(X, Y ) = g(X,φY ), (1.4)

φ2 = −I + η ⊗ ξ, (1.5)

for every vector fields X, Y on M , where I denotes the identity map of the tangent space

TpM and the symbol ⊗ is the tensor product. Then the structure (φ, ξ, η, g) on M is

called a contact metric structure and the manifold M equipped with such a structure is

known as contact metric manifold.

Example 1.1.1. The simple contact Riemannian manifold isR2n+1(x1, · · · , xn, y1, · · · , yn, z)

with the contact form

η =
1

2

(
dz −

n∑
i=1

yidxi

)
.
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The Reeb vector field ξ is 2 ∂
∂z

and the contact subbundle D is spanned by X − i =

∂
∂xi

+ yi ∂
∂z
, Xn+i = ∂

∂yi
, i = 1, · · · , n. The Riemannian metric

g = η ⊗ η +
1

4

n∑
i=1

(
(dxi)2 + (dyi)2

)
,

gives a contact metric structure on R2n+1. The tensor field φ is given by the matrix
0 δij 0

−δij 0 0

0 yj 0


and the vector fields Xi = 2 ∂

∂yi
, Xn=i = 2 ∂

∂xi
+ yi ∂

∂z
and ξ forms a φ−basis for the contact

metric structure.

Consider the restriction of φ to the contact subbundle D (defined by η = 0), and

denote this by J . Then J 2 = −id and G = −(dη)(·,J ·) defines the almost Hermitian

structure on D. Thus (M, η,J ) a contact strongly pseudo-convex integrable CR-manifold

(see [80]). We call (M, η,J ) a contact strongly pseudo-convex integrable CR-manifold

when the complex distribution {X − iJ ;X in D} is integrable. Tanno [80] give this

integrability condition by

(∇Wφ)X = g(W + hW,X)ξ − η(X)(W + hW ), (1.6)

where ∇ is the Riemannian connection of g. The following identities are valid for every
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contact Riemannian manifold;

∇ξ = −φ− φh, (1.7)

S(ξ, ξ) = traceg(`) = 2n− ||h||2, (1.8)

(∇φWφ)φX + (∇Wφ)X = 2g(W,X)ξ − η(X)W − η(W )η(X)ξ, (1.9)

∇ξh = φ− φh2φ`, (1.10)

Div(φh)W = 2nη(W )− S(ξ,W ), (1.11)

where Div is the dovergence operator.

If the characterstic vector field ξ is Killing (equivalently, h = 0) with respect to g, then

the contact Riemannian manifold M is said to be K-contact and the following identities

are valid on it:

∇W ξ = −φW, (1.12)

R(ξ,W )X = (∇Wφ)X. (1.13)

A contact metric structure onM is said to be Sasakian if the almost Käehler structure on

the metric cone (M×R+, r2g+dr2) overM , is Kähler. Also, a normal contact Riemannian

manifold is called Sasakian. Moreover, M is Sasakian if and only if any of the following

identities hold on M

(∇Wφ)X = g(W,X)ξ − η(X)W, (1.14)

R(W,X)ξ = η(X)W − η(W )X, (1.15)

Qξ = 2nξ. (1.16)
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It is easy to observe that every Sasakian manifold is K-contact, but the converse need

not be true, except in dimension 3. We know for a fact that in a Sasakian manifold, the

Ricci operator Q commutes with φ; but this commutativity need not hold for a contact

Riemannian manifold. In this setting, we recall the following lemma (see [39]):

Lemma 1.1.1. On a K-contact manifold M we have

(∇WQ)ξ = (Qφ− 2nφ)W, (1.17)

(∇ξQ)W = (Qφ− φQ)W. (1.18)

Blair et al [5] introduced a contact Riemannian (κ, µ)-manifold which is a contact

Riemannian manifold M whose curvature tensor satisfies

R(W,X)ξ = κ{η(X)W − η(W )X}+ µ{η(X)hW − η(W )hX}, (1.19)

for some real numbers (κ, µ). Later on, BoeckX [6] classified these manifolds completely.

In particular, if µ = 0, then contact Riemannian (κ, µ)-manifold, introduced by Tanno

[79]. On contact Riemannian (κ, µ)-manifolds, the following identities hold true:

h2 = (κ− 1)φ2, κ < 1, (1.20)

Q = [2(n− 1)− nµ]id+ [2(n− 1) + µ]hid+ [2(1− n) + n(2κ+ µ)]η ⊗ ξ, (1.21)

Qξ = 2nκξ. (1.22)

Moreover, the scalar curvature τ of such a manifold is given by

τ = 2n(2(n− 1) + κ− nµ), (1.23)
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which is constant. On a contact Riemannian (κ, µ)-manifold we have

(∇WQ)ξ = Q(φ+ φh)W − 2nκ(φ+ φh)W, (1.24)

(∇ξQ)X = µ(2(n− 1) + µ)hφX, (1.25)

for any vector field X on M . This class of manifold contains Sasakian manifolds (for

κ = 1) and the trivial sphere bundle En+1×Sn(4) (for κ = µ = 0). In this connection, we

reveal the following result (see [4]):

Lemma 1.1.2. A contact metric manifold M with R(W,X)ξ = 0 is locally isometric to

the trivial sphere bundle En+1 × Sn(4).

Lemma 1.1.3. If ν is a smooth function on a contact Riemannian manifold M such that

dν = (ξν)η (d denotes the operator of exterior differentiation), then ν is constnat on M .

1.2 Almost Contact manifold

As a topological point of view, smooth manifolds with almost contact structures were

studied by Gary, Boothby and Hatakeyama. Thereafter, many geometers applied this

concept to define different manifolds and their geometric properties. In those, one of

the predominant manifolds are K-contact, Sasakian, Kenmotsu, cosympletic and trans-

Sasakian manifolds.

A differentiable manifold M is said to have an almost contact structure (φ, ξ, η), if it

carries a tensor field φ of type (1, 1) a vector field ξ and a 1-form η on M , such that

φ2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0. (1.26)
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Thus, the manifold M equipped with this structure is called an almost contact manifold,

and is denoted by (M,φ, ξ, η). If g is a Riemannian metric on an almost contact manifold

M such that,

g(φX, φY ) = g(X, Y )− η(X)η(Y ), g(X, ξ) = η(X), (1.27)

g(X,φY ) = −g(φX, Y ), (1.28)

(∇Xη)(Y ) = g(∇Xξ, Y ), (1.29)

where X and Y are vector fields defined on M , then M is said to have an almost contact

metric structure (φ, ξ, η, g) and M with this structure is called an almost contact metric

manifold, which is denoted by (M,φ, ξ, η, g).

If on (M,φ, ξ, η, g), the exterior derivative of 1-form η satisfies

dη(X, Y ) = g(X,φY ), (1.30)

then (φ, ξ, η, g) is said to be a contact metric structure and M equipped with a contact

metric structure is called a contact metric manifold.

In a contact manifold, the Riemannian curvature tensor and Ricci curvature are

given respectively by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, (1.31)

S(X, Y ) = R(ei, X, Y, ei). (1.32)

An almost contact metric manifold is said to be Sasakian manifold [3, 67] if and only if

(∇Zφ)Y = g(X, Y )ξ − η(Y )X, (1.33)
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where ∇ is the operator of covariant defferentiation with respect to g. In a Sasakian

manifold M , the following relations holds:

∇Xξ = −φX, (1.34)

g(R(ξ,X)Y, ξ) = g(X, Y )− η(X)η(Y ), (1.35)

R(ξ,X)ξ = η(X)ξ −X, (1.36)

S(X, ξ) = 2nη(X), (1.37)

for any vector fields X, Y and Z. In the whole thesis R, S,Q, and r respectively indicates

the Riemannian curvature tensor of type (1, 3), Ricci tensor of type (0, 2), Ricci operator

and scalar curvature tensor of (2n+ 1)-dimensional manifolds. An almost contact metric

manifold is a Kenmotsu manifold if and only if [49]

(∇Xφ)Y = −g(X,φY )ξ − η(Y )φX, (1.38)

∇Xξ = X − η(X)ξ, (∇Xη)Y = g(∇Xξ, Y ), (1.39)

for all vector fields X and Y . In Kenmotsu manifolds the following relations holds true;

R(X, Y )ξ = η(X)Y − η(Y )X, (1.40)

S(X, ξ) = −2nη(X), (1.41)

for any vector fields X, Y, Z.

The Riemannian curvature tensor plays a fundamental role in Riemannian geometry

and the curvature tensor R completely defined by sectional curvature of a manifold. For

any point p ∈M and any plane section π ⊆ TpM , the sectional curvature K(π) is defined
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by K(π) = g(R(X, Y )Y,X), where X and Y are orthonormal vector fields in π and also

indicates K(π) by K(X ∧ Y ). A Riemannian manifold with constant sectional curvature

c is called as real-space-form and its curvature tensor satisfies the condition

R(X, Y )Z = c{g(Y, Z)X − g(X,Z)Y }. (1.42)

The above condition become Euclidean space at c = 0, the sphere at c > 0 and the

hyperbolic space for c < 0.

A similar manner can be found in the study of complex manifolds from a Riemannian

point of view. If (M,J, g) is a Kähler manifold with holomorphic sectional curvature

K(X ∧ JX) = c, then it is said to be a complex space-form and it is well-known that its

curvature tensor is given by

R(X, Y )Z =
c

4
{g(Y, Z)X − g(X,Z)Y + g(X, JZ)JY − g(Y, JZ)JX + 2g(X, JY )JZ}.

(1.43)

The models now are complex projective space (cP n) if c > 0, complex hyperbolic space

(cHn) if c < 0 and Euclidean space (cn) if c = 0.

Now, we give some definitions which are widely used in the rest of the chapters:

Definition 1.2.1. On almost contact Riemannian manifold M , if the Ricci operator

satisfies

Q = αid+ βη ⊗ ξ, (1.44)

where both α and β are smooth functions on M , then M is said to be an η-Einstein

manifold and the associated metric g is referred to as η-Einstein metric. Naturally, an

η-Einstein manifold with β = 0 and α, a constant becomes the more familiar Einstein

manifold.
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Definition 1.2.2. A vector field V on a manifoldM is said to be an infinitesimal contact

transformation (or often called contact vector field) if

£V η = ση, (1.45)

where σ ∈ C∞(M) and £ denotes Lie derivative operator. V is strictly infinitesimal

contact transformation when σ = 0. It is known from Blair (see page 34 in [4]) that a

vector field V is contact if and only if there is a function ν on M such that

V = −1

2
φgdν + νξ, (1.46)

namely one puts σ = (ξν).

Definition 1.2.3. A vector field V is called conformal if there exists ρ ∈ C∞(M) such

that

£V g = 2ρg, (1.47)

where ρ is constant (resp. ρ = 0). For a conformal vector field, we call up the following

formulas (see Yano [99]):

(£VR)(W,X)Y = g(∇Wgdρ, Y )X − g(∇Xgdρ, Y )W (1.48)

+g(W,Y )∇Xgdρ− g(X, Y )∇Wgdρ,

(£V S)(W,X) = −(2n− 1)g(∇Wgdρ,X)− (∆ρ)g(W,X), (1.49)

£V τ = −2ρτ − 4n∆ρ, (1.50)

for any vector fields W,X, Y on M , where R is the Riemannian curvature tensor, ∇ is

the Levi-Civita connection of g, S is the Ricci tensor.

1.3 Almost Kenmotsu manifolds

In literature, Kenmotsu manifolds were firstly introduced and investigated by Kenmotsu

[49] in 1972. Such manifolds were generalized to almost Kenmotsu manifolds by Janssens

and Vanhecke [47] in 1981. One of the main reasons that people are interested in Kenmotsu
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geometry lines in the fact that a Kenmotsu manifold of constant sectional curvature

is locally isometric to the hyperbolic space H2n+1(−1), n ≥ 1 (see [49]). This result

was generalized to almost Kenmotsu manifolds (see [33]), namely an almost Kenmotsu

manifold of constant sectional curvature is locally isometric to H2n+1(−1), n ≥ 1. This

means that in some sense, geomety of Kenmotsu manifolds corresponds to that of the

hyperbolic spaces.

According to Janssens and Vanhecke, an almost contact Riemannian manifold with

structure (φ, η, ξ, g) is said to be an almost Kenmotsu manifold if dη = 0 and dω = 2η∧ω,

where ω is the fundamental two-form and is defined by ω = g(·, φ). In an almost Kenmotsu

manifold we have the following relations [47, 61, 33]:

∇Xξ = X − η(X)ξ + h′X, (1.51)

∇ξh = φ− 2h− φh2 − φl, (1.52)

l − φlφ = 2(φ2 − h2), (1.53)

R(W,X)ξ = η(W )(X + h′X)− η(X)(W + h′W ) + (∇Wh
′)X − (∇Xh

′)X, (1.54)

S(ξ, ξ) = traceg(l) = g(Qξ, ξ) = −2n− traceg(h2). (1.55)

An almost Kenmotsu manifold with h 6= 0 is called proper (or sometimes called strict)

almost Kenmotsu manifold. An almost Kenmotsu manifold such that h = 0 is locally

isometric to a wrapped product [−ε, ε]×f N2n, N2n being an almost Kähler manifold and

f = cexp(t), c a positive constant. In particular, if M is Kenmotsu manifold, that is, M

is normal, then N2n is Kähler.
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Let M be a proper almost Kenmotsu 3-manifold and U be an open subset of M ,

then there exists a local orthonormal basis {ξ, ν, φν}. On U , we set hν = γν and hence

hφν = −γφν, where γ is a positive function on U . Applying (1.51), the following result

was revealed by Cho and Kimura (See [21]);

Lemma 1.3.1. On U we have

∇ξξ = 0, ∇ξν = aφν, ∇ξφν = −aν,

∇νξ = ν − γφν, ∇νν = −ξ − bφν, ∇νφν = γξ + bν, (1.56)

∇φνξ = −γν + φν, ∇φνν = γξ + cφν, ∇φνφν = −ξ − cν,

where a, b, c are smooth fuctions.

An almost Kenmotsu manifoldM is said to be an almost Kenmotsu (κ, µ)′-manifold

if it satisfies

R(W,X)ξ = κ{η(X)W − η(W )X}+ µ{η(X)h′W − η(W )h′X}, (1.57)

for some constants κ and µ. Also, if M is satisfying

R(W,X)ξ = κ{η(X)W − η(W )X}+ µ{η(X)hW − η(W )hX}, (1.58)

then M called almost Kenmotsu (κ, µ)-manifold. Suppose κ, µ ∈ C∞(M), then (1.57)

and (1.58) respectively are referred to as generalized almost Kenmotsu (κ, µ)′-manifold

and generalized almost Kenmotsu (κ, µ)-manifold. The following identities hold on an

almost Kenmotsu (κ, µ)′-manifold (also (κ, µ)-space):

h′2 = (κ+ 1)φ2, or h2 = (κ+ 1)φ2, (1.59)

Qξ = 2nκξ. (1.60)
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Let M be an almost Kenmotsu (κ, µ)′-manifold and h′ 6= 0. Then κ < −1, µ = −2 and

M is locally isometric to the warped products

Bn+1(κ+ 2ϑ)×f Rn, Hn+1(κ− 2ϑ)×f Rn,

where ϑ =
√
−(κ+ 1), Bn+1(κ+2ϑ) is a space of constant curvature κ+2ϑ ≤ 0, Hn+1(κ−

2ϑ) is the hyberbolic space of constant curvature κ − 2ϑ < −1, f = cexp((1 + ϑ)t) and

f ′ = c′exp((1 + ϑ)t), with c, c′ positive constants. Furthermore, M is locally isometric

to Hn+1(−4) × Rn when κ = −2 or equivalently ϑ = 1 (see [34]). Now, we recall the

following important results which is found in [34]:

Lemma 1.3.2. In a proper almost Kenmotsu (κ, µ)′-manifold, the Ricci operator satisfy

QW = −2nW + 2n(κ+ 1)η(W )ξ − 2nh′W. (1.61)

Let M be a generalized almost Kenmotsu (κ, µ)-manifold such that h 6= 0. Then the Ricci

operator can be expressed as

QW = −2nW + 2n(κ+ 1)η(W )ξ − 2(n− 1)h′W + µhW. (1.62)

In both spaces, the scalar curvature τ is 2n(κ− 2n).

A normal almost Kenmotsu manifold is called Kenmotsu manifold (see [49]), and

this normality condition is expressed as

(∇Wφ)X = g(φW,X)ξ − η(X)φW, (1.63)

for any vector field W,X ∈ Γ(TM). The following equalities hold for any Kenmotsu
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manifold (see [49]):

∇W ξ = W − η(W )ξ, (1.64)

R(W,X)ξ = η(W )X − η(X)W, (1.65)

Qξ = −2nξ. (1.66)

We may verify that a Kenmotsu manifold M is η-Einstein if and only if

S =
(

1 +
τ

2n

)
g −

(
2n+ 1 +

τ

2n

)
η ⊗ η. (1.67)

As a result of (1.63)-(1.66), the authors in [84] revealed the following outcome:

Lemma 1.3.3. On a Kenmotsu manifold M , the Ricci operator satisfies

(∇WQ)ξ = −QW − 2nW, (1.68)

(∇ξQ)W = −2QW − 4nW. (1.69)

1.4 Almost Contact Pseudo-Riemannian manifold

Studying almost contact structures with pseudo-Riemannian metrics was started by

Takahashi in [76], and he just studied the Sasakian case. Afterwards, a systematic study

of almost contact pseudo-Riemannian manifolds was undertaken by Calvaruso and Perrone

[9] in 2010, introducing all the technical apparatus which is needed for further investiga-

tions.

If an almost contact manifoldM equipped a pseudo-Riemannian metric g such that

g(φW, φX) = g(W,X)− εη(W )η(X), (1.70)
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where ε = ±1, then (M, g) is said to be an almost contact pseudo-Riemannian manifold.

From the above relation, it can be see that

η(W ) = εg(ξ,W ) along with , g(φW,X) = −g(W,φX),

for any vector field W,X ∈ Γ(TM). In particular, in an almost contact pseudo-metric

manifold, it follows that g(ξ, ξ) = ε and so, the charecteristic vector field ξ is a unit vector

field, which is either space-like or time-like, but cannot be light-like. The following result

can be easily obtained (see [101]):

Lemma 1.4.1. An almost contact pseudo-Riemannian manifold is normal if and only if

(∇φWφ)X − φ(∇Wφ)X + (∇Wη)(X)ξ,

for any vector fields W,X ∈ Γ(TM).

1.5 Contact pseudo-Riemannian manifolds

An almost pseudo-Riemannian is called a contact pseudo-Riemannian manifold if dη = ω,

where ω = g(·, φ·) is a fundamental two-form. We define a self-adjoint (1, 1)-tensor field

h = 1
2
(£ξφ) and ` = R(·, ξ)ξ and it satisfies

hξ = 0 = `ξ, hφ = −φh, traceg(h) = traceg(φh) = 0. (1.71)

We now accumulate some relations which are valid for a contact pseudo-Riemannian

manifold:

∇W ξ = −εφW − φhW, (1.72)

(∇ξh)W = φW − h2φW + φR(ξ,Wξ), (1.73)

traceg(∇φ) = 2nξ, Div(ξ) = Div(η) = 0. (1.74)
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If Reeb vector filed ξ of contact pseudo-Riemannian manifold M is Killing (equivalently

h = 0), then M is called K-contact pseudo-Riemannina manifold. A Sasakian pseudo-

Riemannian manifold is a contact pseudo-Riemannian manifold whose almost contact

structure (φ, ξ, η) is normal, and this normality can be expressed as

(∇Wφ)X = g(W,X)ξ − εη(X)W. (1.75)

Any Sasakian pseudo-Riemannian manifold is always K−contact and the converse holds

when n = 1, that is, for 3-dimensional spaces. It is worthwhile to mention that, on a

Sasakian pseudo-Riemannian manifold we obtain

R(W,X)ξ = η(W )X − η(X)W. (1.76)

In contact Riemannian case, the above equation shows that the manifold is Sasakian,

but this is not valid in case of contact pseudo-Riemannian [64]. However, we call up the

following (see [64]):

Lemma 1.5.1. A K-contact pseudo-Riemannian manifold M is Sasakian if and only if

the curvature tensor R satisfies (1.76).

In [37], introduced the notion of contact pseudo-Riemannian (κ, µ)-manifold. Accord-

ing to them a contact pseudo-Reimannian (κ, µ)-manifold is a contact pseudo-Riemannian

manifold whose curvature tensor R satisfies

R(W,X)ξ = εκ{η(X)W − η(W )X}+ εµ{η(X)hW − η(W )hX}, (1.77)

for some real numbers κ, µ. For contact pseudo-Riemannian (κ, µ)− manifold we have
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the following relation (see [37]):

h2 = (εκ− 1)φ2, (1.78)

Qξ = 2nκξ. (1.79)

Ghaffarzadeh and Faghfouri reveals the following result in [37]:

Lemma 1.5.2. In any contact pseudo-Riemannian (κ, µ)−manifoldM , the Ricci operator

Q can be expressed as

QW = ε(2(n− 1)− nµ)W + (2(n− 1) + µ)hW + (2(1− n)ε+ 2nκ+ nµε)η(W )ξ,

(1.80)

where εκ < 1. Further, the scalar curvature is 2n(2(n− 1)ε− nµε+ κ).

1.6 Kenmotsu pseudo-Riemannian manifolds

In [92], Wang introduced the geometry of almost Kenmotsu pseudo-Riemannian mani-

folds, emphasizing the analogies and differences with respect to the Riemannian case and

providing some technical apparatus needed for further investigations. An almost contact

pseudo-Riemannian manifold with structure (φ, η, ξ, g) where structure operators satisfy

dη = 0 and dω = 2η ∧ ω is referred to as an almost Kenmotsu pseudo-Riemannian man-

ifold. A normal almost Kenmotsu pseudo-Riemannian manifold is called a Kenmotsu

pseudo-Riemannian manifold. Equivalently, from Lemma (1.4.1) the normality of this

class can be expressed as (see [92]):

(∇Wφ)X = −η(X)φW − εg(W,φX)ξ, (1.81)
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for any vector fields W,X ∈ Γ(TM). For any Kenmotsu pseudo-Riemannian manifold

the following identities were explored [83]:

∇ξ = id− η ⊗ ξ, (1.82)

R(W,X)ξ = η(W )X − η(X)W, (1.83)

Qξ = −2nεξ. (1.84)

Now, we recall the following formula which is valid for any Kenmotsu pseudo-Riemannian

manifold

(∇WQ)ξ = −QW − 2nεW, (1.85)

(∇ξQ)W = −2QW − 4nεW, (1.86)

for any vector field W ∈ Γ(TM). The complete proof of this can be found in [83]:

1.7 Almost Paracontact Metric manifolds

Almost paracontact structures are the natural odd-dimensional analogue of almost

para-Hermition structures, just like almost contact metric structures correspond to the

almost Hermition ones. The study of almost paracontact metric manifolds started in

[48], and for long time focused on the special case of paraSasakian manifolds. In 2009,

Zamkovoy [101] undertook a systematic study of almost paracontact metric manifolds.

A pseudo-Riemannian manifoldM is said to admit an almost paracontact structure if

the triple (φ, ξ, η), where φ is a (1, 1)-type tensor field, ξ is a vector field (called Reeb vector



Chapter 1 Introduction 23

field or characterstic vector field) and η is one-form, satisfies the following conditions:

φ2 = id− η ⊗ ξ, η(ξ) = 1. (1.87)

The tensor field φ induces an almost paracomplex structure on each fibre of D = Ker(η),

i.e. the ±1-eigendistributions D± = Dφ(±) of φ have equal dimension n. If an almost

paracontact manifold M acquires a pseudo-Riemannian metric g such that

g(φW, φX) = −g(W,X) + η(W )η(X), (1.88)

then M is called almost paracontact metric manifold. Moreover, we can define symmetric

tensor field ω by ω = g(·, φ·), usually called fundamental two-form. We denote by ` =

R(·, ξ)ξ and h = 1
2
£ξφ, which are symmetric and they satisfies

hξ = `ξ = 0, traceg(h) = traceg(φh) = 0, hφ+ φh = 0. (1.89)

1.8 Paracontact Metric manifolds

An almost paracontact metric manifold becomes a paracontact metric manifold if dη =

ω. In this case, it is not difficult to examine that η is a contact form, that is η∧ (dη)n 6= 0.

