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PREFACE 

A Lie group is a group, which is also a 'manifold' ofcourse, to make sense of this 

definition, we must explain these two basic concepts and how they can be related. 

Group s arise as an algebraic abstraction of the notion of symmetry, an important example 

is the group of rotation s in the plane or three- dimensional space. Manifolds which form 

the fundamental objects in the field of differential geometry, generalize the familiar 

concepts of curves and surfaces in three dimensional space. In general, a manifold is a 

space that looks like locally Euclidian space, but whose global characters might be quite 

different. The conjunction of these two seemingly disparate mathematical ideas combines, 

and significantly extends both the algebraic methods of group theoy and the multi-\ ariable 

calculus used in analytic geometry. This resulting theory, particularly the powerftil 

infinitesimal techniques, can then be applied to a wide range of physical and mathematical 

problem. 

This dissertation consists of four chapters. The first chapter deals with the basic 

definitions and their properties of Groups, topology and manifolds with some examples. 

Ir? ihe second chapter we defined the definition of Lie-groups and Lie sub-grups with 

some examples. Also we defined action of a Lie group on a manifold and by 

using this we defined quotient manifold . Further Lie transformation group and one 

parameter groups are defined. Also flow property of fluid is explained by the notion of 

one parameter group uifrti some examples of flow. Further topological properties of Lie 

groups are stated. 



In chapter three we study basic definition of Lie-algebra with some 

examples. Also examples of those relating to Lie-groups are explained. Left and right 

translations are defined and an inner automorphism is constructed as in group theory by 

using these translations. Further Lie-algebras of GL(n,R) and GL(n,C) are given . 

Finally in the fourth chapter we give applications of Lie-groups. It is explained 

how relativity group can be constructed by Galilean transformations. This group is 

nothing but Lie-group and hence it can be seen that how Lie-groups are used in relativity 

theory, similarly Lorentz group which is also a Lie-group is used in quantam theory. 
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CHAPTER -1 

BASIC CONCEPTS OF GROUPS. TOPOLOGY 
AND DIFFERENTIABLE MANIFOLDS 

1.0: Introduction: In this chapter we collect the basic definitions 

and their properties of groups, topology and manifolds with some examples. 

1.1. Groups: 

Definition 1.1.1: 

A non empty set of elements G is said to form a group if in G there is 

defined a binary operation, denoted by * such that 

(a) foralla,b EG=>a*bGG 

(b) for all a.b.c E G =>a*(b*c)= (a*b) * c 

(c) There exists an unique element e G G such that 

a*e=e*a=a for all a G G 

(d) for every a E G there exists an element a'̂  E G such that 

a*a"^ =a"''*a=e 

In addition to these properties if 

(e) for every a,b E G, a*b=b*a then G is called commutative group 



Notation: 

The set G together with binary operation is denoted by (G,*) 

If G consists of a finite number of elements then G is said to be finite 

other\Mse in finite. 

Example 1.1.1 

(Z,+ ) , (R + ), (Q + ), (R,-{0}, X ), (Q,-{0}, X ), (C + ) (C,-{0}, X ), are 

abelian groups. 

Example 1.1.2 

(R", +) is an abelian group. 

Example 1.1.3 

{(1,-1), X} is a finite abelian group 

Example 1.1.4 

The set of all n x n matrices whose entries are integers (rationals or 

reals) is an abelian group under addition . 



Example 1.1.5: 

Let M=GL(n,R) be the set of all n x n non singular matrices whose 

entries are real numbers is a non abelian group under matrix multiplication. 

Definition 1.1.2: 

A non empty sub set H of a group G is said to be a sub gorup of G if 

under the binary operation in G, H itself forms a group. 