We also have the following relations on paracontact metric manifolds

∇W ξ = −φW + φhW, (1.90)

∇ξh = −φ+ φh2 − φl, (1.91)

Ric(ξ, ξ) = traceg(`) = traceg(h
2)− 2n, (1.92)

(∇φWφ)φX − (∇Wφ)X = 2g(W,X)ξ − η(X)(W − hW + η(W )ξ). (1.93)
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A paracontact metric manifold M is said to be

• K − paracontact if ξ is a Killing (i.e.,£ξg = 0) or equivalently h = 0. For a

K − paracontact manifold M , the following equation were found in [101]:

∇W ξ = −φW, (1.94)

R(W, ξ)ξ = −W + η(W )ξ, (1.95)

Qξ = −2nξ. (1.96)

• paraSasakian if the paracontact structure is normal, i.e., satisfies [φ, φ]+2dη⊗ξ = 0.

This condition is equivalent to

(∇Wφ)X = −g(W,X)ξ + η(X)W. (1.97)

A paraSasakian manifold is in particular K−paracontact. The converse holds only

in dimension 3 [9]. Every paraSasakian manifold satisfies

R(W,X)ξ = η(W )X − η(X)W, (1.98)

R(W, ξ)X = g(W,X)ξ − η(X)W. (1.99)

We note that unlike in the contact Riemannian case, in general the condition h2 = 0 does

not imply that the manifold is K− paracontact (see example in [9] describe some cases

with h2 = 0 and h 6= 0).

Cappelletti-Montano et al [16] defined the notion of paracontact (κ, µ)-manifold,

that is, the curvature tensor of a paracontact metric manifold satisfies

R(W,X)ξ = κ{η(X)W − η(W )X}+ µ{η(X)hW − η(W )hX}, (1.100)
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for any κ, µ ∈ R. On paracontact (κ, µ)-manifolds one has (see [16]):

h2 = (κ+ 1)φ2, (1.101)

Qξ = 2nκξ. (1.102)

In [102], Zamkovoy and Tzanov reveals the following outcome:

Lemma 1.8.1. If a paracontact metric manifold M satisfies R(W,X)ξ = 0, then it is

locally isometric to the product of a flat (n+1)-dimensional manifold and an n-dimensional

manifold of constant negative curvature −4.

1.9 ParaKenmotsu manifolds

Recently, Zamkovoy [103] studied a class of paracontact metric manifolds satisfying

some special conditions. These manifolds are analogues to Kenmotsu manifolds and they

belong of the class G6 of the classification given in [102]. He characterize these manifolds

by tensor equations and study their properties. An almost paracontact metric manifold

M is called paraKenmotsu manifold if it satisfies

(∇Wφ)X = g(φW,X)ξ − η(X)φW, (1.103)

for any vector field W ∈ Γ(TM). From the definition by means of the tensor equations,

it can be easily verified that the structure is normal, but quasi-paraSasakian (and hence

not paraSasakian). Also, in a paraKenmotsu manifold, we have the following relations
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(see [103]):

∇W ξ = W − η(W )ξ, (1.104)

R(W,X)ξ = η(W )X − η(X)W, (1.105)

Qξ = −2nξ. (1.106)

1.10 Trans-paraSasakian manifolds

The author in [104] considered trans-paraSasakian manifolds as an analogue of the

trans-Sasakian manifolds. A trans-paraSasakian structure is a trans-paraSasakian struc-

ture of type (α, β), where α and β are smooth functions. According to the author in [104],

if an almost paracontact metric manifold M satisfies

(∇Wφ)X = α{−g(W,X)ξ + η(X)W}+ β{g(W,φX)ξ + η(X)φW}, (1.107)

then the manifold M said to be a trans-paraSasakian manifold. As a result of (1.107), it

follows that

∇W ξ = −αφW − β(W − η(W )ξ). (1.108)

One can easily verify that, this class of manfiold is normal. It is clear that a trans-

paraSasakian manfiold of type (1, 0), (0, 1) and (0, 0) are respectively called paraSasakian

manifold, paraKenmotsu manifold and paracosympletic manifold.

Let M be a trans-paraSasakian 3-manifold of type (α, β). Then for each point p of

M , we may choose a local pseudo-orthonormal frame {ξ, ν, φν} on certain neighbourhood
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U of p. By virtue of (1.107) and (1.108), we can find that the Levi-Civita connection ∇

of M has the following;

∇νξ = −αφν − βν, ∇φνξ = −αν − βφν, ∇ξξ = 0,

∇νν = γφν + βξ, ∇νφν = −γν + αξ, ∇ξν = ϑφν, (1.109)

∇φνφν = δν + βξ, ∇φνν = −δφν + αξ, ∇ξφν = −ϑν,

where ϑ, δ and γ are smooth functions.

1.11 Lorentzian Manifolds

The modern study of gravitation is primarily grounded in the theory of general relartiv-

ity, where space and time are modelled together as points on 4-dimensional manifolds

similar to Riemannian manifolds but without the requirment that the metric be positive-

definite. The manifolds have a similar structure to their Riemannian counterparts but

pick up an additional causal structure and associated physical notions. Since Einstein’s

development of this geometry of space-time in the early 20th century, the field of Loren-

tizian Geometry has flourished and there has been much interplay between the physical

study of gravitation and relativity and the mathematical study of differential geometry.

General relativity has been one of the most successful physical theories to date.

An n-dimensional Lorentzian manifoldM is a smooth connected paracompact Haus-

droff manifold with a Lorentzian metric g, that is, M admits a smooth symmetric tensor

field g of type (0, 2) such that for each point p ∈M , the tensor gp is a non-degenerate inner
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product of signature (−,+, · · · ,+). A non-zero vector g ∈ Γ(TM) is said to be time-like

(resp., non-spacelike, null, spacelike) if it satisfies gp(g,g) < 0 (resp., ≤ 0,= 0, > 0).

1.12 Lorentzian concircular structure (LCS) Manifolds

The extended version of LP-Sasakian manifold is the Lorentzian concircular structure

manifolds (shortly (LCS)-manifold). An (2n + 1)−dimensional Lorentzian manifold M

is a smooth connected para compact Hausdorff manifold with a Lorentzian metric g i.e.,

M admits a smooth tensor field g of type (0, 2) such that for each point p ∈ M , the

tensor TpM ×TpM −→ R is a non degenerate inner product of signature (−,+, · · · −,+),

where TpM denotes the tangent space of M at p and R is the real number space. It is to

be pointed that the most important case is (LCS)−manifold remains invariant under a

D−homothetic transformation, which does not hold for an LP−Sasakian manifold [70].

In a Lorentzian manifold (M, g), the vector field P defined by

g(W,P ) = A(W ), (1.110)

for any vector field W ∈ (TpM) is said to be concircular vector field [100], if

(∇WA)(X) = α{g(W,X) + ω(W )ω(X)}, (1.111)

where α is a non zero scalar function, A is a 1− form.

In a Lorentzian manifold M of dimension (2n + 1) admitting a unit timelike concircular

vector field ξ, called the characteristic vector field of the manifold. Then we have

g(ξ, ξ) = −1, g(W, ξ) = η(W ),
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for any vector W ∈ Γ(TM). The equation of the following form holds:

(∇Wη)X = α{g(W,X) + η(W )η(X)}, α 6= 0, (1.112)

that is,

∇W = α{W + η(W )ξ}, (1.113)

where α is a nonzero scalar function satisfying ∇Wα = W (α) = dα(W ) = ρη(W ), ρ being

a certain scalar function given by ρ = −ξ(α). If we put

∇W ξ =
1

α
φW, (1.114)

then from (1.112) and (1.114), we can find

φW = W + η(W )ξ,

from which it follows that φ is a symmetric (1, 1)-tensor. Thus the Lorentzian manifold

M together with the unit timelike concircular vector field ξ, its associated one-form η,

and a (1, 1)-type tensor field φ is said to be a Lorentzian concircular structure manifold

(breifly, (LCS)-manifold), which was introduced by Shaikh [70] along with their existance

and applications to the general theory of relativity and cosmology. Particularly, if we take

α = 1, then we can obtain the LP−Sasakian structure of Matsumoto [52].

An (2n+1)-dimensional differentiable manifoldM is called an (LCS) manifold if it admits

a (1, 1) tensor field φ, a contravatiant vector filed ξ, a 1-form η, and a Lorentzian metric
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g such that [71]

η(ξ) = −1, φξ = 0, η ◦ φ = 0, (1.115)

φ2W = W + η(W )ξ, (1.116)

g(φW, φX) = g(W,X) + η(W )η(X), (1.117)

(∇Wφ)X = α{g(W,X)ξ + 2η(W )η(X)ξ + η(X)W}, (1.118)

where ∇ is the covariant differentiation operator of Lorentzian metric g. It is easy to see

that, the following relations hold in an (LCS)-manifold [71]:

R(W,X)Y = (α2 − ρ){g(X, Y )W − g(W,Y )X}, (1.119)

R(ξ,X)Y = (α2 − ρ){g(X, Y )ξ − η(Y )X}, (1.120)

R(W,X)ξ = (α2 − ρ){η(X)W − η(W )X}, (1.121)

η(R(W,X)Y ) = (α2 − ρ){g(X, Y )η(W )− g(W,Y )η(X)}, (1.122)

S(W, ξ) = 2n(α2 − ρ)η(W ), (1.123)

for all vector fields W,X, Y ∈ Γ(TM) and α2 − ρ 6= 0.
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Almost Kenmotsu Manifolds

2.1 Introduction

Recently, Nurowski and Randall [58] introduced the concept of generalized Ricci soliton.

Let (M, g) be a pseudo-Riemannian manifold and we say the metric g is a generalized

Ricci soliton, if there is a smooth vector field V , and α, β, λ ∈ R such that

£V g + 2αRic+ 2βV b ⊗ V b = 2λg, (2.1)

where £ represents the Lie-derivative, V b is the metric-dual to V and Ric is the Ricci

operator. In particular, if V b is closed, then we say the generalized Ricci soliton is closed.

According to Nurowski and Randall [58], the Eq. (2.1) unifies several important equations

such as

• Homothetic vector field: £V g = 2λg;

• Killing vector field: £V g = 0;

• Ricci soliton: £V g + 2Ric = 2λg; [22]

31
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• metric projective structure equation in the projective class for which the Ricci tensor

is skew-symmetric:£V g −Ric+ 2V b ⊗ V b = 0; [65]

• the equation of vacuum near horizon geometry:£V g + 2
n−1Ric + 2V b ⊗ V b = 2 ∧ g,

where ∧ is the cosmological constant; [20]

• the equation of Einstein-Weyl: £V g + 2
n−1Ric+ 2V b ⊗ V b = 2λg. [8]

If V is the gradient of a smooth function f (i.e., V = Df ), then (2.1) yields to

Hessf + αRic+ βdf ⊗ df = λg. (2.2)

For α = 1 and β = 0, the equation (2.2) is the equation of gradient Ricci soliton. Moreover,

we have gradient almost Ricci soliton when λ ∈ C∞(M) . For this reason, we call Eq.

(2.2) as gradient generalized almost Ricci soliton, when λ ∈ C∞(M).

It is well known that the conformal curvature tensor is invariant under conformal

transformation, and the projective curvature tensor is invariant under projective trans-

formation. The conformal curvature tensor C and the projective curvature tensor P in a

Riemannian or Lorentzian manifold of dimension 2n+ 1 are defined as follows:

C(X, Y )Z =R(X, Y )Z − 1

2n− 1
{S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY }

− r

2n(2n− 1)
{g(Y,X)X − g(X,Z)Y, } (2.3)

and

P (X, Y )Z = R(X, Y )Z − 1

2n
{S(Y, Z)X − S(X,Z)Y, } (2.4)
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where R is the Riemannian curvature tensor of type (1, 3), the Ricci operator Q is defined

by g(QU, V ) = S(U, V ), and r denotes the scalar curvature. Conformal curvature tensor

and projective curvature tensor play an important role in differential geometry as well as

in the theory of relativity. In 2020 U. C. De [28] and others were introduce a new tensor

named H-tensor of type (1, 3) which is a linear combination of conformal and projective

curvature tensors and is defined by

H(X, Y )Z = aC(X, Y )Z + (a+ (2n− 1)b)P (X, Y )Z, (2.5)

where a and b are real numbers (not simultaneously zero). If a = 1 and b = − 1
2n−1 , then

H ≡ C, also if a = 0 and b = 1
2n−1 , then H ≡ P . Since the conformal curvature tensor

vanishes for n = 3, we consider the dimension of the manifold n > 3.

In the study of Riemannian manifolds (M, g), Gray [44] and Tanno [81] introduced

the notion of κ-nullity distribution, which is defined for any p ∈M and κ ∈ R as follows:

Np(κ) = {Z ∈ TpM : R(X, Y )Z = κ[g(Y, Z)X − g(X,Z)Y ]} (2.6)

for any X, Y ∈ TpM, where TpM denotes the tangent vector space of M at any point

p ∈M and R denotes the Riemannian curvature tensor of type (1, 3). Moreover, if κ is a

smooth function then the distribution is called generalized κ-nullity distribution.

Recently, Blair, Koufogiorgos and Papantoniou [5] introduced a generalized notion of
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the κ-nullity distribution on a contact metric manifold (M2n+1, φ, ξ, η, g), namely (κ, µ)-

nullity distribution which is defined for any p ∈M2n+1 and κ, µ ∈ R as follows:

Np(κ, µ) = {Z ∈ TpM2n+1 : R(X, Y )Z =κ[g(Y, Z)X − g(X,Z)Y ]

+ µ[(g(Y, Z)hX − g(X,Z)hY ]}, (2.7)

where h = 1
2
£ξφ and £ denotes the Lie differentiation. Next, Dileo and Pastore [33]

introduced another generalized notion of the κ- nullity distribution which is as named

the (κ, µ)′-nullity distribution on an almost Kenmotsu manifold (M2n+1, φ, ξ, η, g) and is

defined for any p ∈M2n+1, κ, µ ∈ R as follows:

Np(κ, µ)′ = {Z ∈ TpM2n+1 : R(X, Y )Z =κ[g(Y, Z)X − g(X,Z)Y ]

+ µ[g(Y, Z)h′X − g(X,Z)h′Y ]}, (2.8)

where h′ = h ◦ φ.

Definition 2.1.1. A vector field V on a Riemannian manifold is said to be conformal if

there exists a smooth function ν such that

£V g = 2νg. (2.9)

If ν vanishes, then we say that V is Killing.

Definition 2.1.2. On an almost contact metric manifold M , a vector field V is said to

be infinitesimal contact transformation if £V η = ση, for some function σ. In particular,

we call V as a strict infinitesimal contact transformation if £V η = 0.
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We also have the following formulas given in ([33] - [35])

∇Xξ = X − η(X)ξ − φhX, (2.10)

R(X, Y )ξ = η(X)(Y − φhY )− η(Y )(X − φhX) (2.11)

+ (∇Y φh)X − (∇Xφh)Y,

(∇Xφ)Y − (∇φXφ)φY = −η(Y )φX − 2g(X,φY )ξ − η(Y )hX, (2.12)

for any X, Y onM2n+1. The (1, 1)-type symmetric tensor field h′ = h◦φ is anticommuting

with φ and h′ξ = 0.

2.2 Generalized Ricci soliton on Kenmotsu manifold

In this section, we study generalized Ricci soliton on Kenmotsu manifold. In [33], Dileo

and Pastore was proved that an almost Kenmotsu manifold is normal if and only if the

foliations of the distribution D (where D is the distribution orthogonal to ξ, that is,

D = kerη) are Kählerian and tensor field h vanishes. On any Kenmostu manifold, the

following formulae hold:

∇Xξ = X − η(X)ξ, (2.13)

R(X, Y )ξ = η(X)Y − η(Y )X, (2.14)

Qξ = −2nξ, (2.15)



Chapter 2 Almost Kenmotsu Manifolds 36

where R is the curvature tensor. From the (2.13) and (2.15) one can prove (for details

see [84]) that

(∇XQ)ξ = −QX − 2nX, (2.16)

(∇ξQ)X = −2QX − 4nX. (2.17)

Before going to the main results we state the following ;

Lemma 2.2.1. For a closed m-quasi Einstein metric the following formula holds:

R(X, Y )V =α((∇YQ)X − (∇XQ)Y ) + αβ(V b(Y )QX − V b(X)QY ) (2.18)

+ βλ(V b(X)Y − V b(Y )X)

Proof. Because of V b is closed. Equation (2.1) can be written as

∇XV = −αQX − βV b(X)V + λX. (2.19)

We known that the expression of curvature tensor is

R(X, Y )V = ∇Y∇XV −∇X∇Y V −∇[X,Y ]V. (2.20)

Now applying (2.19) in the above relation (2.20) one can directly get the relation (2.18).

This completes the proof.

Now we are entering to prove the following results

Theorem 2.2.2. If a Kenmotsu manifold M admits a closed generalizd Ricci tensor.

Then one of the following conditions occurs

1. V is pointwise collinear with ξ and in such a case M is η-Einstein.

2. V is strictly infinitesimal contact transformation.

3. M is Einstein.
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Proof. Replace Y by ξ in (2.18) and employ (2.16) and (2.17) to get

R(X, ξ)V =− α(QX + 2nX) + (λ+ 2nα)βV b(X)ξ (2.21)

+ η(V )(αβQX − βλX).

From (2.14) we can write

g(R(X, ξ)Y, V ) = g(X, Y )η(V )− η(Y )g(X, V ). (2.22)

The previous equation together with (2.21) we obtain

−(βλ+ 2nαβ + 1)V b(X)ξ + η(V )((λβ + 1)− αβQX) (2.23)

+αQX + 2nαX = 0.

Now taking the scalar product of (2.23) with ξ and applying equation (2.15) in that gives

(βλ+ 2nαβ + 1)(g(X, V )− η(X)η(V )) = 0. (2.24)

Since α, β and λ are constants, the above equation (2.24) involves two cases, that either

V = η(V )ξ or λ = −
(

2nαβ+1
β

)
.

Case 1. Consider V = η(V )ξ, differentiating this along X and using (2.13) gives

∇XV =(∇Xη)(V )ξ + g(∇XV, ξ)ξ + η(V )∇Xξ,

=g(∇XV, ξ)ξ + η(V )(X − η(X)ξ). (2.25)

On combining the above relation (2.25) with (2.19) one can get

−αQX − βV b(X) + λX =2nαη(X)ξ − βV b(X)η(V )ξ (2.26)

+ η(V )(X − η(X)ξ).

Applying φ on both sides of the above relation implies

αφQX = (λ− η(V ))φX, (2.27)

where we applied φV = 0 and put X by φX in the previous relation and recall that Ricci

operator Q and φ commutes on M(see Lemma 4.1 [42]) to obtain

αQX = (λ− η(V ))X − (λ− η(V ) + 2nα)η(X)ξ. (2.28)
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Contraction of the above relation over X gives

α
( r

2n
+ 1
)

= (λ− η(V )). (2.29)

Using (2.29) in (2.28), we reach at

QX =
( r

2n
+ 1
)
−
( r

2n
+ 2n+ 1

)
η(X)ξ, (2.30)

Showing that M is η-Einstein manifold. Hence this completes the proof of (1).

Case 2. Consider λ = −
(

2nαβ+1
β

)
making use of this by (2.23), we get

(η(V )αβ + α)(QX + 2nX) = 0. (2.31)

If we consider η(V ) = − 1
β
, then from (2.15) and (2.19) we have

∇ξV = η(V )ξ + V. (2.32)

As the result of (2.16), one can show that £V ξ = 2(V + η(V )ξ). Then from (2.3) implies

(£V g)(X, ξ) = 2(η(V )η(X) + g(X, V )) which is turns, show that £V η = 0, which means

that V is a strictly infinitesimal contact transformation. Let us suppose that η(V ) 6= 1
β
,

then (2.31) shows that M is Einstein with constant scalar curvature −2n(2n+ 1).

Theorem 2.2.3. Let M be a Kenmotsu manifold with dimension 2n+ 1. If the metric of

M is generalized Ricci soliton and V is a conformal vector field, then M is Einstein with

constant scalar curvature −2n(2n+ 1).

Proof. If V is conformal vector field then (2.3) becomes

αRic(X, Y ) = (λ− ν)g(X, Y )− βV b(X)V b(Y ). (2.33)

Differentiating the above relation (2.33) gives

α(∇ZRic)(X, Y ) = −(Zν)g(X, Y )− β((∇ZV
b)(X)V b(Z) + V b(Y )(∇ZV

b)(Y )).

Taking the cyclic sum of the above relation over (X, Y, Z) and remembering V is confor-

mal, we aim at obtianing

α(∇XRic)(Y, Z) + α(∇YRic)(Z,X) + α(∇ZRic)(X, Y ) (2.34)

+{(Xν) + 2νβV b(X)}g(Y, Z) + {(Y ν) + 2νβV b(Y )}g(Z,X)

+{(Zν) + 2νβBb(Z)}g(X, Y ) = 0.
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Contraction of the above relation over Y, Z implies

2α

2n+ 3
(Xr) + (Xν) + 2νβV b(X) = 0. (2.35)

Using this result in (2.34) gives

α(∇XRic)(Y, Z) + α(∇YRic)(Z,X) + α(∇ZRic)(X, Y ) (2.36)

− 2α

2n+ 3
{(Xr)g(Y, Z) + (Y r)g(Z,X) + (Zr)g(X, Y )} = 0.

Now plugging Y = Z = ξ in (2.36) and using (2.16) and (2.17) we have

(Xr) + 2(ξr)η(X) = 0. (2.37)

The trace of (2.17) gives

£ξr = −2(r + 2n(2n+ 1)). (2.38)

Applying d to this equation and since £ξ commutes with d we have £dr = −2dr. Gradient

operator D write in terms of D then the last relation can be written as £ξDr = −2Dr.

This relation together with ∇Xξ = X − η(X)ξ implies that

∇ξDr = −Dr − (ξr)ξ. (2.39)

We know that, any Kenmotsu manifold satisfies Dr = (ξr)ξ. Using this in the above

relation gives (Xr) = 0, which implies r is constant. Therefore

(∇XRic)(Y, Z) + (∇YRic)(Z,X) + (∇ZRic)(X, Y ) = 0. (2.40)

Now substituting Y = ξ in the above equation (2.40) and using (2.16) and (2.17) we get

QX = −2nX, this shows that M is Einstein with negative scalar curvature.

2.3 Generalized Ricci tensor on almost Kenmotsu (κ, µ)′

manifold.

Amost Kenmotsu (κ, µ)′-manifold have been studied by many geometers, for instance see

[29, 33, 85, 87, 88, 93, 95, 96] and reference therein. Suppose the curvature tensor R of
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an almost Kenmotsu manifolds M satisfies

R(X, Y )ξ = κ{η(Y )X − η(X)Y }+ µ{η(Y )h′X − η(X)h′Y } (2.41)

for any vector field X, Y and κ, µ are constants, then we say that M is almost Kenmotsu

(κ, µ)′ manifold. From the results of [34], any almost Kenmotsu (κ, µ)′-manifold satisifies

µ = −2 and h′2 = (κ + 1)φ2. From this, we have κ ≤ −1 and the equality holds only if

h = 0. We begin this section by recalling the following Lemmas for our later use.

Lemma 2.3.1. (Lemma 3 in [97]).The expression of Ricci operator Q on an almost

Kenmotsu (κ, µ)′-manifold M is of the form

QX = −2nX + 2n(κ+ 1)η(X)ξ − 2nh′X, (2.42)

where κ ≤ −1. Moreover, the scalar curvature of M is 2n(κ− 2n).

Lemma 2.3.2. (Lemma 4.1 in [34]). On an almost Kenmotsu (κ, µ)′-manifold with

κ ≤ −1, we have

(∇Xh
′)Y =g((κ+ 1)X − h′X, Y )ξ + η(Y )((κ+ 1)X − h′X) (2.43)

− 2(κ+ 1)η(X)η(Y )ξ.

In this section we study closed generalized Ricci soliton on an almost Kenmotsu (κ, µ)′-

manifold M .

Theorem 2.3.3. Let M be a non-Kenmotsu almost Kenmotsu (κ, µ)′-manifold of dimen-

sion 2n+ 1. If metric of M is closed generalized Ricci soliton, then M is locally isometric

to the Riemannian product of an (n+ 1)-dimensional manifold of constant sectional cur-

vature −4 and a flat n-dimensional manifold, provided that λ− κ
β
(2nαβ − 1) = − 2

β
.

Proof. By using the Lemma 2. we can find that

(∇YQ)X − (∇XQ)Y =− 2n{(∇Y h
′)X − (∇Xh

′)Y }

− 2n(κ+ 1){η(Y )(X + h′X)− η(X)(Y + h′Y )}. (2.44)
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As a result of (2.21) and Lemma 3, we obtain

g(R(X, Y )V, ξ) = (2nκαβ − βλ){V b(Y )η(X)− V b(X)η(Y )}, (2.45)

where we used Qξ = 2nκξ. From (2.41) the above relation becomes

(2nκαβ − βλ− κ){V b(Y )η(X)− V b(X)η(Y )} (2.46)

−2{V b(h′X)η(Y )− V b(h′Y )η(X)} = 0.

Substituting X = ξ in the previous eqution gives

2V b(h′Y ) = (2nκαβ − βλ− κ){η(V )η(Y )− V b(Y )}. (2.47)

Since λ− κ
β
(2nαβ−1) = − 2

β
and h′ is a symmetric operator, the equation (2.47) becomes

h′V = η(V )ξ − V. (2.48)

Applying h′ on both sides of the above relation and using the equation h′2 = (κ + 1)φ2

implies

(κ+ 1)(V − η(V )ξ) = h′V. (2.49)

On comparing (2.48) and (2.49) we get

(κ+ 2)(V − η(V )ξ) = 0. (2.50)

From (2.50) we obtain two cases either κ = −2 or V = η(V )ξ = fξ. Let us suppose

V = fξ where f = η(V ) is a smooth function. The co-variant derivative of this along X

provides

∇XV = (Xf)ξ + f(∇Xξ)

= (Xf)ξ + f(X − η(X)ξ + h′X). (2.51)

Since V is closed, we have

∇XV = −αQX − βV b(X)V + λX. (2.52)

By compairing (2.51) and (2.52) one can get

−αQX − βV b(X)V + λX = (Xf)ξ + f(X − η(X)ξ + h′X). (2.53)
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Applying QX value from (2.42) in the above relation gives

(λ+ 2nα− f)X + (2nα− f)h′X + +{fη(X)− (Xf)− 2nα(κ+ 1)η(X)}ξ

−βV b(X)V = 0. (2.54)

On applying h′ on both side of the above relation and by h′ξ = 0 implies

(λ+ 2nα− f)h′X + (2nα− f)h′2X = 0, (2.55)

where we have applied h′ = 0. Now recalling h′2 = (κ+ 1)φ2 we have

{λ+ 2(2nα− f) + κ(2nα− f)}h′X + (2nα− f)(κ+ 1)(X − η(X)ξ) = 0.

Contracting the above equation yields

2n(κ+ 1)(2nα− g) = 0, (2.56)

and this implies f = 2nα because of κ < −1 and substituting this value in (2.54) implies

λX − 2n(ακ+ 2nβ)η(X)ξ = 0. (2.57)

Now taking X orthogonal to ξ we have λ = 0. Thus the above relation becomes (ακ +

2nβ)η(X)ξ = 0. Which implies κ = −2nβ
α

> −1, which contradicts our assumption. So

the only posibility is κ = −2. According to Corollary 4.2 and Proposition 4.1 [33] we

claim that M is locally isometric to the Riemannian product Hn+1 ×Rn.

2.4 Basic Lemma’s of the nullity conditions

In this section we present some basic Lemma’s related to the properties of the nullity

conditions

Lemma 2.4.1. (Prop. 3.1 and Prop. 5.1 of [60]). Let (M2n+1, φ, ξ, η, g) be an almost

Kenmotsu manifold satisfying either the generalized (κ, µ)-nullity condition or the general-

ized (κ, µ)′-nullity condition (the term generalized means κ, µ both are smooth functions),
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with h 6= 0. Then, one has

h′2 = (κ+ 1)φ2 ⇔ h2 = (κ+ 1)φ2, (2.58)

S(X, ξ) = 2nkη(X), (2.59)

for any vector field X on M2n+1. Furthermore, in the case of generalized (κ, µ)-nullity

condition, one has

R(ξ,X)Y = κ[g(X, Y )ξ − η(Y )X] + µ[g(hX, Y )ξ − η(Y )hX], (2.60)

and in the case of generalized (κ, µ)′-nullity condition, one has

R(ξ,X)Y = κ[g(X, Y )ξ − η(Y )X] + µ[g(h′X, Y )ξ − η(Y )h′X], (2.61)

for any X, Y ∈ TPM. In addition if n > 1, then one has

(∇Xh
′)Y = −g(h′X + h′2X, Y )ξ − η(Y )(h′X + h′2X)− (µ+ 2)η(X)h′Y, (2.62)

for any X, Y ∈ TPM.

Let X ∈ D be the eigenvector of h′ corresponding to the eigenvalue λ. It follows from

(3.2) that λ2 = −(κ+ 1), a constant. Therefore κ ≤ −1 and λ = ±
√
−κ− 1. We denote

by [λ]′ and [−λ]′ the corresponding eigenspaces associated with h′ corresponding to the

non-zero eigenvalues λ and −λ respectively.

Lemma 2.4.2. (Prop. 4.1 and Prop. 4.3 of [33]). Let (M2n+1, φ, ξ, η, g) be an almost

Kenmotsu manifold such that ξ belongs to the (κ, µ)′-nullity distribution and h′ 6= 0. Then

κ < −1, µ = −2 and Spec (h′) = 0, λ,−λ, with 0 as simple eigen value and λ =
√
−κ− 1.

The distributions [ξ]⊕ [λ]′ and [ξ]⊕ [−λ]′ are integrable with totally geodesic leaves. The

distributions [λ]′ and [−λ]′ are integrable with totally umbilical leaves. Furthermore, the
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sectional curvature are given as following:

(a) K(X, ξ) = κ− 2λ if X ∈ [λ]′ and

K(X, ξ) = κ+ 2λ if X ∈ [−λ]′,

(b) K(X, Y ) = κ− 2λ if X, Y ∈ [λ]′,

K(X, Y ) = κ+ 2λ if X, Y ∈ [−λ]′,

K(X, Y ) = −(κ+ 2) if X ∈ [λ]′, Y ∈ [−λ]′,

(c) M2n+1 has constant negative scalar curvature r = 2n(κ− 2n).

Lemma 2.4.3. (Lemma 3 of [94]) Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu manifold

with ξ belonging to the generalized (κ, µ)′ -nullity distribution and h′ 6= 0. If n > 1, then

the Ricci operator Q of M2n+1 is given by

Q = −2nid+ 2n(κ+ 1)η ⊗ ξ + [µ− 2(n− 1)]h′. (2.63)

Moreover, if both κ and µ are constant, then we have

Q = −2nid+ 2n(κ+ 1)η ⊗ ξ − 2nh′. (2.64)

In both cases, the scalar curvature of M2n+1 is 2n(κ− 2n).

Lemma 2.4.4. (Theorem 5.1 and Proposition 5.2 of [60]). Let (M2n+1, φ, ξ, η, g), (n >

1) be an almost Kenmotsu manifold such that h′ 6= 0 and ξ belongs to the generalized

(κ, µ)′-nullity distribution. Then for any Xλ, Yλ, Zλ ∈ [λ]′ and X−λ, Y−λ, Z−λ ∈ [−λ]′, the

Riemannian curvature tensor satisfies:

R(Xλ, Yλ)Z−λ = 0,

R(X−λ, Y−λ)Zλ = 0,

R(Xλ, Y−λ)Zλ = (−κ+ 2)g(Xλ, Zλ)Y−λ,

R(Xλ, Y−λ)Z−λ = (κ+ 2)g(Y−λ, Z−λ)Xλ,

R(Xλ, Yλ)Zλ = (κ− 2n)[g(yλ, Zλ)Xλ − g(Xλ, Zλ)Yλ],

R(X−λ, Y−λ)Z−λ = (κ+ 2n)[g(y−λ, Z−λ)X−λ − g(X−λ, Z−λ)Y−λ].
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Further, for the sectional curvature we have:

(a) K(X, ξ) = κ+ λµ if X ∈ [λ]′ and

K(X, ξ) = κ− λµ if X ∈ [−λ]′,

(b) K(X, Y ) = κ− 2λ if X, Y ∈ [λ]′,

K(X, Y ) = κ+ 2λ if X, Y ∈ [−λ]′

K(X, Y ) = −(κ+ 2) if X ∈ [λ]′, Y ∈ [−λ]′

(c) M2n+1 has constant negative scalar curvature r = 2n(κ− 2n).

Lemma 2.4.5. (Proposition 4.2 of [33]). Let (M2n+1, φ, ξ, η, g), be an almost Kenmotsu

manifold such that h′ 6= 0 and ξ belongs to the generalized (κ,−2)′-nullity distribution.

Then for any Xλ, Yλ, Zλ ∈ [λ]′ and X−λ, Y−λ, Z−λ ∈ [−λ]′, the Riemannian curvature

tensor satisfies:

R(Xλ, Yλ)Z−λ = 0,

R(X−λ, Y−λ)Zλ = 0,

R(Xλ, Y−λ)Zλ = (−κ+ 2)g(Xλ, Zλ)Y−λ,

R(Xλ, Y−λ)Z−λ = (κ+ 2)g(Y−λ, Z−λ)Xλ,

R(Xλ, Yλ)Zλ = (κ− 2n)[g(Yλ, Zλ)Xλ − g(Xλ, Zλ)Yλ],

R(X−λ, Y−λ)Z−λ = (κ+ 2n)[g(Y−λ, Z−λ)X−λ − g(X−λ, Z−λ)Y−λ].

Lemma 2.4.6. (Lemma 4.1 of [33]). Let (M2n+1, φ, ξ, η, g), be an almost Kenmotsu

manifold such that h′ 6= 0 and ξ belongs to the (κ,−2)′-nullity distribution. Then for any

X, Y ∈ TpM ,

(∇Xh
′)Y = −g(h′X + h′2X, Y )ξ − η(Y )(h′X + h′2X). (2.65)

Lemma 2.4.7. (Theorem 4.1 of [33]). Let M be an almost Kenmotsu manifold of dimen-

sion 2n + 1. Suppose that the characteristic vector field ξ belonging to the (κ, µ)-nullity

distribution. Then κ = −1, h = 0 and M is locally a warped product of an open interval

and an almost Kähler manifold.
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2.5 Locally φ − H-conformally symmetric almost Ken-

motsu manifolds

We begin this section with the following;

Definition 2.5.1. An almost Kenmotsu manifold is said to be φ-symmetric if it satisfies

φ2((∇WR)(X, Y )Z) = 0, (2.66)

for any vector fields W,X, Y, Z ∈ TpM . In addition, if the vector fields W,X, Y, Z are

orthogonal to ξ, then the manifold is called locally φ-symmetric.

Definition 2.5.2. An almost Kenmotsu manifold is said to be φ-conformally symmetric

if it satisfies

φ2((∇WC)(X, Y )Z) = 0, (2.67)

for any vector fields W,X, Y, Z ∈ TpM In addition, if the vector fields W,X, Y, Z are

orthogonal to ξ, then the manifold is called locally φ-conformally symmetric.

Theorem 2.5.1. Let M2n+1 be a locally φ−H-conformally symmetric alomost Kenmotsu

manifold with characteristic vectro field ξ belonging to the (κ, µ)′-nullity distribution and

h 6= 0. Then the manifold M2n+1 is locally isometric to the Riemannian product of an

(n+ 1)-dimensional manifold of constant sectional curvature −4 and a flat n-dimensional

manifold.

Proof. Consider an almost Kenmotsu manifold M2n+1 and suppose the manifold M2n+1

is a locallly φ−H-conformally symmetric with the characteristic vector field ξ belonging

to the (κ, µ)′-nullity distribution. This implies

φ2((∇ZH)(X, Y )W ) = 0, (2.68)

for any vector fieldsX, Y, Z,W orthogonal to ξ. SubstitutingW = ξ in the above equation

we get,

φ2((∇ZH)(X, Y )ξ) = 0. (2.69)
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Using (2.64) and (2.8) in (2.5) implies

H(X, Y )ξ =

(
aµ+

2na

2n− 1
+ (a+ (2n− 1)b)µ

)
(η(Y )h′X − η(X)h′Y ),

=

(
(2a+ (2n− 1)b)µ+

2na

2n− 1

)
(η(Y )h′X − η(X)h′Y ), (2.70)

for any X, Y ∈ TPM . Taking covariant derivative of (2.70) along Z ∈ TPM then we get

(∇ZH)(X, Y )ξ =

(
(2a+ (2n− 1)b)µ+

2na

2n− 1

)
((∇Zη)Y (h′X) + η(Y )(∇Zh

′)X

−(∇Zη)X(h′Y )− η(X)(∇Zh
′)Y ). (2.71)

Now applying φ2 on both sides of the above equation then we obtain

φ2((∇ZH)(X, Y )ξ) =

(
(2a+ (2n− 1)b)µ+

2na

2n− 1

)
[(∇Zη)Y (−h′X) + η(Y )φ2((∇Zh

′)X)

−(∇Zη)X(−h′Y )− η(X)φ2((∇Zh
′)Y )].

(2.72)

Adopting (2.10) in the above relation we have

φ2((∇ZH)(X, Y )ξ) =

(
(2a+ (2n− 1)b)µ+

2na

2n− 1

)
[−h′X(g(Y, Z)− η(Y )η(Z) + g(h′Z, Y ))

+h′Y (g(X,Z)− η(X)η(Z) + g(h′Z,X))

+η(Y )φ2((∇Zh
′)X)− η(X)φ2((∇Zh

′)Y )].

(2.73)

In view of (2.73) and (2.68) and X, Y, Z are orthogonal to ξ gives(
(2a+ (2n− 1)b)µ+

2na

2n− 1

)
{−h′X[g(Y, Z) + g(h′Z, Y )] + h′Y [g(X,Z) + g(h′Z,X)]} = 0.

(2.74)

In [33], Dileo and Pastore proved that if ξ belongs to the (κ, µ)′-nullity distribution then

µ = −2, where a and b are real numbers (not simultaneously zero), using this result and

by the assumption n > 1, it follows from (2.74) that

{−h′X[g(Y, Z) + g(h′Z, Y )] + h′Y [g(X,Z) + g(h′Z,X)]} = 0. (2.75)

Letting X, Y, Z ∈ [−λ]′ in (2.75) implies that

λ(1− λ)[g(Y,X)X − g(X,Z)Y ] = 0. (2.76)
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Suppose λ = 0, then λ2 = −(κ + 1) we get κ = −1 and hence h′ = 0 from (2.58), which

contradicts our assumption h′ 6= 0. Therefore λ 6= 0, then it follows from (2.76) that

λ = 1 and hence κ = −2. Then we can write from Lemma [2.4.5] that

R(Xλ, Yλ)Zλ = −4[g(Yλ, Zλ)Xλ − g(Xλ, Zλ)Yλ], (2.77)

R(X−λ, Y−λ)Z−λ = 0 (2.78)

for any Xλ, Yλ, Zλ ∈ [λ]′ and X−λ, Y−λ, Z−λ ∈ [−λ]′. And from Lemma [2.4.2] that

K(X, ξ) = −4 for any X ∈ [λ]′ and K(X, ξ) = 0 for any X ∈ [−λ]′. And also from the

same Lemma [2.4.2] we have K(X, Y ) = −4 for any X, Y ∈ [λ]′ , K(X, Y ) = 0 for any

X, Y ∈ [−λ]′ and K(X, Y ) = 0 for any X ∈ [λ]′, Y ∈ [−λ]′. From [33] we see that the

distribution [ξ]⊕ [λ]′ is integrable with totally geodesic leaves and the distribution [−λ]′ is

integrable with totally umbilical leaves by T = −(1−λ)ξ, where T is the mean curvature

vector field for the leaves of [−λ]′ immersed in M2n+1. Here λ = 1, then two orthogonal

distributions [ξ]⊕ [1]′ and [−1]′ are both integrable with totally geodesic leaves immersed

in M2n+1. Then we can say that M2n+1 is locally isometric to T n+1(−4) × Rn. This

completes the proof.

Theorem 2.5.2. If M2n+1 is a locally φ−H-conformally symmetric alomost Kenmotsu

manifold with characteristic vector field ξ belonging to the generalized (κ, µ)′-nullity dis-

tribution and h 6= 0. Then the manifold M2n+1 is locally isometric to the Riemannian

product of an (n+ 1)-dimensional manifold of constant sectional curvature −4 and a flat

n-dimensional manifold.

Proof. Consider an almost Kenmotsu manifold M2n+1 and suppose the manifold M2n+1

is a locallly φ−H-conformally symmetric with the characteristic vector field ξ belonging

to the generalized (κ, µ)′-nullity distribution. This implies

φ2((∇ZH)(X, Y )W ) = 0, (2.79)

for any vector fieldsX, Y, Z,W orthogonal to ξ. SubstitutingW = ξ in the above equation

gives

φ2((∇ZH)(X, Y )ξ) = 0. (2.80)
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Using (2.61) and (2.63) in (2.5) we obtain

H(X, Y )ξ =

{
(2a(n− 1) + (2n− 1)(a+ (2n− 1)b)µ+ 2a(n− 1)

(2n− 1)

}
{η(Y )h′X−η(X)h′Y },

(2.81)

for any X, Y ∈ TPM . Taking covariant derivative of (2.81) along Z ∈ TPM then we get

(∇ZH)(X, Y )ξ =
{

(2a(n−1)+(2n−1)(a+(2n−1)b))
(2n−1)

}
{η(Y )h′X − η(X)h′Y }Z(µ)

+
{

(2a(n−1)+(2n−1)(a+(2n−1)b)µ+2a(n−1)
(2n−1)

}
{(∇Zη)Y h′X

+η(Y )∇Z(h′X)− (∇Zη)(X)h′Y − η(X)∇Z(h′Y )}. (2.82)

Now applying φ2 on both sides of the above equation gives

φ2((∇ZH)(X, Y )ξ) =
{

(2a(n−1)+(2n−1)(a+(2n−1)b))
(2n−1)

}
{η(Y )(−h′X)− η(X)(−h′Y )}Z(µ)

+
{

(2a(n−1)+(2n−1)(a+(2n−1)b)µ+2a(n−1)
(2n−1)

}
{η(Y )φ2((∇Zh)X)

−(∇Zη)Y (h′X)− (∇Zη)X(−h′Y )− η(X)φ2((∇Zh
′Y )}.(2.83)

Here we adopting (2.10) in the above relation we have

φ2((∇ZH)(X, Y )ξ) =
{

(2a(n−1)+(2n−1)(a+(2n−1)b))
(2n−1)

}
{η(Y )(−h′X)− η(X)(−h′Y )}Z(µ)

+
{

(2a(n−1)+(2n−1)(a+(2n−1)b)µ+2a(n−1)
(2n−1)

}
{h′Y [g(X,Z)− η(X)η(Z)

+g(h′Z,Z)]− h′X[g(Y, Z)− η(Y )η(Z) + g(h′Z, Y )]

+η(Y )φ2((∇Zh
′)X)− η(X)φ2((∇Zh

′)Y )}, (2.84)

for any vector field X, Y ∈ TPM and from (2.84) noticing X, Y, Z are orthogonal to ξ and

using (2.80) we get{
(2a(n− 1) + (2n− 1)(a+ (2n− 1)b)µ+ 2a(n− 1)

(2n− 1)

}
{h′Y [g(X,Z) + g(h′Z,X)]

−h′X[g(X,Z) + g(h′Z, Y )]} = 0.

(2.85)

Case 1. In this case
{

(2a(n−1)+(2n−1)(a+(2n−1)b)µ+2a(n−1)
(2n−1)

}
= 0, so that we acquire

µ =

{
−2a(n− 1)

2a(n− 1) + (2n− 1)(a+ (2n− 1)b)

}
. (2.86)
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As a result of Pastore and Saltarrelli [60], an almost Kenmotsu generalized (κ, µ)′-manifold

with h′ 6= 0 satisfy

∇ξh
′ = −(µ+ 2)h′, (2.87)

and for any X, Y, Z ∈ D one can find

g((∇Xh
′)Y, Z) = 0. (2.88)

Using (2.88) in (2.87) gives

0 = −(µ+ 2)g(h′Y, Z) (2.89)

On utilising (2.86) in (2.89) gives

0 = −
{

−2a(n− 1)

2a(n− 1) + (2n− 1)(a+ (2n− 1)b)
+ 2

}
g(h′Y, Z). (2.90)

From the above relation we get b = −(3n−2)a
(2n−1)2 and substuting this b in (2.86) then we obtain

µ = −2.

Case 2. If λ = 0, then from λ2 = −(κ + 1) we get κ = −1 and hence h′ = 0 from (2.58),

which again contradicts our assumption that h′ 6= 0. Therefore λ 6= 0.

Case 3. If λ = 1 and hence κ = −2. Then from the Lemma (2.4.4) we can write that

R(Xλ, Yλ)Zλ = −4[g(Yλ, Zλ)Xλ − g(Xλ, Zλ)Yλ], (2.91)

R(X−λ, Y−λ)Z−λ = 0, (2.92)

for Xλ, Yλ, Zλ ∈ [λ]′ and X−λ, Y−λ, Z−λ ∈ [−λ]′. From the Lemma (2.4.4) that K(X, Y ) =

−4 for any X, Y ∈ [λ]′ and K(X, Y ) = 0 for any X, Y ∈ [−λ]′ and K(X, Y ) = 0

for any X ∈ [λ]′, Y ∈ [−λ]′. As From [33] that the distribution [ξ] ⊕ [λ]′ is integrable

with totally geodesic leaves and the distribution [−λ]′ is integrable with totally umbilical

leaves by T = −(1−λ)ξ, where T is the mean curvature vector field for the leaves of [−λ]′

immersed in M2n+1. Here λ = 1, then two orthogonal distributions [ξ]⊕ [1]′ and [−1]′ are

both integrable with totally geodesic leaves immersed in M2n+1. Then we can say that

M2n+1 is locally isometric to T n+1(−4)×Rn. This completes the proof.
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In the next results we study locally φ − H-conformally symmetric almost Kenmotsu

manifolds with ξ belonging to the (κ, µ)-nullity and generalized (κ, µ)-nullity distributions

respectively.

Theorem 2.5.3. If M2n+1 is a locally φ − H- conformally symmetric almost Kenmotsu

manifold with the characteristic vector field ξ belonging to the (κ, µ)-nullity distribution

and h 6= 0, then the manifold M2n+1 is an Einstein manifold.

Proof. Consider an almost Kenmotsu manifold M2n+1 and suppose the manifold M2n+1

is a locallly φ−H-conformally symmetric with the characteristic vector field ξ belonging

to the (κ, µ)-nullity distribution. This implies

φ2((∇ZH)(X, Y )W ) = 0, (2.93)

for any vector fields X, Y, Z,W orthogonal to ξ. Substituting X = ξ in the above equation

we get,

φ2((∇ZH)(ξ, Y )W ) = 0. (2.94)

On considering equation (2.7) and Lemma [2.4.7] in (2.5) we obtain

H(ξ, Y )W = a

{
−1

2n− 1
[S(Y,W )ξ − η(W )QY ]− 2n

2n− 1
[g(Y,W )ξ − η(W )Y ]

}
−
{
a+ (2n− 1)b

2n

}
(S(Y,W )ξ + 2nη(W )Y ) (2.95)

for any Y,W ∈ TPM. Taking the covariant differentiation along any vector field Z ∈ TPM

of (2.95) we get

(∇ZH)(ξ, Y )W =

(
−a

2n− 1

)
{(∇ZS)(Y,W )ξ + S(Y,W )∇Zξ −QY (∇Zη)(W )− η(W )(∇ZQ)Y }

−
(

2na

2n− 1

)
{(S(Y,W )(∇Zξ)− (∇Zη)(W )Y )

−
(
a+ (2n− 1)b

2n

)
{(∇ZS)(Y,W )ξ + S(Y,W )∇Zξ + 2n(∇Zη)(W )Y },

(2.96)
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for any Y,W ∈ TPM . Using (2.10) in (2.96) gives

(∇ZH)(ξ, Y )W =

(
−a

2n− 1

)
[g(Y,W )(Z − η(Z)ξ)− (g(Z,W )− η(Z)η(W )Y )]

−
(

2na

2n− 1

)
[S(Y,W )(Z − η(Z)ξ)− (g(Z,W )− η(Z)η(W ))QY

− η(W )(∇ZQ)Y + g((∇ZQ)Y,W )ξ]−
(
a+ (2n− 1)b

2n

)
[g((∇ZQ)Y,W )ξ

+ S(Y,W )(Z − η(Z)ξ) + 2n(g(Z,W )− η(Z)η(W )Y )]. (2.97)

Imposing φ2 on the above equation (2.97) we obtain

φ2((∇ZH)(ξ, Y )W ) =

(
−a

2n− 1

)
[g(Y,W )(−Z + η(Z)ξ)− (g(Z,W )− η(Z)η(W ))(Y − η(Y )ξ)]

−
(

2na

2n− 1

)
[S(Y,W )(−Z + η(Z)ξ)− (g(Z,W )− η(Z)η(W ))(−QY + η(QY )ξ)

− η(W )φ2((∇ZQ)Y )](∇ZQ)Y,W )ξ]−
(
a+ (2n− 1)b

2n

)
[S(Y,W )(−Z + η(Z)ξ)

− 2n(g(Z,W )− η(Z)η(W ))(Y − η(Y )ξ)], (2.98)

for any Z, Y,W ∈ TPM. From (2.98) and (2.94) and using the fact Y, Z,W are orthogonal

to ξ, we have(
a

2n− 1

)
{2n(g(Y,W )Z − g(Z,W )Y ) + S(Y,W )Z − g(Z,W )QY }

+

(
a+ (2n− 1)b

2n

)
(S(Y,W )Z − 2ng(Z,W )Y ) = 0,

for any Z, Y,W ∈ TPM. Taking inner product of the above equation with arbitrary vector

field U yields(
a

2n− 1

)
{2n(g(Y,W )g(Z,U)− g(Z,W )g(Y, U)) + S(Y,W )g(Z,U)− g(Z,W )S(Y, U)}

+

(
a+ (2n− 1)b

2n

)
(S(Y,W )g(Z,U)− 2ng(Z,W )g(Y, U)) = 0.