Example 1.1.6: 

The set of Integers is a subgroup of real numbers under additive 

binary operation 

Example 1.1.7: 

The set of real number's is a sub group of complex number's under 

additive binary operation 

Example 1.1.8: 

The set of non-zero complex numbers of absolute value 1 (one) is a 

subgroup of (C*, X) where C*=(C-{0}) 



Example 1.1.9: 

Let SL (n,R)= {AeGL(n,R): det A=1} is a subgroup of GL(n,R) 

Example 1.1.10 

Let 0(n,R)= {AeGL(n,R): A*A=1} is a subgroup of GL(n,R) 

Definition 1.1.3 : 

Let (Gi, .) and (G2 , * ) be groups. 

A mapping (j): Gi->G2 is said to be a homomorphism if for all 

a,b e G , : (j) (a.b)= (()(a)*(t)(b) 

Moreover if (j) is bijective then (j) is called an isomorphism 

Definition 1.1.4: 

If (p is a homomorphism of Gi into G2 the Kernel of (() is given 

by Kj. = {X G GI (j)(x)=e, where e is the Identity element of G2} 

Definition 1.1.5: 

If N is a sub group of a group G & if gNg"̂  =N for all g G G then N is 

called Normal sub group of G or self conjugate sub group 



Example 1.1.11: 

Let (R,+) = (Gi, .) and (R-{0}, X)= (Gz ,X ) be groups. 

(i) A mapping (|): d ^ G z defined by (t)(x)=e'' is a homomorphism 

(ii) A mapping \|/: Gz^Gi defined by \|/(x)=logx is a homomorphism 

1.2. Topology: 

Definition 1.2.1: 

A topology on a set X is a collection T of sub sets of X having the 

following properties. 

(a) (j) and X are in T 

(b) Arbitrary union of the elements of T is in X 

(c) The Intersection of the elements of any finite sub collection of Tis in T 

A set X for \A4iich a topology T has been specified is called a 

Topological space. 

Example 1.2.1: 

Let X be a three element set X= {a,b,c} there are many possible 

topologies on X, some of which are indicated schematically in figure-1. The 

file:///A4iich


diagram in the upper right hand corner indicates the topology in which the 

open sets are X,0,{a,b},{b} and {b,c} the topology in the upper left hand 

corner contains only X and O, while the topology in the lower right hand 

corner contains every sub set of X you can get other topologies on X by 

permuting a, b and c 

(3 o 

o 

Figure -1 



Exampie:1.2.2: 

If X is any set, the collection of all sub sets of X is a topology on X, it 

is called the discrete topology. The collection consisting of X and O only is 

also a topology on X, we shall call it the indiscrete topology or trivial 

topology 

Definition:1.2.2: 

If X is a set, a basis of a topology on X is a collection p of sub sets of 

X such that 

(a) for each x e X, there is at least one basis element B containing x. 

(b) If X belongs to the intersection of two basis elements Bi and 82, 

then there is a basis element 83 containing x such that 83 C81082 

Definition1.2.3: 

Let X be a Topological space with topology T if Y is a sub set of x, the 

collection TY= {YnU/UeT} is a topology on Y called sub space topology. 



Definition1.2.4: 

A topological space X is called a Hausdorff space if for each pair x,y 

of distinct points of X, there exists disjoint neighborhoods U and V of x & y 

respectively, 

Definition 1.2.5: 

Let X be a Topological space. A Separation of X is a pair U,V of 

disjoint non empty open sub sets of X whose union is X. The space X is said 

to be connected if there does not exist a separation of X. 

Definition 1.2.6: 

Given points x and y of the space X, a path in X from x to y is a 

continuous map f: [a,b] ^ X of some closed interval in the real line into X, 

such that f(a) = x and f(b) =y. A space X is said to be path connected if 

every pair of points of X can be joined by a path in X. 

Difinition1.2.7: 

A space X is said to be locally connected at x if for every 

neighborhood U of x, there is a connected neighborhood V of x contained in 



U. If X is locally connected at each of its points, it is said simply to be locally 

connected. 

Difinition1.2.8: 

A space X is said to be locally path connected at x if for every 

neighborhood U of x, there is a path-connected neighborhood V of x 

contained in U. If X is locally path connected at each of its points, then it is 

said to be locally path connected. 

Example. 1.2.3: 

Each interval and each ray in the real line is both connected and 

locally connected. 

Example.1.2.4: 

R" is locally path connected 
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1.3: DIFFERENTIABLE MANIFOLDS: 

Definition:1.3.1: 

Let M be a Hausdorff topological space. If each point p in M has a 

neighborhood U homeomorphic to an open set E in R" , then M is called 

an n-dimensional topological manifold. 

If U is an open set of M which is homeomorphic to an open set E of R" 

i.e \\i:\J -^E. then we call the pair (U, \\i) a co-ordinate neighborhood 

about p of M or chart about p of M. If p eU, then \\i (p) is a point of R" , 

so \|/ (p) is an n-tuple of real numbers. 

Let X i{p) be the i"" co-ordinate of v|/ (p). 

We have \\i (p)= (x -i(p) x n(p)) Since \\i is continuous, each x' is a 

continuous real valued function defined on the neighbourhood U of P and 

v|/ is one-one. X i(p) = X i(q) (i=1,2,3 n) for p.q. eU => p=q, that is the 

point p of U is determined by the n-tuple of real numbers. 

(x i(p) X n(p)) These are called the set of local co-ordinates of the 

point p of U with respect to the co-ordinate neighbourhood (U, \\i) and the 

n-tuple. (xi, X2 Xn) of functions of U is called co-ordinate system 
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on (U, v|/). Since M is an n-dimensional topological manifold, there is a open 

covering {Ua}aeA such that M=UUaaeA where A is some index set. Let Ea 

be an open set of R" homeomorphic to Ua, and let \\ia be a homeomorphism 

from Ua, onto £„, then the collection (Ua,v|/JaeA is called a coHDrdinate 

neighborhood system or an atlas. 

SetS={(Ua,\j/.)}„.A 

Let ( Ua,M/a) and (Up,v|/p)GS and (U„o Up) 7̂ 9 then 

Wa '• Ua^ E„ and vj/p: Up,^ Ep, 

are homeomorphisms respectively. 

R" 

Figure -2 
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The transition maps (fig-2 ) 

vi/pox|/a "̂ : Va (Ua o Up)-> \|/p (U„ o Up) and 

v|/aov|/p '̂  : vi/p(Ua n Up)-^ Va (Ua (^ Up) aPG also homeomorphic on the open 

sets \|/a (Ua n Up) and v|/p(Ua n Up) 

An atlas S= { ( Ua, Va)}ae A of an n-dimensional topological manifold M 

is called a co-ordinate neighborhood system of class C or an " atlas of class 

C ", if for a,pGA, such that Ua n Up ^^, then the transition maps v|/aO \\ip '^ 

and v)/pOv)/a '̂  on n-variables, determing the transformations between the 

local co-ordinate systems (U„,v|/a) and (Up,v(/p) are continuously r-times 

differentiable on v|/p (Ua r\ Up) and \\ia (U„ o Up). 

Definition : 1.3.2 : 

If the transition maps v|/aovj/p'̂  and v)/pov|/a '̂  are all real analytic, then S 

is called a co-ordinate neighborhood system of class C '*' [ or atlas of class 

C "̂  i.e. analytic atlas ]. If S is an atlas of class C ( or C ™ ) on M, then we say 

that S defines a differentiable structure of class C' (or C ^ ) on the topological 

manifold M. 
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Definition: 1.3.3 

If an n-dimensional topological manifold M has a co-ordinate 

neighborhood system S of class C "̂  , then M is called an n-dimensional 

differentiable manifold of class C "̂  or a C '̂ ' manifold. 

If r= w, then M is called an "analytic manifold" 

Example 1.3.1 

R" is an n-dimensional manifold, {(R",i)} is an atlas on R" 

Example 1.3.2 

S ' = "{(x,y) e R^ /x^ + ŷ  = 1 h s a 1-dimensional manifold. 