Let ei : i = 1, 2, ..., 2n+ 1 be a local orthonormal basis of tangent space at each point of

the manifold M2n+1. Plugging Y = U = ei in the above equation and taking summation

over i : 1 ≤ i ≤ 2n+ 1, we get

S(W,Z) = −2n

(
2na− (2n− 1)(2n+ 1)(a+ (2n− 1)b)

2na+ (2n− 1)(a+ (2n− 1)b)

)
g(W,Z). (2.99)
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for any Z,W ∈ TPM . In [33], Dileo and Pastore prove that in an almost Kenmotsu man-

ifold with ξ belonging to the (κ, µ)-nullity distribution the sectional curvature K(X, ξ) =

−1. From this we get in an almost Kenmotsu manifold with ξ belonging to the (κ, µ)-

nullity distribution the scalar curvature r = −2n(2n + 1). Where a and b are real

numbers (not simultaneously zero). If a = 1 and b = − 1
2n−1 , then (2.99) becomes

S(Z,W ) = −2ng(Z,W ), also if a = 0 and b = 1
2n−1 , then S(Z,W ) = 2n(2n+ 1)g(Z,W ).

Therefore the manifold M2n+1 is an Einstein one. This completes the proof.

Theorem 2.5.4. Let M2n+1 be a locally φ−H- conformally symmetric almost Kenmotsu

manifold with the characteristic vector field ξ belonging to the generalized (κ, µ)-nullity

distribution and h 6= 0. Then the manifold M2n+1 is an Einstein almost Kenmotsu man-

ifold with ξ belonging to the generalized κ-nullity distribution.

Proof. Consider an almost Kenmotsu manifold M2n+1 and suppose the manifold M2n+1

is a locallly φ−H-conformally symmetric with the characteristic vector field ξ belonging

to the generalized (κ, µ)-nullity distribution. This implies

φ2((∇ZH)(X, Y )W ) = 0, (2.100)

for any vector fields X, Y, Z,W orthogonal to ξ. Substituting X = ξ in the above equation

we get,

φ2((∇ZH)(ξ, Y )W ) = 0. (2.101)

Using the result from Pastore and Saltarelli [60], an almost Kenmotsu manifold M2n+1,

n > 1 satisfying the generalized (κ, µ)-nullity distribution with h 6= 0, the scalar curvature

is given by r = 2n(κ− 2n) and (2.60) we have from (2.5)

H(ξ, Y )Z =a

{(
−2n

2n− 1

)
(g(Y, Z)ξ − η(Z)Y ) + µ(g(hY, Z)ξ − η(Z)hY )

}
−
(

a

2n− 1

)
[S(Y, Z)ξ − η(Z)QY ] + (a+ (2n− 1)b){µ(g(hY, Z)ξ

− η(Z)hY )− 1

2n
S(Y, Z)ξ}, (2.102)

for any Y, Z ∈ TPM. Taking the covariant differentiation along arbitrary vector field
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W ∈ TPM of (2.102) we get

(∇WH)(ξ, Y )Z =a

{(
−2n

2n− 1

)
(g(Y, Z)(∇W ξ)− (∇Wη)(Z)Y )

}
+ aW (µ){g(hY, Z)ξ

− η(Z)hY }+ aµ{g(hY, Z)(∇W ξ)− (∇Wη)(Z)hY − η(Z)(∇Wh)}

−
(

a

2n− 1

)
{S(Y, Z)(∇W ξ)− (∇Wη)(Z)QY − η(Z(∇WQ)Y

+ (∇WS)(Y, Z)ξ)}+ (a+ (2n− 1)b){W (µ)[g(hY, Z)ξ − η(Z)hY ]

+ µ[g(hY, Z)(∇W ξ)− (∇Wη)(Z)hY − η(Z)(∇Wh)]

− 1

2n
[(∇WS)(Y, Z)ξ + S(Y, Z)∇W ξ]}. (2.103)

Using (2.10) and applying φ2 on both sides of the above equation (2.103) and Y,W,Z are

orthogonal to ξ then we obtain

φ2((∇WH)(ξ, Y )Z) =

(
−2na

2n− 1

)
{g(Y, Z)[−W + φhW ] + [g(Z,W ) + g(hφW,Z)Y ]}

+ aµ{g(hY, Z)[−W + φhW ] + g(W,Z)hY + g(hφW,Z)hY }

−
(

a

2n− 1

)
{S(Y, Z)[−W + φhW ] + [g(W,Z) + g(hφW,Z)QY ]}

+ (a+ (2n− 1)b){µ[g(hY, Z)[−W + φhW ] + g(W,Z)hY

+ g(hφW,Z)hY ]− 1

2n
S(Y, Z)[−W + φhW ]}. (2.104)

From (2.101) and taking inner product of the above relation with any vector field U we

obtain(
−2na

2n− 1

)
{g(Y, Z)[−g(W,U) + g(φhW,U)] + [g(Z,W ) + g(hφW,Z)]g(Y, U)}

+ aµ{g(hY, Z)[−g(W,U) + g(φhW,U)] + [g(W,Z) + g(hφW,Z)]g(hY, U)}

−
(

a

2n− 1

)
{S(Y, Z)[−g(W,U) + g(φhW,U)] + [g(W,Z) + g(hφW,Z)]g(QY,U)}

+ (a+ (2n− 1)b){µ{g(hY, Z)[−g(W,U) + g(φhW,U)] + [g(W,Z) + g(hφW,Z)]g(hY, U)}

− 1

2n
[S(Y, Z)(−g(W,U) + g(φhW,U))]} = 0.

Let us consider ei : i = 1, 2, ..., 2n+ 1 be a local orthonormal basis of tangent space at

each point of the manifold M2n+1. Setting Y = U = ei in the previous equation and
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taking summation over i : 1 ≤ i ≤ 2n+ 1, implies(
−2na

2n− 1

)
{2ng(W,Z)− 2ng(φhW,Z)} (2.105)

+ (2a+ (2n− 1)b)µ{−g(hZ,W ) + g(hZ, φhW )}

−
(

a

2n− 1
+
a+ (2n− 1)b

2n

)
{−S(W,Z) + S(Z, φhW )}

−
(

a

2n− 1

)
{r[g(W,Z) + g(φhW )]} = 0.

Now substituting W = φhW and using h2 = (κ+ 1)φ2 we have(
−2na

2n− 1

)
{2ng(φhW,Z) + 2n(κ+ 1)g(W,Z)} (2.106)

+ (2a+ (2n− 1)b)µ{−g(hZ, φhW )− (κ+ 1)g(hZ,W )}

−
(

a

2n− 1
+
a+ (2n− 1)b

2n

)
{−S(φhW,Z)− (κ+ 1)S(Z,W )}

−
(

a

2n− 1

)
{2n(κ− 2n)[g(φhW,Z)− (κ+ 1)g(W,Z)]} = 0.

Adding (2.105) and (2.106) and we obtain

(κ+ 2)

{(
a

2n− 1
+
a+ (2n− 1)b

2n

)
S(Z,W )

}
(2.107)

−(κ+ 2)

{(
2naκ

2n− 1

)
g(W,Z)− (2a+ (2n− 1)b)µg(hZ,W )

}
= 0.

From (2.107) we see that either κ = −2 or(
a

2n− 1
+
a+ (2n− 1)b

2n

)
S(Z,W ) =

(
2naκ

2n− 1

)
g(W,Z) + (2a+ (2n− 1)b)µg(hZ,W ).

(2.108)

Suppose κ = −2, a constant, then ξ(κ) = 0. Now we present a result due to Pastore and

Saltarelli [60]: In an almost Kenmotsu manifold with generalized (κ, µ)-nullity distribution

and h 6= 0, the relation ξ(κ) = −4(κ + 1) holds. Therefore substituting κ = −2 in this

result we get ξ(κ) = 4. Thus, we have ξ(κ) = 0 and ξ(κ) = 4, which is not possible.

Hence, it follows from (2.107) that(
a

2n− 1
+
a+ (2n− 1)b

2n

)
S(Z,W ) =

(
2naκ

2n− 1

)
g(W,Z) + (2a+ (2n− 1)b)µg(hZ,W ).

(2.109)
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But now replacing Z by hZ and using h2 = (κ+ 1)φ2 we have(
a

2n− 1
+
a+ (2n− 1)b

2n

)
S(hZ,W ) =

(
2naκ

2n− 1

)
g(W,hZ)− (2a+ (2n− 1)b)(κ+ 1)µg(Z,W ).

(2.110)

Plugging Y = Z = ξ in the previous eqution we get

(2a+ (2n− 1)b)µ(κ+ 1) = 0. (2.111)

In the above relation if a = 1 and b = − 1
2n−1 or if a = 0 and b = 1

2n−1 , for both values of

a and b we have (2a+ (2n− 1)b) 6= 0, then only possiblity is either µ = 0 or κ = −1.

Suppose, κ = −1. Then from, h2 = (κ + 1)φ2 we have h = 0, which contradicts our

assumption h 6= 0. Hence it follows from (2.111) that

µ = 0 (2.112)

Then ξ belongs to the generalized k-nullity distribution. Also substituting the above

relation into (2.109) we get S(Z,W ) = 2nκ
(

2na
4na−a+(2n−1)2b

)
g(Z,W ) for any Z,W ∈ TPM.

Therefore the manifold M2n+1 is an Einstein one. Thus the manifold M2n+1 reduces

to an Einstein almost Kenmotsu manifold with ξ belonging to the generalized κ-nullity

distribution. This completes the proof of our theorem.

2.6 Conclusion

In this chapter, H-Curvature tensor on almost Kenmotsu manifold with nullity distibu-

tion and Generalized Ricci Soliton on Almost Kenmotsu Manifolds are studied. Main

conclusions that are drawn following:

• If a Kenmotsu manifold M admits a closed generalizd Ricci tensor, then we have

one of the following conditions occurs

1. V is pointwise collinear with ξ and in such a case M is η-Einstein.
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2. V is strictly infinitesimal contact transformation.

3. M is Einstein.

• Let M be a Kenmotsu manifold with the dimension 2n + 1. If the metric of M is

generalized Ricci soliton and V is a conformal vector field, then M is Einstein with

constant scalar curvature −2n(2n+ 1).

• Let M be a non-Kenmotsu almost Kenmotsu (κ, µ)′-manifold of dimension 2n+ 1.

If a metric of M is closed generalized Ricci soliton, then M is locally isometric to

the Riemannian product of an (n + 1)-dimensional manifold of constant sectional

curvature −4 and a flat n-dimensional manifold, provided that λ− κ
β
(2nαβ − 1) =

− 2
β
.

• Let M2n+1 be a locally φ − H-conformally symmetric alomost Kenmotsu manifold

with characteristic vectro field ξ belonging to the (κ, µ)′-nullity distribution and

h 6= 0. Then the manifold M2n+1 is locally isometric to the Riemannian product

of an (n + 1)-dimensional manifold of constant sectional curvature −4 and a flat

n-dimensional manifold.

• IfM2n+1 is a locally φ−H-conformally symmetric alomost Kenmotsu manifold with

characteristic vector field ξ belonging to the generalized (κ, µ)′-nullity distribution

and h 6= 0, then the manifold M2n+1 is locally isometric to the Riemannian product

of an (n + 1)-dimensional manifold of constant sectional curvature −4 and a flat

n-dimensional manifold.
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• If M2n+1 is a locally φ−H- conformally symmetric almost Kenmotsu manifold with

the characteristic vector field ξ belonging to the (κ, µ)-nullity distribution and h 6= 0,

then the manifold M2n+1 is an Einstein manifold.



Chapter 3

K-paracontact and
(κ, µ)-paracontact Manifolds

It is well known that, the notion of Yamabe flow was first introduced by Richard Hamilton

at the same time of a Ricci flow [45]. A Yamabe flow is defined as a tool for constructing

metrics of constant as the evolution of the metric g0 in time t to g = g(t) through the

equation

∂

∂t
g(t) = −rg, g(0) = g0, (3.1)

where r is the scalar curvature of the metric g(t). If a Riemannian manifold M holds the

relation

£V g = 2(r − λ)g, (3.2)

for a smooth vector field V on M and a constant λ, then M is said to have Yamabe

soliton. And the soliton is said to be shrinking, steady or expanding if it admits a soliton

field for which λ > 0, λ = 0 or λ < 0 respectively. In the recent years, many authors

have studied Yamabe soliton on various types of manifolds ([38], [19], [24], [82]). In [46],

Guangyue Huang and Haizhang Li defines a generalized form of a Yamabe gradient soliton

59
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and which is called as quasi Yamabe gradient soliton.

In 1921, the notion of Bach tensor was introduced by R. Bach [2] to study confor-

mal relativity. This is a symmetric traceless (0, 2)-type tensor B on an n-dimensional

Riemannian manifold (M, g), defined by

B(X, Y ) =
1

n− 1

n∑
i,j=1

(
(∇ei∇ejW )(X, ei, ej, Y )

)
+

1

n− 2

n∑
i,j=1

Ric(ei, ej)W (X, ei, ej, Y ),(3.3)

where (ei), i = 1, ..., n, is a local orthonormal frame on (M ; g), Ric is the Ricci tensor of

type (0, 2) and C is the (0, 3)-type Cotton tensor defined by[40]

C(X, Y )Z = (∇XRic)(Y, Z)− (∇YRic)(X,Z) (3.4)

− 1

2(n− 1)
[g(Y, Z)(Xr)− g(X,Z)(Yr)],

and W denotes the Weyl tensor of type (0, 3) defined by[40]

W (X, Y )Z = R(X, Y )Z − g(Y, Z)QX − g(X,Z)QY + g(QY,Z)X (3.5)

− g(QX,Z)Y − r

2
(g(Y, Z)X − g(X,Z)Y ).

After Bach [2], many people worked on Bach tensor; In 1993 Pedersen and Swann[62]

studied Einstein-Weyl geometry, the Bach tensor and conformal scalar curvature. In

2013-14 H.D. Cao and others ([14] and [15]) studied Bach tensor on gradient shrink-

ing and steady Ricci soliton. In 2017 Ghosh and Sharma [41] studied Sasakian manifolds

with purely transversal Bach tensor. In that article they show that a (2n+1)-dimensional

Sasakian manifold (M, g) with a purely transversal Bach tensor has constant scalar curva-

ture ≥ 2n(2n+1), equality holding if and only if (M, g) is Einstein. For dimension 3,M is
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locally isometric to the unit sphere S3. For dimension 5, if in addition (M, g) is complete,

then it has positive Ricci curvature and is compact with finite fundamental group π1(M).

Recently in 2019 Ghosh and Sharma [40] studied classification of (κ, µ)-contact manifold

with divergence free Cotton tensor and vanishing Bach tensor.

Definition 3.0.1. A Riemannian manifold is called an η-Einstein manifold, if it has Ricci

tensor Q such that

QY = aY + bη(Y )ξ (3.6)

where a, b ∈ C∞(M2n+1) and if the function b = 0 then it is called Einstein.

Definition 3.0.2. On a Riemannian manifold (M, g) if there exist a smooth function f

and two constants m and λ (where m is non-zero) such that

∇∇f =
1

m
df ⊗ df + (r − λ)g, (3.7)

then M is said to have quasi Yamabe gradient soliton.

Definition 3.0.3. In an almost paracontact metric manifold if g(X,ϕY ) = dη(X, Y )

(where dη(X, Y ) =
1

2
{X(η(Y ))− Y (η(X))− η([X, Y ]} then η is a paracontact form and

the almost paracontact metric manifold (M,ϕ, η, ξ, g) is said to be a paracontact metric

manifold.

Proposition 3.0.1. On a K-paracontact manifold M , we have (from [59])

(i) (∇XQ)ξ = QϕX + 2nϕX, (3.8)

(ii) (∇ξQ)X = QϕX − ϕQX, (3.9)

for any vector field X on M .

Definition 3.0.4. (See [16]) A (κ, µ)-paracontact metric manifold M is a paracontact

metric manifold for which the curvature tensor field satisfies

R(X, Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ), (3.10)

for all vector fields X, Y ∈ T (M) and for some real constants κ and µ.
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Further, a paracontact metric manifold M satisfies the following properties

h2X = (1 + κ)ϕ2X, (3.11)

Qξ = 2nκξ, (3.12)

(∇Xϕ)Y = −g(X − hX, Y )ξ (3.13)

+ η(Y )(X − hX), for κ = −1,

(∇Xh)Y − (∇Y h)X = −(1 + κ)2g(X,ϕY )ξ + η(X)ϕY − η(Y )ϕX (3.14)

+ (1− µ)η(X)ϕhY − η(Y )ϕhX,

QX = (2(1− n) + nµ)X + (2(n− 1) + µ)hX (3.15)

+ (2(n− 1) + n(2κ− µ))η(X)ξ, for κ > −1,

QX = (2(1− n) + nµ)X + (2(n+ 1) + µ)hX (3.16)

+ (2(n− 1) + n(2κ− µ))η(X)ξ, for κ < −1,

r = 2n {2(1− n) + nµ+ κ} for κ 6= −1, (3.17)

(∇Xh)Y = −((1 + κ)g(X,ϕY ) + g(X,ϕhY ))ξ (3.18)

+ η(Y )ϕh(hX −X)− µη(X)ϕhY for κ 6= 0.

Here Q denotes the Ricci operator. From the above relation its clear that r is constant

on M .

And from the above conditions we can find

(∇XQ)Y = (2(n− 1) + µ)(∇Xh)Y

+ (2(n− 1) + n(2κ− µ)) {(∇Xη)(Y )ξ + η(Y )∇Xξ} , for κ > −1(3.19)
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and

(∇XQ)Y = (2(n+ 1) + µ)(∇Xh)Y

+ (2(n− 1) + n(2κ− µ)) {(∇Xη)(Y )ξ + η(Y )∇Xξ} , for κ < −1.(3.20)

From K. Yano [99], we have

2g((£V∇)(X, Y ), Z) = (∇X£V g)(Y, Z) + (∇Y£V g)(X,Z)− (∇Z£V g)(X, Y ), (3.21)

and

(£VR)(X, Y )Z = (∇X£V∇)(Y, Z) + (∇Y£V∇)(X,Z). (3.22)

Proposition 3.0.2. On a paracontact manifold M , if f ∈ M , Xf = 0 for all X ⊥ ξ,

then f is constant on M .

Proof. If Xf = 0 for all X ⊥ ξ, then operating ϕ2 on both sides we have

g(X − η(X)ξ,∇f) = 0. (3.23)

Taking covariant derivative of (3.23) along Y we obtain

Y Xf − (ξf)∇Y η(X)− η(X)(Y ξf) = 0. (3.24)

Interchange X and Y in the above equation gives

XY f − (ξf)∇Xη(Y )− η(Y )(Xξf) = 0. (3.25)

Replacing X by [X, Y ] in (3.23) implies

[X, Y ]f − (ξf)η[X, Y ] = 0. (3.26)

Subtracting (3.26) and (3.25) from (3.24) we get

(ξf){(∇Xη)Y − (∇Y η)X} = 0, (3.27)

which implies

{g(Y,∇Xξ)− g(X,∇Y ξ)} (ξf) = 0. (3.28)
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From ∇Xξ = −ϕX + ϕhX, which reduces to

2g(X,ϕY )(ξf) = 0. (3.29)

This shows that ξf = 0. Therefore Xf = 0 for all X ∈ T (M). So that f is constant on

M .

Before start to study quasi Yamabe soliton, here we prove a result regarding the

Yamabe soliton on non-para Sasakian (κ, µ)-paracontact manifold.

Let us consider a non-para-Sasakian (κ, µ)-paracontact manifold M . For dimM > 3 if

M admits a Yamabe soliton for the general vector field V the scalar curvature r of M is

constant. Therefore by the use of (3.2) in the formula (3.21), we obtain

(£V∇)(Y, Z) = 0. (3.30)

Moreover taking the co-variant derivative of above relation in the direction of X results

(∇X£V )(Y, Z) = 0. (3.31)

With help of the foregoing equation in the commutation formula (3.22), yeilds

(£VR)(X, Y )Z = 0. (3.32)

Contracting the above condition over X with respect to an orthonormal basis provides

(£V S)(Y, Z) = 0. (3.33)

Putting Y = Z = ξ in (3.33) and by the use of (3.12) and (3.2) on (ξ, ξ) gives

κ(r − λ) = 0. (3.34)
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From the above condition we get two cases. case (i): if (r−λ) = 0 and κ 6= 0, then from

equation (3.2) we can say that V is Killing. case(ii): if κ = 0 and (r − λ) 6= 0. Since V

is Killing if and only if (r − λ) = 0, so κ = 0 in (3.10) gives

R(X, Y )ξ = µ{η(Y )hX − η(X)hY }. (3.35)

Taking the Lie-derivative of above condition along V gives

(£VR)(X, Y )ξ = µ {(£V η)Y hX + η(Y )(£V h)X − (£V η)XhY − η(X)(£V h)Y }

− R(X, Y )£V ξ. (3.36)

Contracting the above equation over X with respect to an orthonormal basis gives

(£V S)(Y, ξ) = µ

{
η(Y )

2n+1∑
i=1

g((£V h)ei, ei) +
2n+1∑
i=1

g(£V ei, ξ)g(hY, ei)− S(Y,£V ξ)

}
.

Putting Y = ξ in the above equation and from (3.33) we obtain

µ
2n+1∑
i=1

〈(£V h)ei, ei〉 = 0. (3.37)

In the above relaton if µ = 0 thenM becomes (0, 0)-space. If µ 6= 0, then
∑2n+1

i=1 g((£V h)ei, ei) =

0. Since κ = 0 calculating (£V S)(Y, Z) by the help of (3.15) finds

(£V S)(Y, Z) = (2(1− n) + nµ)(£V g)(Y, Z) + (2(n− 1) + n(2κ− µ))η(Y )(£V η)Z

+(2(n− 1) + n(2κ− µ))η(Z)(£V η)Y + (2(n− 1) + µ)(£V g)(hY, Z)

+(2(n− 1) + µ)g((£V h)Y, Z). (3.38)

Contracting the above equation over Y , Z and by the use of (3.2), (3.33) and r − λ 6= 0

provides

(2(1− n) + nµ)(2n+ 1) + (2(n− 1) + n(2κ− µ)) = 0. (3.39)
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Further substituting Y = Z = ξ in (3.38) gives

(2(1− n) + nµ) + (2(n− 1) + n(2κ− µ)) = 0. (3.40)

On solving (3.39) and (3.40) we get

2(1− n) + nµ = 0, (3.41)

2(n− 1) + µ = 0, (3.42)

which gives µ = 0, whivh contradicts to our assumption. So κ = 0 and so µ must be zero.

Theorem 3.0.3. Let M be a non-para-Sasakian (κ, µ)-paracontact manifold and admits

a Yamabe soliton then either V is Killing or M is locally isometric to the product of a flat

(n+ 1)-dimensional manifold and n-dimensional manifold of constant negative curvature

equal to −4.

3.1 Quasi Yamabe gradient soliton on non-para-Sasakian

(κ, µ)-paracontact manifold

Lemma 3.1.1. Let M be a non-para-Sasakian (κ, µ)-paracontact manifold. If g is a

Quasi Yamabe gradient soliton, then either r − λ = 0, or r = 2n(2n+1)(r−λ)
m

, or the soliton

is steady.