LetUi = S ' - (0 ,1 ) U2 = S ' - (0 , -1 ) 

Define (|) i : U i ^ R by (|) i(x,y) = x / 1-y 

and <t)2-U 2-> Rby (j)2 (x,y) = x/1+y 

(U 1,4) i) and (U 2, <j) 2) are charts and{ (Ui,<j)i) (U2,<})2)} is an atlas on S ^ 

Example 1.3.3 : 

Let S^={(x,y,z) e R^: x^+y^+z^ =1} is a two dimensional manifold 

Let Ui=S' -(0,0,1) U2=S'-(0,0,-1) 

(j> 1 (x,y,z) = (x/1-z, y/1-z), (j> 2 (x,y,.z)= (x/1+z, y/1+z) 
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Example :1.3.4 

Let M= GL(n,R) the set of non-singular nxn matrices and is an open 

submanifoid of Mn(R) the set of all nxn real matrices identified with R" ̂ . 

Example: 1.3.5 

Let C-{o} = C * be non-zero complex numbers and is a one-dimensional 

manifold. 

Definition: 1.3.4: 

Let M and M̂  be differentiable manifolds of dimensions m and n 

respectively. If the derivative map of f: M-j'M^ i.e. 

f.p:Tp(M)->T,(p)(M^) 

is one-one for all p E M, then f is said to be an 'Immersion' of M into M̂  . In 

addition if f is one-one then f is said to be an 'Imbedding' of M into M̂  

Definition : 1.3.5 : 

Let M and M̂  be differentiable manifolds. M is said to be "submanifoid of M\ 

if the following two conditions are satisfied : 

I) the set M is a subset of M' 

ii) the inclusion map i:M -> M̂  is an imbedding of M into M̂  

Example:1.3.5: 

S" is a submanifoid of R"*̂  
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CHAPTER - 2 

Basic concepts of Lie Groups 

2.0:lntroduction: In this chapter we give the definition of Lie 

groups & its sub-goup with some examples. Also action of a Lie group on a 

manifold is given and by using this quotient manifold is defined. Further Lie 

transformation groups and one parameter groups are defined. Also flow 

property of fluid is explained by the notion of one parameter group and some 

examples of flow are given. Further topological properties of Lie groups are 

stated. 

2.1 :An Introduction to Lie Groups: 

2.1.1 Definition of Topological group: 

If a non-empty set G has the following properties, G is called a 

topological Group: 

(a)The set G is a group and a topological space simultaneously. 

(b) the map ( x,y) -^ xy from the direct product space G x G to G is 

continuous. Here xy denotes the product of two elements x and y of 

the group G. 
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(c) The map x -> x "̂  from G to G is continuous. Here x "̂  is the 

inverse element of x in G. 

Example 2.1.1 

R" is a topological group with respect to addition 

Example 2.1.2 

Let GL (n,R ) be the set of nonsingular n x n matrices with real entries, 

GL (n,R ) is a group with respect to multiplication of matrices. The n x n unit 

matrix is the identity element, and the inverse of A is the inverse matrix of A. 

On the other hand, we can indentify the set of all n x n real matrices with R "̂  

The determinant det a of a matrix a is a continuous function of A e R "^. We 

have GL (n,R ) = { A e R "̂  :det A ^0}. Hence GL (n,R ) is an open set of 

R "̂  , and hence can be considered to be a topological space. The group 

GL (n,R ) is a topological group with respect to this topology. Similarly, 

GL (n,C) is also a topological group. 