Proof. Here we study quasi Yamabe gradient soliton onM by exhibiting the relation (3.7)

as

∇X∇f =
1

m
g(X,∇f)∇f + (r − λ)X, (3.43)

and we compute

R(X, Y )∇f =
r − λ
m
{g(Y,∇f)X − g(X,∇f)Y } . (3.44)

Consdering g-trace of the condition (3.44) leads to get

Q∇f =
2n(r − λ)

m
∇f. (3.45)
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Taking covariant derivative of (3.45) along X gives

∇XQ∇f =
2n(r − λ)

m
∇X∇f. (3.46)

Operating Q on (3.43) gives

Q∇X∇f =
1

m
g(X,∇f)Q∇f + (r − λ)QX. (3.47)

In view of (3.46) and (3.47) we obtain

(∇XQ)∇f =
2n(r − λ)

m
∇X∇f −

1

m
g(X,∇f)Q∇f − (r − λ)QX. (3.48)

By virtue of (3.43) and (3.45) the preceeding relation transfer to

(∇XQ)∇f =
2n(r − λ)2

m
X − (r − λ)QX. (3.49)

As r is constant on M , tracing this over X leads to

(r − λ)

{
r − 2n(2n+ 1)(r − λ)

m

}
= 0. (3.50)

This completes the proof.

Theorem 3.1.2. If a non-para-Sasakian (κ, µ)-paracontact manifold M admits a quasi

Yamabe gradient soliton, then manifold M for κ > −1, either

1. M is a N(1−n
n

)-manifold,

or

2. M is locally isometric to the product of a flat (n + 1)-dimensional manifold and

n-dimensional manifold of constant negative curvature equal to −4,

or

3. f is constant on M .

Next, for κ < −1 either

1. µ = −4
n+1

or

2. f is constant on M .
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Proof. In view of the above lemma, we can come to the conclusion that, if a non-para

Sasakian (κ, µ)-para contact metric g is a quasi Yamabe gradient soliton, then either

r − λ = 0, or r = 2n(2n+1)(r−λ)
m

on M .

In (3.45) taking scalar product with ξ and by (3.12) we find(
κ− r − λ

m

)
(ξf) = 0. (3.51)

Case 1, if we suppose r−λ 6= 0 then r = 2n(2n+1)(r−λ)
m

, so in the above condition if ξf = 0,

then which in (3.43) for X = ξ and inner product with ξ results (r − λ) = 0. But this is

not possible as concern to our assumption. Therefore ξf must be non-zero and κ = r−λ
m

,

which finds r = 2n(2n + 1)κ. Comparing this with the expression of r in (3.17) leads to

get κ as κ = 1−n
n

+ µ. Further by taking the scalar product of (3.44) with ξ we obtain

g(R(X, Y )∇f, ξ) =
r − λ
m
{g(Y,∇f)η(X)− g(X,∇f)η(Y )} . (3.52)

Similarly considering an inner product of (3.10) with ∇f gives

g(R(X, Y )ξ,∇f) = κ {η(Y )g(X,∇f)− η(X)g(Y,∇f)}

+ µ {η(Y )g(hX,∇f)− η(X)g(hY,∇f)} .

Comparing these two equations provides

µ {η(Y )g(hX,∇f)− η(X)g(hY,∇f)} = 0, (3.53)

for X = ξ and Y ∈ D the expression reducess to µ(Y f) = 0. Since ξf 6= 0 by Lemma

[3.4.2] we can say that f is non constant and this finds µ = 0 for κ > −1 case. Hence

M is
(
1−n
n
, 0
)
-manifold. But for κ < −1, µ(Y f) = 0 leads to a contradiction. Hence for

κ < −1, r − λ must be zero.

Case 2, If r − λ = 0 and r 6= 2n(2n+1)(r−λ)
m

then equations (3.43), (3.44) and (3.45) turns

to

R(X, Y )∇f = 0, (3.54)

Q∇f = 0, (3.55)

∇X∇f =
1

m
g(X,∇f)∇f (3.56)
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and also

(∇XQ)∇f = 0. (3.57)

Considering an inner product of (3.54) with ξ, Y = ξ and in view of (3.10) shows

κ(η(X)(ξf)−Xf)− µ(hXf) = 0, (3.58)

and the expression (3.51) gives

κ(ξf) = 0. (3.59)

Because of (3.59) there arises three cases

First case: κ = 0 and ξf 6= 0, then κ > −1

Since ξf 6= 0 by the help of Lemma [3.4.2] we can say that f is never be a constant.

Therefore by (3.58) µ must be zero. So in this case we arrived at condition 2.

Next, for Second case: κ 6= 0 and ξf = 0.

The condition (3.58) provides

κ(Xf) + µ(hXf) = 0. (3.60)

Applying h on (3.60) and from (3.11) we deduce that

κ(hXf) + µ(κ+ 1)(Xf) = 0. (3.61)

Using (3.60) in (3.61) provides

(κ2 − µ2(κ+ 1))(hXf) = 0. (3.62)

For κ > −1

In the foregoing equation, we proceed with the assumption that f is non constant. This

implies κ2− µ2(κ+ 1) = 0. Clearly, κ = 0 if and only if µ = 0 so we find that µ must not

equal to zero.

Further in (3.19) (for κ > −1) putting Y = ∇f and X = ξ and from the use of (3.57)

and (3.18) we have that

(2n− 2 + µ)µ∇f = 0, (3.63)

which shows

2n− 2 + µ = 0. (3.64)
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Use of the above relation in calculation of (3.15) for Y = ∇f and from (3.55) we obtain

2− 2n+ nµ = 0. (3.65)

Solving the expressions (3.64) and (3.65) yeilds µ = 0. This contradicts our data condition

κ 6= 0. Hence the soliton function f must be a constant on M .

For κ < −1.

Similarlly, in (3.108) (for κ < −1) putting Y = ∇f and X = ξ and from use of (3.57)

and (3.18) we have that

(2(n+ 1) + µ)µ∇f = 0, (3.66)

this gives

(2(n+ 1) + µ) = 0. (3.67)

Use of the above relation in calculation of (3.16) for Y = ∇f and from (3.55) we obtain

2(1− n) + nµ = 0. (3.68)

Solving the above two relations yields µ = −4
n+1

for the condition κ 6= 0. Hence for µ 6= −4
n+1

the soliton function f is not a constant on M .

For third case: κ = 0 and ξf = 0, then κ > −1, which in (3.58) determines

µ(Xf) = 0, (3.69)

for all X ∈ D. This shows either f is constant or µ = 0 i.e., M is (0, 0)-space. Hence this

completes the proof.

3.2 Quasi Yamabe gradient soliton on K-paracontact

manifolds.

Theorem 3.2.1. Let M be a K-paracontact manifold with Qϕ = ϕQ and if M holds a

Yamabe soliton, then either r = −2n(2n+ 1) or f is a constant.

Suppose M is K-para contact manifold and satisifies (3.7), then form relation (3.43),

we find R(X, Y )∇f as

R(X, Y )∇f =
r − λ
m
{g(Y,∇f)X − g(X,∇f)Y }+ (Xr)Y − (Y r)X. (3.70)
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Contracting the above condition over X and Y leads to get

Q∇f =
2n(r − λ)

m
+ 2n∇r. (3.71)

On K-para contact manifold, as Qϕ = ϕQ from the relation (3.9) we can obtain

(∇ξQ)X = 0, (3.72)

ξr = 0. (3.73)

So by taking inner product of (3.71) with ξ yeilds{
1 +

(r − λ)

m

}
ξf = 0. (3.74)

Differentiating equation (3.71) along X and from (3.43) gives

∇XQ∇f =
2n(r − λ)

m2
g(X,∇f)∇f +

2n(r − λ)2

m
X + 2n(Xr)∇f. (3.75)

Operating Q on both side of (3.43) we get

Q∇X∇f =
2n(r − λ)

m2
g(X,∇f)∇f +

2n

m
g(X,∇f)∇r + (r − λ)QX. (3.76)

For X = ξ in (3.75) and (3.76) and from (3.72) we obtain

(r − λ)

{
r − λ
m

+ 1

}
= 0. (3.77)

Since m is non zero constant, so either r = λ or r − λ = −m. If r = λ, then in (3.43) for

X = ξ and scalar product with ξ gives ξf = 0. Again, in equation (3.43) taking an inner

product with ξ provides Xf = 0. Hence f is constant. Next, if we suppose r−λ 6= 0 and

r − λ = −m, which implies ξf 6= 0 and moreover the relations (3.75) and (3.76) provides

(∇XQ)∇f = −(r − λ)(2nX +QX), (3.78)

taking g-trace results r = −2n(2n+ 1). Hence the proof completed.
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3.3 Vanishing Cotton tensor on K-paracontact mani-

fold.

Proposition 3.3.1. Let M2n+1 be a K-paracontact manifold. Then M2n+1 has constant

scalar curvature if and only if C(X, ξ)ξ = 0.

Proof. Setting Z = ξ in (3.4) we get.

C(X, Y )ξ = g((∇XQ)ξ, Y )− g((∇YQ)ξ,X)− 1

4n
[(Xr)η(Y )− (Y r)η(X)]. (3.79)

Using equation (3.8) from Proposition [3.0.1] in the above equation, we get

C(X, Y )ξ = −4ng(ϕX, Y ) + g(QϕX, Y )− g(QϕY,X) (3.80)

− 1

4n
[(Xr)η(Y )− (Y r)η(X)].

Replacing X by ϕX and Y by ϕY in (3.80) we obtain,

C(ϕX,ϕY )ξ = 4ng(ϕX, Y ) + g(Qϕ2X,ϕY )− g(Qϕ2Y, ϕX) = 0, (3.81)

which gives

−4ng(ϕX, Y )− g(X,QϕY ) + g(QϕX, Y ) = 0. (3.82)

Admitting (3.82) in (3.80), we get,

(Xr)η(Y )− (Y r)η(X) = 0. (3.83)

Putting Y = ξ and taking X orthogonal to ξ in the above equation gives

Xr = 0. (3.84)

As M is paracontact manifold and X ∈ kerη which implies Xr = 0, ∀X ∈ TPM . So r is

constant

Conversly, if r is constant then substituting Y = ξ in the equation (3.80) gives C(X, ξ)ξ =

0.

Hence the proof.
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3.4 Parallel Cotton tensor on K-paracontact manifold

M 2n+1

Definition 3.4.1. In a Riemannian manifold M2n+1, if there is a Cotton tensor C such

that its covariant differenciation i.e., (∇WC) = 0 then the manifold is said to have parallel

Cotton tensor.

Theorem 3.4.1. Let M2n+1 be a K-paracontact metric manifold. Then M has parallel

Cotton tensor if and only if M2n+1 is an η-Einstein manifold and r = −2n(2n+ 1).

Proof. For a K-paracontact manifold M2n+1, the equation (3.4) for Y = ξ and Z = Y is

gives

C(X, ξ)Y = 2ng(ϕX, Y ) + g(QϕX, Y )− 1

4n
{(Xr)η(Y )}. (3.85)

Taking Y = ξ in the above equation, we get

C(X, ξ)ξ = − 1

4n
{(Xr)}. (3.86)

Using (3.86) in (3.79) we calculate the following relations

∇WC(X, ξ)ξ = − 1

4n
{g(∇WX,Dr) + g(X,∇WDr)}, (3.87)

C(∇WX, ξ)ξ = − 1

4n
{g(∇WX,Dr)}, (3.88)

C(X,ϕW )ξ = 4ng(ϕX,ϕW ) + g(QϕX,ϕW )− g(Qϕ2W,X) (3.89)

− 1

4n
{−(ϕWr)η(X)},

C(X, ξ)ϕW = 2ng(ϕX,ϕW ) + g(QϕX,ϕW ). (3.90)

Making use of above group of equations we obtain

(∇WC)(X, ξ)ξ = − 1

4n
{g(X,∇WDr)}+ 4ng(ϕX,ϕW ) + g(QϕX,ϕW ) (3.91)

−g(Qϕ2W,X)− 1

4n
{(ϕWr)η(X)}+ 2ng(ϕX,ϕW ) + g(ϕQX,ϕW ).

Putting W = ξ in the above equation, the parallel Cotton tensor becomes

(∇ξC)(X, ξ)ξ = − 1

4n
{g(X,∇ξDr)} = 0. (3.92)
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As £ξr = 0,∇ξDr = ∇Drξ = −ϕDr, which implies g(X,ϕDr) = 0, which gives Dr = 0

and so r is constant. Then the relation (3.91) becomes

6ng(ϕX,ϕW ) + g(QϕX,ϕW )− g(X,QW )− 2nη(X)η(W ) (3.93)

−g(X,QW )− 2nη(X)η(W ) = 0.

Replacing X by ϕX and W by ϕW in (3.93) and simplifying we get

g(QϕX,ϕW ) = −3ng(ϕX,ϕW ) +
1

2
g(QX,W ) + nη(X)η(W ). (3.94)

Feeding (3.94) in (3.93) we obtain

6ng(X,W ) + 6nη(X)η(W )− 3ng(X,W ) + 3nη(X)η(W ) +
1

2
g(X,ϕW ) (3.95)

+nη(X)η(W )− 4nη(X)η(W )− 2g(X,QW ) = 0.

Contracting the equation (3.95) over X and W we have r = −2n(2n + 1) and M is an

η-Einstein manifold.

Conversly, Suppose M is an η-Einstein manifold and r = −2n(2n + 1), which implies

QY = −2nY . And so this gives C(X, Y )Z = 0.

Hence the proof.

Lemma 3.4.2. Let M2n+1(n > 1) be a K-paracontact manifold. If M2n+1 satisifies (3.6),

then a and b are constant functions

Proof. From the condition (3.6) we have,

(∇XQ)Y = (Xa)Y + (Xb)η(Y )ξ + b {g(X,ϕY )ξ + η(Y )∇Xξ} . (3.96)

From η-Einstein condition, −2n = a+ b, so (Xa) = −(Xb).

Therefore

(∇XQ)Y = (Xa)Y − (Xa)η(Y )ξ + {−2n− a} {g(X,ϕY )ξ − η(Y )ϕX} . (3.97)

Contracting the above equation over X with respect to the orthonormal frame field we

get

2n+1∑
i=1

εi 〈(∇eiQ)Y, ei〉 =
2n+1∑
i=1

εi(eia)g(Y, ei) + (ξa) (3.98)
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where ξ = g(ei, ei), as ξr = 0 gives ξa = 0. But we know that
∑2n+1

i=1 〈(∇eiQ)Y, ei〉 =

1
2
(Y r) which gives

1

2
(Y r) = g(Y,Da) (3.99)

as Y r = 2, so (n− 1)Y a = 0 for n > 1 becomes Y a = 0, therefore a is constant.

This completes the proof.

3.5 Bach tensor on η-Einstein K-paracontact mani-

folds for (n > 1)

Bach tensor for 2n+ 1-dimensional manifold is

B(X, Y ) =
1

2n− 1

{
2n+1∑
i=1

εi(∇eiC)(ei, X, Y ) +
2n+1∑
i,j=1

εig(Qei, ej)W (X, ei, ej, Y )

}
.(3.100)

By lemma (3.4.2) we know that a and b are constants, and so the equation (3.96) becomes

(∇XQ)Y = b {g(X,ϕY )ξ − η(Y )ϕX} . (3.101)

simplifying the cotton tensor using (3.101)

C(X, Y )Z = bg(X,ϕY )η(Z)− bη(Y )g(ϕX,Z)− bg(Y, ϕX)η(Z) + bg(ϕY, Z)η(X).

Applying ∇W on both sides of the above equation gives

(∇WC)(X, Y )Z = b∇W {2g(X,ϕY )η(Z) + η(X)g(ϕY, Z) + η(Y )g(X,ϕZ)} (3.102)

= b2g(X, (∇Wϕ)Y )η(Z) + bg(X,ϕY )g(W,ϕZ) + bg((∇Wϕ)Y, Z)η(X)

+ bg(ϕY, Z)g(W,ϕX) + bg(X, (∇Wϕ)Z)η(Y ) + bg(X,ϕZ)g(W,ϕY ).
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On contracting above equation over X and W gives

2n+1∑
i=1

εi(∇eiC)(ei, Y )Z = b

{
2n+1∑
i=1

εig(ei, (∇eiϕ)Y )η(Z + g(ei, (∇eiϕ)Z)η(Y )

}
+ 2bg(ϕY, ϕZ)

= b

{
2n+1∑
i=1

εi 〈R(ξ, ei)Y, ei〉 η(Z) + g(R(ξ, ei)Z, ei)η(Y )

}
+ 2bg(ϕY, ϕZ)

= b {−S(Y, ξ)η(Z)− S(Z, ξ)η(Y )}+ 2bg(ϕY, ϕZ)

= b {4nη(Y )η(Z) + 2g(ϕY, ϕZ)} .

Now we caluculate the right hand side of the Bach tensor that is

2n+1∑
i,j=1

εig(Qei, ej)g(W (X, ei)ej, Y ) = −
2n+1∑
i,j=1

εig(Qei,W (X, ei)Y ).

By η-Einstein condition Qei = aei + bη(ei)ξ, which gives

2n+1∑
i,j=1

εig(Qei, ej)g(W (X, ei)ej, Y ) = −
2n+1∑
i,j=1

εig(ei + bη(ei)ξ,W (X, ei)Y ) (3.103)

=
2n+1∑
i=1

εig(W (X, ei)ei, Y ) + bg(W (X, ξ)ξ, Y ).

From the expression of Weyl tensor W we deduce the following relation

2n+1∑
i=1

εi 〈W (X, ei)ei, Y 〉 =
2n+1∑
i=1

εi(〈R(X, ei)ei, Y 〉 −
1

2n− 1
[g(Qei, ei)g(X, Y )

−g(QX, ei)g(ei, Y ) + g(ei, ei)g(QX, Y )− g(X, ei)g(Qei, Y )]

+
r

2n(2n− 1)
[g(ei, ei)g(X, Y )− g(X, ei)g(ei, Y )]) (3.104)

= S(X, Y )− 1

2n− 1
[rg(X, Y )− S(X, Y ) + (2n+ 1)S(X, Y )− S(X, Y )]

+
r

2n(2n− 1)
[(2n+ 1)g(X, Y )− g(X, Y )]

= 0.
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Taking inner product of W (X, ξ)ξ with Y we get,

〈W (X, ξ)ξ, Y 〉 = 〈R(X, ξ)ξ, Y 〉 − 1

2n− 1
(−2n 〈X, Y 〉+ 2nη(X)η(Y ) + 〈QX, Y 〉

+2nη(X)η(Y )) +
r

2n(2n− 1)
(〈X, Y 〉 − η(X)η(Y ))

= 〈ϕ∇Xξ, Y 〉+
2n

2n− 1
(X, Y )− 4n

2n− 1
η(X)η(Y ) +

r

2n(2n− 1)
(X, Y )

− r

2n(2n− 1)
η(X)η(Y )− 1

2n− 1
S(X, Y )

But 〈ϕX,ϕY 〉 = −〈X, Y 〉+ η(X)η(Y ), so we get

〈W (X, ξ)ξ, Y 〉 =
1

2n− 1

{(
1 +

r

2n

)
(X, Y )−

(
1 + 2n+

r

2n

)
η(X)η(Y )

}
(3.105)

− 1

2n− 1
S(X, Y )

Using the value of S(X, Y ) =
(
1 + r

2n

)
g(X, Y )−

(
1 + 2n+ r

2n

)
η(X)η(Y ) in (3.105) gives

〈W (X, ξ)ξ, Y 〉 = 0. (3.106)

Therefore if g is Bach flat,

B(Y, Z) = 0 =
b

2n− 1
{4nη(Y )η(Z) + 2g(ϕY, ϕZ)} . (3.107)

For Y = Z = ξ, we obtain b = 0.

Hence we can state this result:

Theorem 3.5.1. Let M2n+1 be an η-Einstein K-paracontact manifold. If it has Bach flat

then M2n+1 is an Einstein manifold.
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3.6 (κ, µ)-paracontact manifold, for κ 6= −1.

In this section we deal with paracontact (κ, µ)-manifolds such that κ > −1 and κ < −1.

First for κ > −1, using (3.15) we calculate,

(∇XQ)Y = g(2(n− 1) + µ)(∇Xh)Y (3.108)

+(2(n− 1) + n(2κ− µ)){(∇Xη)Y ξ + η(Y )∇Xξ}

Now considering the Cotton tensor on (κ, µ)-paracontact manifold as from (3.15), r is

constant, which implies

C(X, Y )Z = g((∇XQ)Y, Z) + g((∇YQ)X,Z). (3.109)

Using equation (3.108) we obtain

C(X, Y )Z = (2(n− 1) + µ){−(1 + κ)(2g(X,ϕY )η(Z) + η(X)g(ϕY,X)− η(Y )g(ϕX,Z))

+(1 + µ)(η(X)g(ϕhY, Z)− η(Y )g(ϕhX,Z))}

+2(2(n− 1) + n(2κ− µ))g(X,ϕY )η(Z) (3.110)

+(2(n− 1) + n(2κ− µ)){η(Y )g(−ϕX + ϕhX,Z)− η(X)g(−ϕY + ϕhY, Z)}.

Replacing X, Y, Z by ϕX,ϕY, ϕZ respectively in the above equation then we get

C(ϕX,ϕY )ϕZ = 0.

Similarly for κ < −1 we have from (3.16)

(∇XQ)Y = g(2(n− 1) + µ)(∇Xh)Y + (2(n+ 1) + n(2κ− µ)){(∇Xη)Y ξ + η(Y )∇Xξ}.
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Now consider the Cotton tensor with r is constant and substitute (∇XQ)Y and (∇YQ)X

values in Cotton tensor then we get

C(X, Y )Z = g((∇XQ)Y, Z) + g((∇YQ)X,Z) (3.111)

= (2(n+ 1) + µ){−(1 + κ)(2g(X,ϕY )η(Z) + η(X)g(ϕY,X)− η(Y )g(ϕX,Z))

+(1 + µ)(η(X)g(ϕhY, Z)− η(Y )g(ϕhX,Z))}

+2(2(n+ 1) + n(2κ− µ))g(X,ϕY )η(Z) (3.112)

+(2(n+ 1) + n(2κ− µ)){η(Y )g(−ϕX + ϕhX,Z)− η(X)g(−ϕY + ϕhY, Z)}.

Replacing X, Y and Z by ϕX,ϕY and ϕZ respectively in the above equation,

then C(ϕX,ϕY )ϕZ = 0.

Form the above two cases, when κ 6= −1 we obtain the following result;

Proposition 3.6.1. On a (κ, µ)-paracontact metric manifold for κ 6= −1 the projec-

tion of the image of Cotton tensor C/ϕTP (M2n+1)XϕTP (M2n+1) in ϕTp(M
2n+1) is zero, i.e.,

C(ϕX,ϕY )ϕZ = 0, ∀X, Y, Z ∈ TP (M2n+1).

3.7 Vanishing Cotton tensor on (κ, µ)-paracontact man-

ifold, for κ 6= −1

In this section we deal with paracontact (κ, µ)-manifolds such that κ < −1 and κ > −1

then we have the Cotton tensor C(X, Y )Z = 0.
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For κ > −1, replacing Z by ξ in equation (3.112) then we get

C(X, Y )ξ = 0 = (2(n− 1) + µ){−(1 + κ)(2g(X,ϕY ))}+ 2(2(n− 1)

+n(n(2κ− µ))g(X,ϕY )

=⇒ (2(n− 1) + µ)(1 + κ) + (2(n− 1) + n(2n− µ)) = 0 (3.113)

Similarly, admitting ξ in the place of X in equation (3.112) gives,

C(ξ, Y )Z = 0 = (2(n− 1) + µ){−(1 + κ)g(ϕY, Z) + (1 + µ)g(ϕhY, Z)} (3.114)

+(2(n− 1)n(2κ− µ)){g(ϕY, Z)− g(ϕhY, Z)}.

Symmetrizing the above equation and replacing Y by hY we obtain

(1 + κ){(2(n− 1) + µ)(1 + µ)− (2(n− 1) + n(2κ− µ)} = 0.

From equation (3.113) it gives,

(1 + κ){(2(n− 1) + µ)(1 + µ)− (2(n− 1) + µ)(1 + κ)} = 0.

=⇒ (1 + κ)(µ− κ)(2(n− 1) + µ) = 0.

The above calculations leads this result:

Case(i) If µ 6= κ then (2(n− 1) + µ) = 0. Therefore M2n+1 is η-Einstein.

Case(ii) If µ = κ then from equation (3.113) µ = κ = 0 or µ = κ = 0. Therefore we have

the following result.

Lemma 3.7.1. Let M2n+1 be a (κ, µ)-paracontact manifold, admitting vanishing Cotton

tensor for κ > −1 then we have

i). If µ 6= κ then M2n+1 is an η-Einstein manifold,
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ii). If (2(n− 1) + µ) 6= 0 then µ = κ = 0.

Next for κ < −1, the Cotton tensor is

C(X, Y )Z = (2(n+ 1) + µ){(∇Xη)Y − (∇Y η)X}+ (2(n+ 1) + n(κ− µ)){(∇Xη)Y η(Z)

−(∇Xη)Xη(Z)}+ (2(n− 1) + n(2κ− µ)){η(Y )∇Xξ − η(X)∇Y ξ}

= (2(n+ 1) + µ){−(1 + κ)2g(X,ϕY )η(Z) + η(X)g(ϕY, Z)− η(Y )g(ϕX,Z)}

+(1 + µ)(η(X)g(ϕhX,Z)− η(Y )g(ϕhX,Z))

+2(2(n− 1) + n(2κ− µ))g(X,ϕY )η(Z) (3.115)

+(2(n− 1) + n(2κ− µ){η(Y )g(−ϕX + ϕhX,Z)− η(X)g(−ϕY + ϕhY, Z)}.

Substitute Z by ξ in the above equation become

C(X, Y )ξ = 0 = {(2(n+ 1) + µ)(1 + κ)− (2(n− 1) + n(2κ− µ)} (3.116)

Replace X by ξ in the equation (3.115) gives

C(ξ, Y )Z = 0 = (−2(n− 1) + µ)(1 + κ)g(ϕY, Z) (3.117)

+(2(n− 1) + µ)(1 + µ)g(ϕhY, Z)

+(2(n− 1) + n(2κ+ µ)){g(ϕY, Z)− g(ϕhY, Z)}.

On symmetrizing the above equation we have

(1 + κ)(2(n+ 1) + µ)(µ− κ) = 0. (3.118)

Therefore we can state the following lemma
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Lemma 3.7.2. Let M2n+1 be a (κ, µ) paracontact metric manifold for κ < −1, if M2n+1

has vanishing Cotton tensor for µ 6= κ then M2n+1 is an η- Einstein manifold.

From case (i) of lemma (3.7.1) and lemma (3.7.2) we get the following result.

Theorem 3.7.3. Let M2n+1 be a (κ, µ)-paracontact manifold for κ 6= −1. If M2n+1 has

vanishing Cotton tensor for µ 6= κ, then M2n+1 is an η-Einstein manifold.

3.8 Conclusion

In this chapter, we studied the Yamabe and Quasi Yamabe soliton on (κ, µ)-paracontact

manifold and K-paracontact manifold and K-paracontact manifold admitting parallel

Cotton tensor, vanishing Cotton tensor and the Bach flatness on K-paracontact manifold.

Also we studied vanishing Cotton tensor on (κ, µ)-paracontact manifold for both κ > −1

and κ < −1. Main conclusions that can be drawn are:

• Let M be a non-para-Sasakian (κ, µ)-paracontact manifold and admits a Yamabe

soliton then either V is Killing orM is locally isometric to the product of a flat (n+

1)-dimensional manifold and n-dimensional manifold of constant negative curvature

equal to −4.

• If a non-para-Sasakian (κ, µ)-paracontact manifold M admits a quasi Yamabe gra-

dient soliton, then for κ > −1, either

a. M is a N(1−n
n

)-manifold,

or

b. M is locally isometric to the product of a flat (n+ 1)-dimensional manifold and
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n-dimensional manifold of constant negative curvature equal to −4,

or

c. f is constant on M .

Next, for κ < −1 either

a. µ = −4
n+1

or

b. f is constant on M .

• Let M be a K-paracontact manifold with Qϕ = ϕQ and if M holds a Yamabe

soliton, then either r = −2n(2n+ 1) or f is a constant.

• Let M be a K-paracontact manifold. Then M has constant scalar curvature if and

only if C(X, ξ)ξ = 0.

• Let M be a K-paracontact metric manifold. Then M has parallel Cotton tensor if

and only if M is an η-Einstein manifold and r = −2n(2n+ 1).

• Let M be an η-Einstein K-paracontact manifold. If it is Bach flat then M is an

Einstein manifold.

• On a (κ, µ)-paracontact metric manifold for κ 6= −1 the projection of the image

of Cotton tensor C/ϕTP (M)XϕTP (M) in ϕTp(M) is zero, i.e., C(ϕX,ϕY )ϕZ = 0,

∀X, Y, Z ∈ TP (M).

• Let M be a (κ, µ)-paracontact manifold for κ 6= −1. If M has vanishing Cotton
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tensor for µ 6= κ, then M is an η-Einstein manifold.



Chapter 4

Para- Kenmotsu Manifolds

4.1 Introduction

Para-Kenmotsu manifold known not only as a special case of almost para-contact struc-

tures but also as an analogue of para-Sasakian manifold and closely related to almost

product structure.

The notion of local symmetry of a Riemannian manifold has been weakend by many

authors in several ways to a different extent. As a weaker version of local symmetry,

Takahashi [77] introduced the notion of locally ϕ-symmetry on a Sasakian manifold. Gen-

eralizing the notion of ϕ-symmetry, De [30] introduced the notion of ϕ-recurrent Sasakian

manifold. In the context of contact geometry the notion of ϕ-symmetry is introduced and

studied by Boeckx, Buecken and Vanhecke [7] with several examples. Recently Chaubey

and Prasad worked on generalized ϕ-recurrent Kenmotsu manifolds. Ventatesha et al [86]

introduced and studied quasi generalized ϕ- recurrent Sasakian manifold. In this chap-

ter, we have extended the notation of quasi ϕ-recurrent structure called extended quasi

ϕ-recurrent structure on para-Kenmotsu manifolds. Also in this chapter we study the

85
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para-Kenmotsu manifolds with C-Bochner curvature tensor.

A Riemannian manifold M is said to be pseudosymmetric in the sense of Deszcz [32]

if

R(X, Y ) ·R(U, V )Z = LR((X ∧ Y ) ·R(U, V )Z), (4.1)

holds on UR = {X ∈M |R− r
n(n−1)G 6= 0 at x}, where G is the (0, 4) tensor defined by

G(X1, X2, X3, X4) = g((X1∧X2)X3, X4), LR is some smooth function on UR and (X ∧Y )

is an endomorphism defined by

(X ∧ Y )Z = g(Y, Z)X − g(X,Z)Y. (4.2)

A Riemannian manifold M is said to be C-Bochner pseudosymmetric [26] if

R(X, Y ) ·B(U, V )Z = LB((X ∧ Y ) ·B(U, V )Z), (4.3)

holds on the set UB = {x ∈M : B 6= 0 at x}, where LB is some function on UB and B

is the C-Bochner curvature tensor.

C-Bochner curvature tensor on an almost contact metric manifold was defined by
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Matsumoto and Chuman [54] and is given by

B(X, Y )Z = R(X, Y )Z +
1

2(n+ 2)
{S(X,Z)Y − S(Y, Z)X + g(X,Z)QY

− g(Y, Z)QX + S(φX,Z)φY − S(φY, Z)φX + g(φX,Z)QφY

− g(φY, Z)QφX + 2S(φX, Y )φZ + 2g(φX, Y )QφZ − S(X,Z)η(Y )ξ

+ S(Y, Z)η(X)ξ − η(X)η(Z)QY + η(Y )η(Z)QX}

− τ + 2n

2(n+ 2)
{g(φX,Z)φY − g(φY, Z)φX + 2g(φX, Y )φZ}

− τ − 4

2(n+ 2)
{g(X,Z)Y − g(Y, Z)X}+

τ

2(n+ 2)
{g(X,Z)η(Y )ξ

− g(Y, Z)η(X)ξ + η(X)η(Z)Y − η(Y )η(Z)X}, (4.4)

where τ = r+2n
2(n+2)

, Q is the Ricci operator i.e. g(QX, Y ) = S(X, Y ) and r is the scalar

curvature of the manifold.

In a para-Kenmotsu manifold, we have the following formulas (see [103]):

S(X, ξ) = −(n− 1)η(X) (4.5)

Qξ = −(n− 1)ξ (4.6)

g(R(X, Y )Z, ξ) = η(R(X, Y )Z) = g(X,Z)η(Y )− g(Y, Z)η(X) (4.7)

R(ξ,X)Y = η(Y )X − g(X, Y )ξ (4.8)

R(X, Y )ξ = η(X)Y − η(Y )X; when X is orthogonal to ξ (4.9)

R(X, ξ)Y = g(X, Y )ξ − η(Y )X, (4.10)

Ric(X, ξ) = −2nη(X) (4.11)

(∇WR)(X, Y )ξ = g(W,X)Y − g(W,Y )X −R(X, Y )W. (4.12)
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where S is the Ricci tensor and R is the Riemannian curvature tensor.

Using (4.5)-(4.9), one can get

B(X, ξ)Z = H{η(Z)X − g(X,Z)ξ}, (4.13)

B(X, Y )ξ = H{η(X)Y − η(Y )X}, (4.14)

B(ξ, Y )Z = H{g(Y, Z)ξ − η(Z)Y }, (4.15)

η(B(X, Y )Z) = H{g(Y, Z)η(X)− g(X,Z)η(Y )}, (4.16)

where H is a constant i.e., H = {1 + n−1
n+2

+ τ−4
2(n+2)

− τ
2(n+2)

}.

Definition 4.1.1. A (2n+ 1)-dimensional Sasakian manifold M is said to be η-Einstein

if its Ricci tensor Ric is of the form

Ric(X, Y ) = ag(X, Y ) + bη(X)η(Y ) (4.17)

for any vector fields X and Y where a and b are smooth functions. If b = 0, then the

manifold M is an Einstein manifold.

4.2 Extended Quasi Generalized ϕ-recurrent Para-Kenmotsu

Manifolds

In this section we study extended quasi generalized ϕ-recurrent Para-Kenmotsu manifolds

Definition 4.2.1. A Kenmotsu manifold M is said to be extended quasi generalized

ϕ-recurrent manifold if its curvature tensor R satisfies the condition

ϕ2((∇WR)(X, Y )Z) = Π1(W )ϕ2R(X, Y )Z + Π2(W )ϕ2F (X, Y )Z, (4.18)

for all X, Y, Z ∈ TM, where Π1 and Π2 are two non-vanishing 1-forms such that Π1(X) =

g(X,χ1), Π2(X) = g(X,χ2) and the tensor F is defined by

F (X, Y )Z =g(Y, Z)X − g(X,Z)Y + η(Y )η(Z)X − η(X)η(Z)Y

+ g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ, (4.19)



Chapter 4 Para- Kenmotsu Manifolds 89

for all X, Y, Z ∈ TM . Here χ1 and χ2 are vector fields associated with 1-forms Π1 and

Π2 respectively. Especially, if the 1-form Π2 vanishes, then (4.18) turns into the notion of

ϕ-recurrent manifold.

Now we start this section with the following:

Theorem 4.2.1. Let M be a para-Kenmotsu manifold. If M is an extended quasi ϕ-

recurrent manifold, then M is super generalized Ricci-recurrent manifold.

Proof. Let us consider an extended quasi generalized ϕ-recurrent Kenmotsu manifold.

Then by the use of (1.87), we have from (4.18) that

(∇WR)(X, Y )Z − η((∇WR)(X, Y )Z)ξ =Π1(W ) {R(X, Y )Z − η(R(X, Y )Z)ξ}

+ Π2(W ) {F (X, Y )Z − η(F (X, Y )Z)ξ} .

(4.20)

The above equation can also be written as

g((∇WR)(X, Y )Z,U)− η((∇WR)(X, Y )Z)η(U) = Π1(W ) {g(R(X, Y )Z,U)− η(R(X, Y )Z)η(U)}

+Π2(W ) {g(F (X, Y )Z,U)− η(F (X, Y )Z)η(U)} .

(4.21)

Applying X = U = ei in (4.21) and taking
∑2n+1

i=1 , and then using (4.19), we obtain

(∇WRic)(Y, Z)−
2n+1∑
i=1

η((∇WR)(ei, Y )Z)η(ei) =Π1(W ) {Ric(Y, Z)− η(R(ξ, Y )Z)}

+ Π2(W ) {(2n− 1)g(Y, Z) + (2n+ 1)η(Y )η(Z)} .

(4.22)

The second term of left hand side in above relation becomes
2n+1∑
i=1

η((∇WR)(X, Y )Z)η(ei) = g((∇WR)(ξ, Y )Z, ξ). (4.23)

As a result of (4.10), (4.12) and g((∇WR)(X, Y )Z,U) = −g((∇WR)(X, Y )U,Z) we get

g((∇WR)(ξ, Y )Z, ξ) = 0. (4.24)
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Considering (4.23) and (4.24), it follows from (4.22) that

(∇WRic)(Y, Z) =Π1(W )S(Ric, Z) + {Π1(W ) + (2n− 1)Π2(W )} g(Y, Z)

+ {Π2(W )(2n+ 1)− Π1(W )} η(Y )η(Z), (4.25)

showing that M is super generalized Ricci-recurrent manifold. Taking Z = ξ in (4.25)

and then using (4.11), we obtain

(∇WRic)(Y, ξ) = 2n {2Π2(W )− Π1(W )} η(Y ). (4.26)

Now differentiating (4.11) and we obtain

(∇WRic)(Y, ξ) = −2ng(Y,W )−Ric(Y,W ). (4.27)

On comparing (4.26) and (4.27) we get,

Ric(Y,W ) = −2n[2Π2(W )− Π1(W )]η(Y )− 2ng(Y,W ). (4.28)

Plugging Y = ξ in the above equation and then using (4.12) we have,

2Π2(W )− Π1(W ) = 0. (4.29)

On using (4.29) in (4.28) we obtain,

Ric(Y,W ) = −2ng(Y,W ). (4.30)

Now from (4.28) and (4.30) we can state the following;

Theorem 4.2.2. If a para-Kenmotsu manifold M is an extended quasi ϕ- recurrent man-

ifold, then M is an Einstein manifold. Moreover, the associated vector fields χ1 and χ2

of the 1-forms Π1 and Π2 respectively are co-directional.

If we take Π2 = 0 in (4.18), then by the above theorem we conclude the following;

Corollary 4.2.3. Every generalized ϕ-recurrent para-Kenmotsu manifold is an Einstein

manifold.

Corollary 4.2.4. Every locally ϕ-symmetric para-Kenmotsu manifold is an Einstein

manifold.
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Let us consider (4.20) and changing W,X, Y cyclically and adding them, we get by

the view of Bianchi identity and (4.29) that

Π2(W ) {2g(R(X, Y )Z,U − 2η(R(X, Y )Z)η(U) + g(F (X, Y )Z,U)− η(F (X, Y )Z)η(U)}

+Π2(X) {2g(R(Y,W )Z,U)− 2η(R(Y,W )Z)η(U) + g(F (Y,W )Z,U)− η(F (Y,W )Z)η(U)}

Π2(Y ) {2g(R(W,X)Z,U)− η(R(W,X)Z)η(U) + g(F (W,X)Z,U)− η(F (W,X)Z)η(U)} = 0.

Contracting the above relation over X and U and using (4.19), we get

Π2(W ) {2Ric(Y, Z) + (2n+ 1)g(Y, Z) + (2n− 1)η(Y )η(Z)}+ 2Π2(R(Y,W )Z) + g(W,Z)B(Y )

g(Y, ZΠ2B(W ) + η(W )η(Z)B(Y )− η(Y )η(Z)Π2(W ) + {g(W,Z)η(Y )− g(Y, Z)η(W )}Π2(ξ)

+Π2(Y ) {−2Ric(Y, Z)− (2n+ 1)g(W,Z)− (2n− 1)η(W )η(z)} = 0.

(4.31)

Again contracting above equation (4.31) over Y and Z we have

Ric(W,χ2) =

{
2r + 2n(2n− 1)

r

}
g(W,χ2)−

(2n+ 1)

2
η(W )η(χ2). (4.32)

From this we can conclude the following ;

Theorem 4.2.5. In an extended quasi generalized ϕ-recurrent para-Kenmotsu manifold,

the Ricci tensor Ric and vector field χ2 are related by the equation (4.32).

(∇WR)(X, Y )ξ = g(W,X)Y − g(W,Y )X −R(X, Y )W. (4.33)

Taking inner product of (4.12) with ξ and using the relation η(R(X, Y )Z) = −η(X)g(Y, Z)+

η(Y )g(X,Z), we obtain

η((∇WR)(X, Y )ξ) = 0. (4.34)
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Considering (4.34) and (4.10) in (4.20), we reach at

(∇WR)(X, Y )ξ = {A(W )− 2B(W )} {η(X)Y − η(Y )X} . (4.35)

As a result of (4.33) and (4.35), we obtain

R(X, Y )W = g(W,X)Y − g(W,Y )X − (A(W )− 2B(W )) {η(X)Y − η(Y )X} . (4.36)

Making use of (4.29) in the above equation, we obtain

R(X, Y )W = g(W,X)Y − g(W,Y )X, (4.37)

for all X, Y,W ∈ TM.

Theorem 4.2.6. An extended quasi generalized concirrcular ϕ-recurrent para-Kenmotsu

manifold M is of constant sectional curvature −1.

Now we consider an extended quasi generalized concircular ϕ reccurent para-Kenmotsu

manifold M . Then from (4.18), we have

ϕ2((∇WD)(X, Y )Z) = A(W )ϕ2D(X, Y )Z +B(W )ϕ2F (X, Y )Z, (4.38)

where A,B and F are defined as in (4.18) and (4.19), and D is a concircular curvature

tensor and is defined by

D(X, Y )Z = R(X, Y )Z − r

2n(2n+ 1)
{g(Y, Z)X − g(X,Z)Y } . (4.39)

Then by the virtue of (1.87) we get

(∇WD)(X, Y )Z − η((∇WD)(X, Y )Z)ξ =Π1(W ) {D(X, Y )Z − η(D(X, Y )Z)ξ}

+ Π2(W ) {F (X, Y )Z − η(F (X, Y )X)ξ} .
(4.40)
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This can also we write it as

g((∇WD)(X, Y )Z,U)− η((∇WD)(X, Y )Z)η(U) = Π1(W ) {g(D(X, Y )Z,U)− η(D(X, Y )Z)η(U)}

+Π2(W ) {g(F (X, Y )Z,U)− η(F (X, Y )Z)η(U)} .
(4.41)

Contracting the above equation over X and U and using (4.19), (4.24) and (4.39), we

have

(∇WRic)(Y, Z) =Π1(W )Ric(Y, Z)

+ (2n− 1)

[
dr(W )

2n(2n+ 1)
−
(

r

2n(2n+ 1)
− 1

2n− 1

)
Π1(W ) + Π2(W )

]
g(Y, Z)

−
[(

1 +
r

2n(2n+ 1)

)
Π1(W )− dr(W )

2n(2n+ 1)
− (2n+ 1)Π2(W )

]
η(Y )η(X).

(4.42)

The above equation can also be written as

∇S = Π1 ⊗Ric+ ψ ⊗ g + β ⊗ η ⊗ η, (4.43)

where

ψ(W ) = (2n− 1)

[
dr(W )

2n(2n+ 1)
−
(

r

2n(2n+ 1)
− 1

2n− 1

)
Π1(W ) + Π2(W )

]
(4.44)

β(W ) = −
[(

1 +
r

2n(2n+ 1)

)
Π1(W )− dr(W )

2n(2n+ 1)
− (2n+ 1)Π2(W )

]
(4.45)

From the above we can state the following.

Theorem 4.2.7. Let M be a para-Kenmotsu manifold. If M is an extended quasi ϕ-

recurrent manifold, then M is super generalized Ricci-recurrent manifold.

Plugging Y = Z = ξ in (4.42) and using (4.5), we have

dr(W ) = [2n(2n+ 1) + r]Π1(W )− 2(n+ 1)(2n+ 1)Π2(W ). (4.46)

From this we can state the following theorem
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Theorem 4.2.8. Let M be a para-Kenmotsu manifold and if M is an extended quasi ϕ-

recurrent manifold, then the 1-forms Π1 and Π2 are related by the equation (4.46).

Corollary 4.2.9. In an extended quasi generalized concircularly ϕ-recurrent Para-Kenmotsu

manifold with non-zero constant scalar curvature, the associated 1-forms Π1 and Π2 are

related by

[2n(2n+ 1) + r]Π1 − 2(n+ 1)(2n+ 1)Π2 = 0. (4.47)

4.3 Example :-

In the present section we give an example of a extended quasi generalized ϕ-recurrent para-

Kenmotsu manifold. We consider three-dimensional manifoldM = {(x, y, z) ∈ R3, z 6= 0}

with the cartesian coordinates (x, y, z) and the vector fields:

∂1 = ϕ∂2, ∂2 = ϕ∂1, ϕ∂3 = 0, (4.48)

where

∂1 =
∂

∂x
, ∂2 =

∂

∂y
, ∂3 = − ∂

∂z
. (4.49)

The 1-form η = dz defines an almost paracontact structure on M with characteristic

vector field ξ = ∂3 = − ∂
∂z
. Let g be a pseudo-Riemannian metric defined by

g(∂1, ∂1) = 1, g(∂2, ∂2) = −1, g(∂3, ∂3) = 1 (4.50)

g(∂1, ∂2) = 0, g(∂1, ∂3) = 0, g(∂2, ∂3) = 0.

Then using the linearity of η and g we have

η(∂3) = 1, ϕ2W = W − η(W )∂3, (4.51)

g(ϕW,ϕU) = −g(W,U) + η(W )η(U), (4.52)
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for any U,W ∈ TM. Let ∇ be the Levi-Civita connection with respect to the metric g.

Using Koszul formula, we have:

∇∂1∂1 = −∂3, ∇∂1∂2 = 0, ∇∂1∂3 = ∂1,

∇∂2∂1 = 0 ∇∂2∂2 = ∂3, ∇∂2∂3 = ∂2,

∇∂3∂1 = ∂1, ∇∂3∂2 = ∂2, ∇∂3∂3 = 0.

From the above, the manifold under consideration is a paraKenmotsu manifold. With the

help of the above results, we can calculate the components of the curvature tensor R as

follows;

R(∂2, ∂1)∂1 = −∂2, R(∂1, ∂2)∂2 = ∂1, R(∂1, ∂2)∂3 = 0,

R(∂3, ∂1)∂1 = ∂3, R(∂1, ∂3)∂2 = 0, R(∂1, ∂3)∂3 = −∂1

R(∂2, ∂3)∂1 = 0, R(∂3, ∂2)∂2 = −∂3, R(∂2, ∂3)∂3 = −∂2.

Since ∂1, ∂2, ∂3 forms a basis of the three-dimensional para-Kenmotsu manifold, vector

fields X, Y, Z ∈ TM can be written as

X = a1 + ∂1 + b1∂2 + c1∂3

Y = a2 + ∂1 + b2∂2 + c2∂3

Z = a3 + ∂1 + b3∂2 + c3∂3
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where ai, bi, ci ∈ R+(the set of all positive real numbers), i = 1, 2, 3. Then

R(X, Y )Z = [b3(a1b2 − a2b1) + c3(c1a2 − a1c2)]∂1 (4.53)

+[a3(a1b2 − b1a2) + c3(c1b2 − b1c2)]∂2

+[a3(a2c1 − c2a1) + b3(c2b1 − b2c1)]∂3,

and

F (X, Y )Z = [b3(b1a2 − a1b2) + 2c3(c2a1 − a2c1)]∂1 (4.54)

+[a3(a2b1 − b2a1) + 2c3(c2b1 − b2c1)]∂2

+2[a3(c1a2 − a1c2) + b3(b1c2 − c1b2)]∂3.

From (4.53), we have the following

(∇∂1R)(X, Y )Z ={b3(c2b1 − b2c1) + 2a3(c1a2 − a1c2)}∂1 − 2a1b2c3∂2

+ {2b3(a2b1 − a1b2) + 2c3(a1c2 − c1a2)}∂3, (4.55)

(∇∂2R)(X, Y )Z ={b3(c2b1 − b2c1) + 2a3(c1a2 − a1c2)}∂2

+ {2c3(c1b2 − b1c2) + 2a3(a1b2 − b1a2)}∂3, (4.56)

(∇∂3R)(X, Y )Z =2a3(b1a2 − b2a1)∂2 − 2a1b2b3∂1

+ {2b3(c1b2 − b1c2) + 2a3(a1c2 − c1a2)}∂3. (4.57)

Now considering (4.53) and (4.54) we have,

ϕ2(R(X, Y )Z) = γ1∂1 + γ2∂2, and ϕ2(F (X, Y )Z) = δ1∂1 + δ2∂2, (4.58)
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where

γ1 = [b3(a1b2 − a2b1) + c3(c1a2 − a1c2)],

γ2 = [a3(a1b2 − b1a2) + c3(c1b2 − b1c2)],

δ1 = [b3(b1a2 − a1b2) + 2c3(c2a1 − a2c1)],

δ2 = [a3(a2b1 − b2a1) + 2c3(c2b1 − b2c1)].