2.1.2 Definition of Lie Group: 

In definition 2.1.1, if we replace topology by a differentiable 

manifold and the maps (b) and (c) defined in definition 2.1. 1 are 

differentiable, then G is called a Lie group 
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Example 2.1.2 

The space R " is a C °° manifold and at the same time an abelian 

group with group operation given by componentwise addition, moreover the 

algebraic and differentiabie structures are related by 

(x,y)^x+y i . e ( R " x R " ) ^ R" 

is differentiabie and infact C " , Hence R" is a Lie group. In particular 

R̂  is a Lie group 

Example 2.1.3 

Let C * be the non -zero complex numbers It is a group with 

respect to multiplication and we know that C* is a 1-dimension al manifold, 

the algebraic and differentiabie structures are related by 

((x,y), (x\y'))-> (xx'-yy' , xy'+yx') i.eC*x C*-> C* 

and z-»z" i.e(x,y)->{ x -y } i.e. C*->C* 
l?+ŷ ' IP+ŷ '. 

are C " , hence C* is a Lie group. 
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Example:2.1.4: 

The unit circle can be identified with the complex numbers z: /z/ =1 

and can be regarded as a subgroup of C* and so Ŝ  is a group. The 

algebraic and differentiable structures are related by 

ŝ  X ŝ -> ŝ  and s^->s^as 

((Cose, Sine), (cosO, SinO))-> ((Cos(e+0), Sin(e+0)),e + 0<2n 

and (Cose, Sine),-^(Cose, -Sine) are C 

hence Ŝ  is a Lie group. 

Example: 2 .1.5: 

M= GL(n,R)- the set of all non-singular nxn matrices is a manifold of 

dimension n̂  and also a group with respect to matrix multiplication. The 

maps GL(n,R) X GL(n,R) -> GL(n,R) and GL(n,R) -> GL(n,R) defined by 

(A,B) -^ AB and A-> A'̂  are C " . The product has entries which are 

polynomials in the entries of A and 8 and these entries are exactly ' the 

expressions in local co-ordinates of the product which is thus C °° The inverse 

of A=(ajj) may be written as A'̂  = (a jj)/detA where the (ay) are the cofactors 

of A and thus polynomials in the entries of A & where det A is a polynomial 

in these entries which does not vanish on GL (n,R). It follows that the entries 
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of A'̂  are rational functions on GL (n,R) with non-vanishing denominators 

and hence C °°. Therefore GL (n,R) is a Lie group. For n=1, GL(1,R) = R* -

the multiplicative group of non-zero reals is a Lie group. 

2.1.3 Definition of Lie Subgroup: 

A subgroup H which is also a submanifold of a Lie group G is called 

Lie subgroup of G when it is a Lie group with respect to C * structure of H 

as a submanifold of G. 

Remark: To make H into a Lie group all what we require C * mappings 

H X H ̂ H & H ̂ H as defined in Lie groups 

Exampie:2.1.6: 

The Lie group on Ŝ  can be considered as a Lie subgroup of C*=C-{0} 

Lie group of non-zero complex numbers i.e. (ze Ŝ  means/z/=1) 

Example: 2.1.7: 

SL(n,R) = {Ae GL(n,R): det A = 1} is a Lie subgroup of GL(n,R) 
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Example:2.1.8: 

Let 0(n) denote the set of all non-singular orthogonal linear, transfer 

nations of R" & clearly 0(n)= {Ae GL(n,R): AA' =1} is a Lie subgroup of 

GL(n,R). 

2.2: HOMOMORPHISM OF LIE GROUPS 

Definition 2.2.1: 

If Gi and G2 are two Lie groups then the direct product Gi ® G2 of 

these groups is also a Lie group. 

Proof: Gi x G2 is a group , Gi x G2 is a C °° - manifold since Gi and G2 are Lie 

groups there are C °° maps cj) 1 and ^ 2 such that ^ i(ai,bi)=aibr^ and 

(j) 2(a2,b2)=a2b2"̂  in case of product Gi x G2 =G we should show that there exist 

a map (j) : G x G -> G defined by ^ (ai,a2 ), (bi,b2)= ((ai,a2 ), (bi,b2) '^) 

= ((ai,a2), (bi •\b2-')) =( aibr^, a2b2-') are C " 

Example:2.2.1: 

Ŝ  X Ŝ  - is a toral grpup 
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Example 2.2.2: 

S X R is a cylinderical group, where S={x^+y^=a }̂ and R is not the 

extended real line. 