In the view of (4.55), (4.56) and (4.57) we obtain

ϕ2(∇∂iR(X, Y )Z) = mi∂1 + ni∂2 for i = 1, 2, 3 (4.59)

namely one parts

m1 = {b3(c2b1 − b2c1) + 2a3(c1a2 − a1c2)},

n1 = −2a1b2c3,

m2 = 0,

n2 = {b3(c2b1 − b2c1) + 2a3(c1a2 − a1c2)},

m3 = −2a1b2b3,

n3 = 2a3(b1a2 − b2a1).

Now let us consider the 1-form as

Π1(∂1) =
m1δ2 − n1δ1
δ2γ1 − γ2δ1

, Π2(∂1) =
γ2m1 − γ1n1

δ1γ2 − δ2γ1
, (4.60)

Π1(∂2) =
δ1n2

γ2δ1 − γ1β2
, Π2(∂2) =

γ1n2

γ1δ2 − γ2δ1
, (4.61)

Π1(∂3) =
δ2m3 − δ1n3

γ1δ2 − δ1γ2
, Π2(∂3) =

γ2m3 − γ1n3

δ1γ2 − γ1δ2
, (4.62)
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where m1δ2−n1δ1 6= 0, γ2m1−γ1n1, δ1n2 6= 0, γ1n2 6= 0, δ2m3−δ1n3 6= 0, γ2m3−γ1n3 6= 0

and γ1δ2 − δ1γ2 6= 0. From (4.38), we obtain

ϕ2 = (∇∂iR(X, Y )Z) = Π1(∂i)ϕ
2R(X, Y )Z + Π2(∂i)ϕ

2F (X, Y )Z (4.63)

for i = 1, 2, 3. By the view of (4.60), (4.61), (4.62) and (4.58), this shows that the manifold

satisified (4.63). Hence the manifold is a 3-dimensional extended quasi generalized ϕ-

recurrent para-Kenmotsu manifold, which is not ϕ-recurrent.

4.4 C-Bochner Pseudosymmetric para-Kenmotsu man-

ifolds

A n-dimensional para-Kenmotsu manifold M is said to be C-Bochner pseudosymmetric

if

(R(X, Y ) ·B)(U, V )W = LB[((X ∧ Y ) ·B)(U, V )W ], (4.64)

holds on the set UB = {x ∈M : B 6= 0} at x, where LB is some function on UB.

Let M be a C-Bochner pseudosymmetric para-kenmotsu manifold. Then from (4.64)

we have

(R(X, ξ) ·B)(U, V )W = LB[((X ∧g ξ) ·B)(U, V )W ]. (4.65)

Now from (4.8), the left-hand side of equation (4.65) becomes
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{η(B(U, V )W )ξ − g(X,B(U, V )W )ξ − η(U)B(X, V )W

+ g(X,U)B(ξ, V )W − η(V )B(U,X)W + g(X, V )B(U, ξ)W

− η(W )B(U, V )X + g(X,W )B(U, V )ξ} = 0.

which implies

{g(ξ, B(U, V )W )ξ − g(X,B(U, V )W )ξ − η(U)B(X, V )W

+ g(X,U)B(ξ, V )W − η(V )B(U,X)W + g(X, V )B(U, ξ)W

− η(W )B(U, V )X + g(X,W )B(U, V )ξ} = 0. (4.66)

Using (4.2), the right hand side of equation (4.65) turns into

LB{g(ξ, B(U, V )W )ξ − g(X,B(U, V )W )ξ − η(U)B(X, V )W

+ g(X,U)B(ξ, V )W − η(V )B(U,X)W + g(X, V )B(U, ξ)W

− η(W )B(U, V )X + g(X,W )B(U, V )ξ} = 0. (4.67)

By virtue of (4.66) and (4.67), (4.65) give rise to

(1− LB){g(ξ, B(U, V )W )ξ − g(X,B(U, V )W )ξ − η(U)B(X, V )W

+ g(X,U)B(ξ, V )W − η(V )B(U,X)W + g(X, V )B(U, ξ)W

− η(W )B(U, V )X + g(X,W )B(U, V )ξ} = 0, (4.68)



Chapter 4 Para- Kenmotsu Manifolds 100

which implies LB = 1 or

{g(ξ, B(U, V )W )ξ − g(X,B(U, V )W )ξ − η(U)B(X, V )W

+ g(X,U)B(ξ, V )Z − η(V )B(U,X)W + g(X, V )B(U, ξ)W

− η(W )B(U, V )X + g(X,W )B(U, V )ξ} = 0. (4.69)

Putting W = ξ in the above equation and simplifying we get

B(U, V )X = {g(X, V )U − g(X,U)V }. (4.70)

Thus, we have the following assertion;

Theorem 4.4.1. If a n-dimensional para-Kenmotsu manifold M is C-Bochner Pseu-

dosymmetric then M is locally isometric to a sphere or LB = 1.

4.5 Para-Kenmotsu manifolds Satisfying B(ξ,X) ·B = 0

Let us consider a para-Kenmotsu manifold satisfying B(ξ,X) ·B = 0. Then we have,

B(ξ,X)B(U, V )W −B(B(ξ,X)U, V )W

− B(U,B(ξ,X)V )W −B(U, V )B(ξ,X)W = 0, (4.71)

In view of (4.8), (4.71) gives

H[g(X,B(U, V )W )ξ − η(B(U, V )W )X − g(X,U)B(ξ, V )W

+ η(U)B(X, V )W − g(X, V )B(U, ξ)W + η(V )B(U,X)W

− g(X,W )B(U, V )ξ + η(W )B(U, V )X] = 0. (4.72)
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Setting V = ξ in (4.72) and making use of (4.13), we get

B(U,X)W = −{g(X,W )U − g(U,W )X}. (4.73)

Hence, we can state the following:

Theorem 4.5.1. If a n-dimensional para-Kenmotsu manifold M satisfies B(ξ,X) ·B = 0

then M is isometric to a hyperbolic space.

4.6 Para-Kenmotsu manifold Satisfying B(ξ,X) ·R = 0

Suppose a para-Kenmotsu manifold Mn satisfies B(ξ,X) ·R = 0. The condition B(ξ, U) ·

R = 0 implies that

B(ξ, U)R(X, Y )Z −R(B(ξ, U)X, Y )Z

− R(X,B(ξ, U)Y )Z −R(X, Y )B(ξ, U)Z = 0. (4.74)

By virtue of (4.14), (4.74) turns into

H[g(U,R(X, Y )Z)ξ − η(R(X, Y )Z)U − g(U,X)R(ξ, Y )Z

+ η(X)R(U, Y )Z − g(U, Y )R(X, ξ)Z + η(Y )R(X,U)Z

− g(U,Z)R(X, Y )ξ + η(Z)R(X, Y )U ] = 0. (4.75)

Plugging Z = ξ in (4.75) and using (4.9), one can get

H{−g(U,X)Y + g(U, Y )X −R(X, Y )U} = 0. (4.76)

which yields, either H = 0 =⇒ τ = 2n,

or
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R(X, Y )U = [g(Y, U)X − g(X,U)Y ]. (4.77)

Thus, we can state the following theorem;

Theorem 4.6.1. An n-dimensional para-Kenmotsu manifold Mn satisfying the condition

B(ξ,X) ·R = 0 is locally isometric to a Sphere or τ = 2n.

4.7 Para-Kenmotsu manifolds Satisfying B(ξ,X) ·S = 0

Consider a para-Kenmotsu manifolds Mn satisfying B(ξ,X) · S = 0. Then we have

S(B(ξ,X)Y, ξ) + S(Y,B(ξ,X)ξ) = 0. (4.78)

Using (4.14) and (4.13) in (4.78), we get

S(X, Y ) = −(n− 1)g(X, Y ). (4.79)

Now we can state the following;

Theorem 4.7.1. A n-dimensional para-Kenmotsu manifold satisfying B(ξ,X) · S = 0 is

an Einstein manifold.

4.8 Conclusion

In this chapter, we studied some geometric properties of extended quasi generalized ϕ-

recurrent para-Kenmotsu manifolds. And a proper example is also provided to demon-

strate the existence of an extended quasi-generalized ϕ-recurrent para-Kenmotsu man-

ifold. Also we study C-Bochner pseudosymmetric para-Kenmotsu manifold. We have

obtained the following results;
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• Let M be a para-Kenmotsu manifold. If M is an extended quasi ϕ- recurrent

manifold, then M is super generalized Ricci-recurrent manifold.

• Let M be a para-Kenmotsu manifold is an extended quasi ϕ- recurrent manifold,

then M is an Einstein manifold. Moreover, the associated vector fields χ1 and χ2

of 1-forms Π1 and Π2 respectively are co-directional.

• Let a para-Kenmotsu manifold M admitting an extended quasi generalized ϕ-

recurrent, then M is of constant sectional curvature −1.

• Let M be a para-Kenmotsu manifold and if M is an extended quasi ϕ- recurrent

manifold, then the 1-forms Π1 and Π2 are related by the equation dr(W ) = [2n(2n+

1) + r]Π1(W )− 2(n+ 1)(2n+ 1)Π2(W ).

• LetM be a n-dimensional para-Kenmotsu manifold is C-Bochner Pseudo-symmetric

then Mn is locally isometric to a sphere or LB = 1.

• Let M be a n-dimensional para-Kenmotsu manifold satisfies B(ξ,X) · B = 0 then

M is isometric to a hyperbolic space.

• LetM be a n-dimensional para-Kenmotsu manifold satisfying the conditionB(ξ,X)·

R = 0 is locally isometric to a sphere or τ = 2n.

• Let M be a n-dimensional para-Kenmotsu manifold satisfying B(ξ,X) ·S = 0 is an

Einstein manifold.



Chapter 5

(LCS)n- Manifolds

5.1 Introduction

The Lorentzian concircular structure n-manifold or simply an (LCS)n-manifold is a gen-

eralization of LP-Sasakian manifold [71]. A n-dimensional Lorentzian manifold M is

a smooth, connected, paracontact and Hausdorff manifold with a Lorentzian metric g.

i.e., M admits a smooth symmetric tensor field g of type (0, 2) such that for each point

p ∈M , the tensor gp : TpM × TpM −→ R is a non degenerate inner product of signature

(−,+, .....−,+), where TpM denotes the tangent space ofM at p and R is the real number

space.

In a Lorentzian manifold (M, g), a vector field P defined by

g(X,P ) = A(X), (5.1)

for any vector field X ∈ (TpM) is said to be concircular vector field [99], if

(∇XA)(Y ) = α {g(X, Y ) + ω(X)ω(Y )}, (5.2)

where α is a non zero scalar function, A is a 1-form and ω is a closed 1-form.

104
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Since ξ is the unit concircular vector field, there exists a non-zero 1-form η such that

g(X, ξ) = η(X), (5.3)

and hence the equation

(∇Xη)(Y ) = α{g(X, Y ) + η(X)η(Y )}, (5.4)

holds for all vector fieldsX and Y . Here∇ denotes the operator of covariant differentiation

with respect to Lorentzian metric g and α is a non zero scalar function satisfying

(∇Xα) = X(α) = ρη(X), (5.5)

where ρ being a scalar function. If we put

φX =
1

α
∇Xξ, (5.6)

then from (5.4) and (5.6), we have

φX = X + η(X)ξ, (5.7)

from which it follows that φ is a symmetric (1, 1)-tensor. Thus the Lorentzian manifoldM

together with unit time like concircular vector field ξ, an associated 1-form η and a (1, 1)-

tensor field φ is said to be Lorentzian concircular structure manifold [70] or more briefly

(LCS)n- manifold. In particular, if α = 1, then the manifold reduces to LP-Sasakian

manifold [50].

A n-dimensional differentiable manifold M is called an (LCS)n manifold if it admits

a (1, 1) tensor field, a contravariant vector field ξ, a 1-form η, and a Lorentzian metric g
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such that [71]:

φ2 = X + η(X)ξ, φξ = 0, η(φX) = 0, η(ξ) = −1, (5.8)

g(φX, φY ) = g(X, Y ) + η(X)η(Y ), (5.9)

(∇Xφ)(Y ) = α{g(X, Y )ξ + η(Y )X + 2η(X)η(Y )ξ}. (5.10)

It is easy to see that the following relations hold in an (LCS)n manifold [70]:

R(X, Y )Z = (α2 − ρ){g(Y, Z)X − g(X,Z)Y }, (5.11)

R(ξ, Y )Z = (α2 − ρ){g(Y, Z)ξ − η(Z)Y }, (5.12)

R(X, Y )ξ = (α2 − ρ){η(Y )X − η(X)Y }, (5.13)

η(R(X, Y )Z) = (α2 − ρ){g(Y, Z)η(X)− g(X,Z)η(Y )}, (5.14)

S(X, ξ) = (n− 1)(α2 − ρ)η(X), (5.15)

S(φY, φZ) = S(Y, Z) + (n− 1)(α2 − ρ)g(Y, Z). (5.16)

The authours in [55] investigated a new curvature tensor of type (1, 3) in an n-dimensional

Riemannian manifold and is called as Q-curvature tensor, and is given by

Q(X, Y )Z = R(X, Y )Z − Ψ

(n− 1)
{g(Y, Z)X − g(X,Z)Y }, (5.17)

where Ψ is the arbitrary scalar function. If Ψ = r
2n+1

, then it converts into concircular

curvature tensor. Recently authors in [25] studied the generalized Sasakian space forms

with Q-curvature tensor. The authors in [55] introduced the Z-tensor of type (0, 2) and

it is a new kind of Riemannian manifold that generalize the concept of both pseudo Ricci

symmetric manifold and pseudo projective Ricci symmetric manifold. Here the Z-tensor
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is a general notion of the Einstein gravitational tensor in general relativity. B-tensor is

the generalisation of Z-tensor and it is written as (see[74]),

B(X, Y ) = aS(X, Y ) + brg(X, Y ). (5.18)

As a generalization of spaces of constant curvature locally symmetric spaces were

introduced by Cartan [12]. Every locally symmetric space satisfies R ·R = 0, where by the

first R stands for the curvature operator which acts as a derivation on the second R which

stands for the Riemanian curvature tensor. Manifold satisfying the condition R · R = 0

are called semisymmetric manifolds and were classified by Szabo [75]. The condition of

semisymmetry was weakened by Deszcz as pseudosymmetry which is characterized by

the condition R · R = LQ(g,R), where by L is a real function on M and Q(g,R) is the

Tachibana tensor of M .

A Riemannian manifold M is said to be pseudosymmetric, in the sense of Deszcz [32]

if

(R(X, Y ) ·R)(U, V )W = LR{((X ∧ Y ) ·R)(U, V )W},

holds. Where LR is some smooth function on UR = {x ∈M |R− r
n(n−1)G 6= 0 at x}, G is

the (0, 4)-tensor defined by G(X1, X2, X3, X4) = g((X1 ∧X2)X3, X4) and (X1 ∧X2)X3 is

the endomorphism and it is defined as,

(X1 ∧X2)X3 = g(X2, X3)X1 − g(X1, X3)X2.

A Riemannian manifold M is said to be Ricci pseudosymmetric if R · S and Q(g, S)
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on M are linearly dependent. This is equivalent to

R · S = fsQ(g, S),

holds on US, where US = {x ∈ M : S − k
n
6= 0 at x} and fS is a function defined on US.

Every pseudosymmetric manifold is Ricci-pseudosymmetric, but the converse statement

is not true. If R · S = 0 then M is called Ricci-semisymmetric. Every semisymmetric

manifold is Ricci-semisymmetric but the converse statement is not true. Every Ricci-

semisymmetric manifold is Ricci-pseudosymmetric, but the converse statement is not

true.

5.2 B-pseudosymmetric (LCS)n-manifold

Definition 5.2.1. An (LCS)n-manifoldM is said to be B-pseudosymmetric if it satisfies

(R(X, Y ) ·B)(Z,W ) = LBQ(g,B)(Z,W,X, Y ). (5.19)

for all vector fields X, Y, Z,W .

The above equation can be written as

B(R(X, Y )Z,W ) +B(Z,R(X, Y )W ) = LB{g(Y, Z)B(X,W )

−g(X,Z)B(Y,W ) + g(Y,W )B(Z,X)− g(X,W )B(Z, Y )}. (5.20)

Setting X = W = ξ in (5.20), we get

B(R(ξ, Y )Z, ξ) +B(Z,R(ξ, Y )ξ) = LB{g(Y, Z)B(ξ, ξ)

−g(ξ, Z)B(Y, ξ) + g(Y, ξ)B(Z, ξ)− g(ξ, ξ)B(Z, Y )}. (5.21)
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The equation (5.21) implies that

(α2 − ρ){g(Y, Z)B(ξ, ξ)− η(Z)B(Y, ξ) + η(Y )B(Z, ξ) +B(Z, Y )}

= LB{g(Y, Z)B(ξ, ξ)− η(Z)B(Y, ξ) + η(Y )B(Z, ξ) +B(Z, Y )}. (5.22)

Then either

LB − (α2 − ρ) = 0 or (5.23)

g(Y, Z)B(ξ, ξ)− η(Z)B(Y, ξ) + η(Y )B(Z, ξ) +B(Z, Y ) = 0. (5.24)

If we assume that LB 6= (α2 − ρ), then we have

g(Y, Z)B(ξ, ξ)− η(Z)B(Y, ξ) + η(Y )B(Z, ξ) +B(Z, Y ) = 0. (5.25)

In view of (5.18), the equation (5.25) reduces to

g(Y, Z){aS(ξ, ξ) + brg(ξ, ξ)} − η(Z){aS(Y, ξ) + brg(Y, ξ)}

+η(Y ){aS(Z, ξ) + brg(Z, ξ)}+ aS(Z, Y ) + brg(Z, Y ) = 0 (5.26)

The above equation implies that

g(Y, Z){(n− 1)(α2 − ρ)aη(ξ) + brη(ξ)}

−η(Z){(n− 1)(α2 − ρ)aη(Y ) + brη(Y )}

+η(Y ){a(n− 1)(α2 − ρ)η(Z) + brη(Z)}

+aS(Y, Z) + brg(Z, Y ) = 0 (5.27)

By virtue of φ2 = X + η(X)ξ, (5.27) yields

S(Y, Z) = (n− 1)(α2 − ρ)g(Y, Z) (5.28)
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Hence, we have,

Theorem 5.2.1. A B-pseudosymmetric (LCS)n-manifold is an Einstein manifold if

LB 6= (α2 − ρ).

We know that B-tensor reduces to Z-tensor if a = 1 and b = Ψ
r
. Therefore we can

state the following:

Corollary 5.2.2. A Z-pseudosymmetric (LCS)n-manifold is an Einstein manifold if

LZ 6= (α2 − ρ).

If a = 1 and b = 0, then B-tensor reduces to Ricci-tensor and hence we have

Corollary 5.2.3. A Ricci-pseudosymmetric (LCS)n-manifold is an Einstein manifold if

LS 6= (α2 − ρ).

If LB = 0 then B-pseudosymmetric (LCS)nmanifold reduces to B-semisymmetric

(LCS)n manifold. Therefore for α2 6= ρ, one can get

Corollary 5.2.4. A B-semisymmetric (LCS)n-manifold is an Einstein manifold.

Corollary 5.2.5. A Z-semisymmetric (LCS)n-manifold is an Einstein manifold.

Corollary 5.2.6. A Ricci-semisymmetric (LCS)n-manifold is an Einstein manifold.

5.3 (LCS)n-manifold satisfying Q(ξ,X) ·Q(Y, U)Z = 0.

Suppose (LCS)n-manifold satisfyingQ(ξ,X)·Q(Y, U)Z = 0 for any vector fieldsX, Y, U, Z =

0. Then

Q(ξ,X)Q(Y, U)Z −Q(Q(ξ,X)Y, U)Z

−Q(Y,Q(ξ,X)U)Z −Q(Y, U)Q(ξ,X)Z = 0. (5.29)
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Using (5.12) and (5.17), we can write the following:

Q(ξ,X)Q(Y, U)Z ={A} {g(X,Q(Y, U)Z)ξ − η(Q(Y, U)Z)X} , (5.30)

Q(Q(ξ,X)Y, U)Z ={A}{{A}g(X, Y )g(U,Z)ξ − η(Z)g(X, Y )U},

− {A}η(Y )Q(X,U)Z (5.31)

Q(Y,Q(ξ,X)U)Z ={A}{{A}g(X,Z)η(U)Y − g(X,Z)g(Y, U)ξ}

− {A}η(Z)Q(Y,X)U, (5.32)

Q(Y, U)Q(ξ,X)Z ={A}{A{g(X,U)η(Z)Y − g(X,Uη(Y ))Z}

− {A}η(Y )Q(Y, Z)X, (5.33)

where A =
{

(α2 − ρ)− ψ
(n−1)

}
. Using (5.30)-(5.32) in (5.29) and then inserting X = Y =

ei, where ei is an orthogonal basis of the tangent space at each point of the manifold and

taking summation over i, we obtain

S(Z,U) = A′g(Z,U) +B′η(Z)η(U) (5.34)

where A′ =
{

(n+ 1)
{

(α2 − ρ)− ψ
(n−1)

}
+ ψ

}
and

B
′
=
{

(n+ 1)
{

(α2 − ρ)− ψ
(n−1)

}}
, From (5.33), we can state the following:

Theorem 5.3.1. An (LCS)n-manifold satisfying Q(ξ,X)Q(Y, U)Z = 0 is an η-Einstein

manifold.

5.4 Q-pseudosymmetric (LCS)n-manifold

Definition 5.4.1. An n-dimensional (LCS)n-manifold is said to be Q-pseudosymmetric,

if

(R(X, Y ) ·Q)(U, V )W = LQ{((X ∧ Y ) ·Q)(U, V )W )}. (5.35)
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where LR is some smooth function on UQ = {x ∈ M |Q − r
n(n−1)G 6= 0 at x}, where G is

the (0, 4)-tensor defined by G(X1, X2, X3, X4) = g((X1 ∧X2)X3, X4) and (X ∧ Y )Z is an

endomorphism defined as

(X ∧ Y )Z = g(Y, Z)X − g(X,Z)Y. (5.36)

Inserting X = ξ in (5.35), we obtain

(R(ξ, Y ) ·Q)(U, V )W = LQ{((ξ ∧ Y ) ·Q)(U, V )W )}. (5.37)

Now left hand side of (5.37) can be written as

R(ξ, Y )Q(U, V )Z −Q(R(ξ, Y )U, V )Z

−Q(U,R(ξ, Y )V )Z −Q(U, V )R(ξ, Y )Z = 0. (5.38)

By virtue of (5.12), the above expression becomes

(α2 − ρ){g(Y,Q(U, V )Z)ξ − η(Q(U, V )Z)Y

− g(Y, U)Q(ξ, V )Z + η(U)Q(Y, V )Z

− g(Y, V )Q(U, ξ)Z + η(V )Q(U, Y )Z

− g(Y, Z)Q(U, V )ξ + η(Z)Q(U, V )Y } = 0. (5.39)

Next the right hand side of (5.37) is

LQ{(ξ ∧ Y )Q(U, V )Z −Q((ξ ∧ Y )U, V )Z

−Q(U, (ξ ∧ Y )V )Z −Q(U, V )(ξ ∧ Y )Z} = 0. (5.40)
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By virtue of (5.36), (5.40) becomes

LQ{g(Y,Q(U, V )Z)ξ − η(Q(U, V )Z)Y

− g(Y, U)Q(ξ, V )Z + η(U)Q(Y, V )Z

− g(Y, V )Q(U, ξ)Z + η(V )Q(U, Y )Z

− g(Y, Z)Q(U, V )ξ + η(Z)Q(U, V )Y } = 0. (5.41)

Using expressions (5.39) and (5.41) in (5.37) and taking inner product with ξ, we obtain

{(α2 − ρ)− LQ}{−Q(U, V, Z, Y )− η(Q(U, V )Z)η(Y )

− g(Y, U)η(Q(ξ, V )Z) + η(U)η(Q(Y, V )Z)

− g(Y, V )η(Q(U, ξ)Z) + η(V )η(Q(U, V )Z)

− g(Y, Z)η(Q(U, V )ξ) + η(Z)η(Q(U, V )Z)} = 0. (5.42)

Let {e1, e2, .....en} be an orthonormal basis of the tangent space at each point of the

manifold. Setting U = Y = ei in (5.42) and taking summation over i and using (5.12),

(5.13), we get

S(V, Z) =

{
ψ + (n− 1)

[
(α2 − ρ)− ψ

(n− 1)

]}
g(V,W ).

Now we can state the following:

Theorem 5.4.1. If (LCS)n-manifold is Q-pseudosymmetric, then it is an Einstein man-

ifold.

Corollary 5.4.2. A Q-pseudosymmetric (LCS)n-manifold is Q-semisymmetric if and

only if LQ = 0.
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5.5 Q-Ricci semisymmetric (LCS)n manifold

Definition 5.5.1. An (LCS)n-manifold M is Q-Ricci semisymmetric if

(Q(X, Y ) · S)(Z,W ) = 0, (5.43)

for all vector fields X, Y, Z,W ∈ TPM

The equation (5.43) can be written as

S(Q(X, Y )Z,U) + S(Z,Q(X, Y )U) = 0. (5.44)

Putting Z = ξ in (5.44), we have

S(Q(X, Y )ξ, U) + S(ξ,Q(X, Y )U) = 0. (5.45)

Using (5.17), (5.13) and (5.14) in (5.45), we get

{
(α2 − ρ)− Ψ

(n− 1)

}
{η(Y )S(X,U)− η(X)S(Y, U)}

+ (α2 − ρ)(n− 1)

{
(α2 − ρ)− Ψ

(n− 1)

}
{g(Y, U)η(X)− g(X,U)η(Y )} = 0. (5.46)

Inserting Y = ξ in (5.46), we obtain

{
(α2 − ρ)− Ψ

(n− 1)

}
{(α2 − ρ)(n− 1)g(X,U)− S(X,U)} = 0. (5.47)

This implies that either

(α2 − ρ)− Ψ

(n− 1)
= 0 or S(X,U) = (α2 − ρ)(n− 1)g(X,U). (5.48)

From (5.48), we can state the following:

Theorem 5.5.1. A Q-Ricci semisymmetric (LCS)n-manifold is an Einstein manifold if

Ψ 6= (α2 − ρ)(n− 1).
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5.6 φ-Q-flat (LCS)n manifold

Definition 5.6.1. An (LCS)n-manifold M is called φ−Q-flat if

Q(φX, φY, φZ, φW ) = 0. (5.49)

for all the vector fields X, Y, Z,W ∈ TPM

According to (5.49), the equation (5.17) can be written as

R(φX, φY, φZ, φW ) =
Ψ

(n− 1)
{g(φY, φZ)g(φX, φW )

− g(φX, φZ)g(φY, φW )}. (5.50)

Let {e1, ..., en} be a local orthonormal basis of the vector fields on M . Then, by putting

X = W = ei in (5.50) and taking summation over i (1 ≤ i ≤ n), we get

n−1∑
i=1

R(φX, φY, φZ, φW ) =
Ψ

(n− 1)

[
n−1∑
i=1

{g(φY, φZ)g(φX, φW )− g(φX, φZ)g(φY, φW )}

]
.

(5.51)

We know that

n−1∑
i=1

R(φei, φY, φZ, φei) = S(φY, φZ) + g(φY, φZ), (5.52)

n−1∑
i=1

g(φei, φei) = (n− 1), (5.53)

n−1∑
i=1

g(φei, φZ)g(φY, φei) = g(φY, φZ). (5.54)

Using (5.52)-(5.54) in (5.50), we obtain

S(φY, φZ) + g(φY, φZ) =
Ψ

(n− 1)
{g(φY, φZ)(n− 1)− g(φY, φZ)}. (5.55)
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With the help of (5.9) and (5.18), we get

S(Y, Z) =

{
(n− 2)Ψ

(n− 1)
− (n− 1)(α2 − ρ)− 1

}
g(Y, Z)

+

{
(n− 2)Ψ

(n− 1)
− 1

}
η(Y )η(Z)

Hence we can state the following:

Theorem 5.6.1. A φ-Q-flat (LCS)n-manifold is an η-Einstein manifold.

5.7 Lorentzian Para-Sasakian manifold

In an Lorentzian Para-Sasakian manifold, the 1-form η is closed. In recent years, Lorentzian

para-Sasakian manifold has been studied by many authors [53], [56], [57], [69], [78], [73].

So we have the following expressions

R(X, Y )ξ =η(Y )X − η(X)Y, (5.56)

R(ξ, Y )Z =g(Y, Z)ξ + η(Z)Y + 2η(Y )η(Z)ξ, (5.57)

Qξ =(n− 1)ξ, (5.58)

R(X, Y )ϕZ − ϕR(X, Y )Z =2{η(Y )η(Z)ϕX − η(X)η(Z)ϕY }

+ g(Y, Z)ϕX − g(X,Z)ϕY + g(X,ϕZ)Y

− g(Y, ϕZ)X + 2η(Y )g(X,ϕZ)ξ

− 2η(X)g(Y, ϕZ)ξ + 2η(Z)g(X,ϕY )ξ. (5.59)

Moreover ξ is never be a Killing vector on M i.e.,

(£ξg)(X, Y ) = 2g(X,ϕY ), (5.60)
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ϕ is linear and rank of ϕ is n− 1, so £ξg 6= 0 for all vector fields on X (M).

Definition 5.7.1. A vector field V on an n-dimensional pseudo-Riemannian manifold M

is said to be a conformal vector field if [72]

£V g = 2ρg, (5.61)

for a smooth function ρ on M .

Definition 5.7.2. A vector field V on a pseudo-Riemannian manifold M is said to be

holomorphically planar conformal vector field if it satisfies [43]

∇XV = aX + bϕX, (5.62)

where a and b are some smooth functions on M .

Definition 5.7.3. On a pseudo-Riemannian manifold M , any vector field V is said to be

an infinitesimal contact transformation if it satisfies

£V η = ση (5.63)

where σ is the smooth function on M . If σ = 0 then V is called to be strict.

Theorem 5.7.1. On a Lorentzian para-Sasakian manifold M , a Reeb vector field ξ is

never a conformal vector field.

Proof. If we assume that a Reeb vector field ξ is a conformal vector field on a Lorentzian

para-Sasakian M , then the equation (5.61), on (X, Y ) gives

2g(X,ϕY ) = ρg(X, Y ). (5.64)

Choosing X = Y = ξ in the foregoing relation we get ρ = 0. But this in the above

equation leads to the contradiction.

Theorem 5.7.2. If an orthogonal vector field V on a Lorentzian para-Sasakian manifold

M is a conformal vector field, then it is Killing on M .
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Proof. Suppose that an orthogonal vector field V on a Lorentzian para-Sasakian M is a

conformal vector field, then the equation (5.61) on (X, ξ) gives

g(∇XV, ξ) + g(∇ξV,X) = ρη(X). (5.65)

Since, g(V, ξ) = 0, which finds g(∇XV, ξ) = −g(V, ϕX). Next, choosing X = ξ in the

above expression, we find

2g(∇ξV, ξ) = ρ = 0. (5.66)

This completes the proof.

Theorem 5.7.3. If an infinitesimal contact transformation on a Lorentzian para-Sasakian

manifold is a holomorphically planar conformal vector field, then it is either collinear with

ξ, or strictly infinitesimal contact transformation of M .

Proof. Suppose a vector field V on a Lorentzian para-Sasakian manifoldM is an infinites-

imal contact transformation and holomorphically planar conformal vector field. Then

taking the co-derivative of (5.62) along the vector Y , we obtain

∇Y∇XV = (Y a)X + a∇YX + (Y b)ϕX + b∇Y ϕX. (5.67)

In a similar way, we also derive

∇X∇Y V = (Xa)Y + a∇XY + (Y b)ϕY + b∇XϕY. (5.68)

Later, in (5.62) by replacing X by [X, Y ], we find

∇[X,Y ]V = a[X, Y ] + bϕ[X, Y ]. (5.69)

On combining the last three expressions in the well-known formulaR(X, Y )Z = ∇X∇YZ−

∇Y∇YZ −∇[X,Y ]Z provides

g(R(X, Y )V, ξ) = (Xa)η(Y )− (Y a)η(X). (5.70)

As we know η is closed on M i.e., dη = 0, and therefore applying d on both sides of

relation (5.63) gives

(dσ ∧ η)(X, Y ) = 0. (5.71)
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In the above equation for X = ξ, we get Y σ = −(ξσ)η(Y ). This implies, Xσ = 0 for all

X orthogonal to ξ. As a result, we can easily determine that a = σ using the equation

(5.63) in (5.62). Because Xσ = 0 for an orthogonal vector field X, it follows that Xa is

also a zero. Next, with the help of equation (5.56) in condition (5.70), we find

η(Y )g(X, V )− η(X)g(V, Y ) = (Y a)η(X)− (Xa)η(Y ). (5.72)

Putting X = ξ and Y = ϕY in the foregoing relation leads to

g(ϕY, V ) = −(ϕY a). (5.73)

As we know a is constant along an orthogonal vector field ξ. This in the above relation

shows g(ϕY, V ) = 0, this implies V = −η(V )ξ. Hence this proves either part of the

theorem. Next, if we suppose η(V ) is constant then from (5.61) we have that −η(V )ϕX =

aX + bϕX. From this it is easy to find a = 0. Lastly, this in (5.63) shows σ = 0 and

again from (5.63) we have

£V η = 0. (5.74)

This completes the theorem.

Theorem 5.7.4. Let M be a Lorentzian para-Sasakian manifold and V be an orthogonal

vector field which is non-zero. Then V never be a holomorphically planar conformal vector

field on M .

Proof. Suppose V is a non-zero orthogonal vector field on a Lorentzian para-Sasakian

manifold M and satisfies (5.62), then from taking inner product with ξ and X = ξ gives

g(∇ξV, ξ) = a. (5.75)

Since, g(V, ξ) = 0 this implies in getting g(∇ξV, ξ) = 0. Therefore, this in the above

equation finds a = 0. Also, the condition g(V, ξ) = 0 provides

g(∇XV, ξ) + g(V,∇Xξ) = 0. (5.76)

As we know, V is holomorphically planar conformal vector field onM , then by substituting

∇XV = bϕX in the preceding equation results in

g(V, ϕX) = 0. (5.77)
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And this shows V = −η(V )ξ = 0. Hence, there is no non-zero orthogonal vector field on

a Lorentzian para-Sasakian manifold which is holomorphically planar conformal.

Now we are going to construct following example to justify our above mentioned results

Example 5.7.1. Here we construct the 5-dimensional Lorentzian para-Sasakian mani-

fold M . We consider M = {(u, v, w, x, y) ∈ R5}, where (u, v, w, x, y) are the standard

coordinates in R5.

Let {x1, x2, x3, x4, x5} be the basis for M and the Lorentzian metric g is defined as

g(xi, xj) =


0 for i 6= j,

1 for i = j and i 6= 3,

−1 for i = j = 3.

(5.78)

Let ∇ be the Levi-Civita connection corresponding to g and we have

[x1, x2] = 0, [x1, x3] = −x1, [x1, x4] = 0,

[x1, x5] = x1, [x2, x3] = −x2, [x2, x4] = x2,

[x2, x5] = x2, [x3, x4] = x4, [x3, x5] = x5, [x4, x5] = −x5.

Let the (1, 1) tensor field ϕ be defined by

ϕx1 = −x1, ϕx2 = −x2, ϕx3 = 0, ϕx4 = −x4, ϕx5 = −x5. (5.79)

Let η is the 1-form defined by η(X) = g(X, x3), for any vector field X on X (M). Then,

by the linearity of ϕ and g, we find

η(x3) =− 1, (5.80)

ϕ2 =I + η ⊗ ξ, (5.81)

g(ϕ·, ϕ·) =(g + η ⊗ η)(·, ·). (5.82)



Chapter 5 (LCS)n- Manifolds 121

By the Koszul’s formula, we find

∇x1x1 = −x3 − x5, ∇x1x2 = 0, ∇x1x3 = −x1, ∇x1x4 = 0, ∇x1x5 = x1,

∇x2x1 = 0, ∇x2x2 = −x3 − x4 − x5, ∇x2x3 = −x2, ∇x2x4 = x2, ∇x2x5 = x2,

∇x3x1 = 0, ∇x3x2 = 0, ∇x3x3 = 0, ∇x3x4 = 0, ∇x3x5 = 0,

∇x4x1 = 0, ∇x4x2 = 0, ∇x4x3 = −x4, ∇x4x4 = −x3, ∇x4x5 = 0,

∇x5x1 = 0, ∇x5x2 = 0, ∇x5x3 = −x5, ∇x5x4 = x5, ∇x5x5 = −x3 − x4.

Hence, we can conclude that (ϕ, x3, η, g) defines a Lorentzian para-Sasakian structure on

M and so M is a Lorentzian para-Sasakian manifold. If ξ = x3 is a coformal vector field

then the equation (5.61) over (x1, x1) gives ρ = −1 and again equation (5.61) over finds

ρ = 0. Which is a contradiction.

Example 5.7.2. Let us consider a manifold M = {(x, y, z) ∈ R3} and the orthonormal

basis {y1, y2, y3} on M , with the Lorentzian metric g satisfying

g(yi, yj) = 0, for i 6= j

g(y1, y1) = g(y2, y2) = 1,

g(y3, y3) = −1.

Define 1-form η and the vector field ξ by

η(X) = g(X, y3), ξ = y3.

Let ∇ be the Levi-Civita connection corresponding to g and is defined by

[y1, y2] = 0, [y1, y3] = −y1, [y2, y3] = −y2,

and the tensor field ϕ is defined by

ϕy1 = −y1, ϕy2 = −y2, ϕy3 = 0.

Use of Koszul’s formula gives the following relations

∇y1y1 = −y3, ∇y1y2 = 0, ∇y1y3 = −y1, (5.83)

∇y2y1 = 0, ∇y2y2 = −y3, ∇y2y3 = −y2,

∇y3y1 = 0, ∇y3y2 = 0, ∇y3y3 = 0.
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From the above relations, it is clear that (∇Xϕ)Y = g(X, Y )ξ + η(Y )X + 2η(X)η(Y )ξ

and ∇Xξ = ϕX, for any vector fields X, Y . Hence, the defined structure (ϕ, ξ = y3, η, g)

is a Lorentzian para-Sasakian structure on M .

Case (i): Suppose a vector V = a1y1 + a2y2, where a1 and a2 are constants on M

satisfying (5.62), then in (5.61) for X = y1 and inner product with y2 results in a1 = 0.

Similarly, equation (5.62) for X = y2 and inner product with y1 gives a2 = 0. This shows

V = a1y1 + a2y2 = 0.

Case(ii): Suppose a vector V = a1y1 + a2y2, where a1 and a2 are constants on M

admitting (5.61), then for X = Y = y1 yields

2a1g(∇y1y1, y1) + 2a2g(∇y1y2, y1) = 2ρ. (5.84)

Hence by the use of (5.83) in the above relation we find ρ = 0. This proves V is Killing

5.8 Conclusion

In this chapter, we have obtained the following results:

• A B-pseudosymmetric (LCS)n-manifold is an Einstien manifold if LB 6= (α2 − ρ)

• If a (LCS)n manifold is Q-pseudosymmetric, then it is an Einstein manifold.

• A Q-pseudosymmetric (LCS)n-manifold is Q-semisymmetric if and only if LQ = 0.

• A Q-Ricci semisymmetric (LCS)n-manifold is an Einstien manifold if Ψ 6= (α2 −

ρ)(n − 1). In addition to this we studied conditions Q(ξ,X) · Q(Y, U)Z = 0 and

Q-pseudosymmetric and φ-Q-flat on (LCS)n-manifolds.

• We showed that if the geometric aspects of a Reeb vector field ξ and an orthogonal

vector field V on a Lorentzian para-Sasakian manifoldM is a conformal vector field,

then it is Killing on M .
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• If an infinitesimal contact transformation on a Lorentzian para-Sasakian manifold

is a holomorphically planar conformal vector field, then it is either collinear with ξ,

or strictly infinitesimal contact transformation of M .

• And finally we showed that if M is a Lorentzian para-Sasakian manifold and V is a

orthogonal vector field which is non-zero, then V never be a holomorphically planar

conformal vector field on M .
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Preface

On the 10th of June 1854, Riemann gave his famous inaugural lecture at Gottingen and

discussed the foundations of geometry, introduced n-dimensional manifolds, formulated

the concept of Riemannian manifolds and defined their curvature. Since every manifold

admits a Riemannian metric, Riemannian geometry often helps us to solve problems

of differential topology. Most remarkably, by applying Riemannian geometry, Perelman

solved the famous Poincare’s conjecture posed in 1904.

Under the impetus of Einstein’s theory of general relativity (1915) a further general-

ization appeared; the positiveness of the inner product was weakened. Consequently, one

has the notion of pseudo-Riemannian manifolds which is a generalization of a Rieman-

nian manifold in which the metric tensor need not be positive-definite, but need only be

a non-degenerate bilinear form, which is a weaker condition.

The theory of structures on manifolds is a very interesting and very fruitful fields of

Riemannian geometry. In this thesis, we investigate Riemannian and pseudo-Riemannian

manifolds admitting different types of structures. In particular, we study contact Rie-

mannian structures, almost Kenmotsu structures, almost coKaehler structures, almost

contact pseudo-Riemannian structures and almost paracontact metric structures under

several geometric points of view. The entire work in the thesis has been partitioned into

five chapters and are summarized as follows:

Chapter 1 gives a brief summary of the main concepts and results about almost contact

manifolds and Paracontact manifolds which will be used widely in the rest of chapters.

Chapter 2 we study H-Curvature tensor on almost Kenmotsu manifold with nullity

distibution. Also we investigate Generalized Ricci Soliton on Almost Kenmotsu Manifolds.

iv
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In the beginning, we proved that if M is a locally φ-H symmetric alomost Kenmotsu

manifold with characteristic vector field ξ belonging to the (κ, µ)′-nullity distribution and

h 6= 0, then the manifoldM is locally isometric to the Riemannian product Hn+1(−4)×En.

Next we showed that if M is a locally φ-H symmetric alomost Kenmotsu manifold with

characteristic vector field ξ belonging to the generalized (κ, µ)′-nullity distribution and h 6=

0 then M is locally isometric to the Riemannian product Hn+1(−4)×En. Also we proved

that if M is a locally φ-H symmetric almost Kenmotsu manifold with the characteristic

vector field ξ belonging to the (κ, µ)-nullity distribution and h 6= 0, then the manifold

M is an Einstein manifold. And if M is a locally φ − H symmetric almost Kenmotsu

manifold with the characteristic vector field ξ belonging to the generalized (κ, µ)-nullity

distribution and h 6= 0, then the manifold M is Einstein. Finally, we study the two

classes of almost Kenmotsu manifolds. Firstly, we study a closed generalized Ricci soliton

on the Kenmotsu manifold. Secondly, we prove that if a Kenmotsu manifold M admits a

generalized Ricci soliton with conformal vector field V , thenM is Einstein. Next, we show

that a non-Kenmotsu almost Kenmotsu (κ, µ)′-manifold admitting a closed generalized

Ricci soliton is locally isometric to the Riemannian product Hn+1 × Rn, provided that

λ− κ
β
(2nαβ − 1) = − 2

β
.

In Chapter 3, we devoted to the study of K-paracontact manifold admitting parallel

Cotton tensor, vanishing Cotton tensor and to study Bach flatness on K-paracontact

manifold. Also we study vanishing Cotton tensor on (κ, µ)-paracontact manifold for both

κ > −1 and κ < −1. Further we study Yamabe and Quasi Yamabe soliton on (κ, µ)-

paracontact manifold and K-paracontact manifold. First we consider M to be a K-

paracontact manifold. Then M has constant scalar curvature if and only if C(X, ξ)ξ = 0.

Next, we show that if M is a K-paracontact metric manifold, then M has parallel Cotton

tensor if and only if M is an η-Einstein manifold and r = −2n(2n + 1). Also we proved

that ifM is an η-Einstein K-paracontact manifold, and is Bach flat thenM is an Einstein

manifold. Also, we prove that if M is a (κ, µ)-paracontact manifold for κ 6= 1, and if M

has vanishing Cotton tensor for µ 6= κ then M is an η-Einstein manifold. Next, we study

Yamabe and quasi Yamabe soliton on (κ, µ)-paracontact manifold and K-paracontact
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manifold. Here we prove that, if M is non-para-Sasakian manifold and admits Yamabe

soliton for the potential vector field V , then either V is Killing, or M is locally isometric

to the product of a flat (n + 1)-dimensional manifold and n-dimensional manifold of

constant negative curvature equal to −4. Next we prove that if a non-para-Sasakian

(κ, µ)-paracontact manifold admits a quasi Yamabe gradient soliton then for κ > −1,

M is either N(1−n
n

)-manifold, or M is locally isometric to the product of a flat (n + 1)-

dimensional manifold and n-dimensional manifold of constant negative curvature equal

to −4, or the potential function f is constant on M . For κ < −1 either µ 6= −4
n+1

or the

potential function f is constant on M . Lastly, we show that, if a K-paracontact metric g

with Qϕ = ϕQ represents a quasi Yamabe gradient soliton then either the scalar curvature

r = −2n(2n+ 1), or the potential function f is a constant.

In Chapter 4, we study some geometric properties of extended quasi generalized ϕ-

recurrent para-Kenmotsu manifolds. And a proper example is also provided to demon-

strate the existence of an extended quasi-generalized ϕ-recurrent Kenmotsu manifold.

Also we study C-Bochner pseudosymmetric para-Kenmotsu manifold. Firstly we proved

that if M is a para-Kenmotsu manifold and if M is an extended quasi ϕ- recurrent

manifold, then M is super generalized Ricci-recurrent manifold. Also we show that if

a para-Kenmotsu manifold M is an extended quasi ϕ- recurrent manifold, then M is

an Einstein manifold. Moreover, the associated vector fields χ1 and χ2 of 1-forms Π1

and Π2 respectively are co-directional. And if a para-Kenmotsu manifold M admitting

an extended quasi generalized ϕ-recurrent, then M is of constant sectional curvature

−1. Next we prove that if M is a para-Kenmotsu manifold and if M is an extended

quasi ϕ- recurrent manifold, then the 1-forms Π1 and Π2 are related by the equation

dr(W ) = [2n(2n + 1) + r]Π1(W ) − 2(n + 1)(2n + 1)Π2(W ). Finally we showed that if

a n-dimensional para-Kenmotsu manifold M is C-Bochner Pseudo-symmetric then Mn

is locally isometric to a sphere or LB = 1. And we examine if a n-dimensional para-

Kenmotsu manifold M satisfies B(ξ,X) · B = 0 then M is isometric to a hyperbolic

space. Later we showed that an n-dimensional para-Kenmotsu manifold satisfying the

condition B(ξ,X) · R = 0 is locally isometric to a sphere or τ = 2n. Also we proved
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that a n-dimensional para-Kenmotsu manifold satisfying B(ξ,X) · S = 0 is an Einstein

manifold.

in the final Chapter 5 focuses on the study some symmetric properties on (LCS)n-

Manifolds. First, we show that a B-pseudosymmetric (LCS)n-manifold is an Einstien

manifold if LB 6= (α2 − ρ) and we show that if (LCS)n manifold is Q-pseudosymmetric,

then it is an Einstein manifold. Also show that a Q-pseudosymmetric (LCS)n-manifold

is Q-semisymmetric if and only if LQ = 0. Finally we show that a Q-Ricci semisymmetric

(LCS)n-manifold is an Einstien manifold if Ψ 6= (α2 − ρ)(n − 1). In addition to this we

study conditions Q(ξ,X)·Q(Y, U)Z = 0 and Q-pseudosymmetric and φ-Q-flat on (LCS)n-

manifolds. Next, we show that the geometric aspects of a Reeb vector field ξ and an

orthogonal vector field V on a Lorentzian para-Sasakian manifoldM is a conformal vector

field, then it is Killing onM . Next, we prove that if an infinitesimal contact transformation

on a Lorentzian para-Sasakian manifold is a holomorphically planar conformal vector field,

then it is either collinear with ξ, or strictly infinitesimal contact transformation ofM . And

finally we showed that if M is a Lorentzian para-Sasakian manifold and V is a orthogonal

vector field which is non-zero, then V never be a holomorphically planar conformal vector

field on M .
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