Definition 2.2.2: 

Let O : Gi -> G2 be an algebraic homomorphism of Lie groups 

Gi and G2 We call O a homomorphism of Lie groups if O is also C " 

Exampie:2.2.3: 

Let Gi = GL(n,R) and G2 = GL(1 ,R)=R* 

Define O : Gi ^ G2 by 0(A) = detA and 0(AB)= det (AB)=detA. detB 

= <t)(A) 0(8). Also O is a real valued function whose values are polynomials 

in entries of A and So it Is C "̂  Hence O is a Lie homomorphism. 

Karnel of <D={Ae GL(n,R): O (A)=1} 

=SL(n,R) c GL(n,R) but by the first fundamental theorem of isomorphism 

GL(n,R)/SL(n,R)« GL(1,R) 

Where GL(1,R) is a Lie Subgroup of GL(n,R) 
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Example: 2.2.4: 

Set Gi = R the additive group of reals & G2 Ŝ  

Define O : d -> G2 by <D(t) = e^"" 

<D(ti+t2)= e'"'^^*''^ = e ' " * \ e ' " * ' = <D(ti) 0(t2) 

Also O is C " Hence O is a Lie homomorphism. 

Kernel of O = {tsR: e^"'*=1} which implies Kernel of 0=Z i.e. the set of al 

integers . But Z is not a Lie Subgroup of R 

Example:2.2.5: 

Let Gi =R X R and G2 = S' x S' 

Define O : Gi ^ G2 by O (ti, ts) = (e'" ' \ e'"*') 

Clearly O is a Lie homomorphism 

Kernel of 0= Z^ = integral lattice of R̂  
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ACTION OF A LIE GROUP G ON A MANIFOLD M 

Defnition:2.2.3: 

Let G be a group and M a set then G is said to act on M (on the left) if 

there is a mapping 9 : G X M -> M satisfying 

(a) if e is the identity element of G then 9(e,x) =x for all x eM 

(b) if Qi.gae G then 0 (gi, 9 (92, x)) = 9( 9192, x) for all x €M 

when G is a Lie group and M is a C * manifold then 9 is C " and we say 9 is 

enaction 

Notation: 9 (g,x)=gx. Thus (a) and (b) may be written as ex=x, 

9i (g2x)=(9ig2)x 

Let ge G be fixed, Then difine 0g: M-»M by 9g(x) =9 (g,x) 

Thus 9glO0g2=9g1g2 QTid 9g.1=(0g)'^ 

Theorem: 

If G acts on a set M then the map 9^9g is a homomorphism of G into 

S (X), where S (X) denote the set of ail bijective maps. 

Example: 2.2.6 

Let G= a b|: a>0 & b sR Shows that G is a Lie Group and acts on R 
01/ 

by9 ( i ab 
0 1 

, x) = ax+b 
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Example:2.2.7 

Let G = GL(n,R) and M=R" , Define 0: G x M^M by 0 (A, x) =Ax 

Matrix multiplication of the n x n matrix A and (nx1) column vector, shows 

that9 is enaction. 

Example: 2.2.8 

Let H,G be Lie Groups and \\f: H->G be a homomorphism 

Let 0 : H X G^G be defined by 0 (h,x)= v|/(h) x & is a left action. If H and G 

are Lie Groups and v|/ is a Lie homomorphism then, 0 is C °°. This may be 

applied to the case when H is a Lie subgroup of G & even when H=G. 

Example: 2.2.9 

The upper half plane H={z=x+iyeC: y >0} is a homogeneous space of 

SL(2,R) an elementja bbf SL (2,R) act's transitively on H by the action 
led! 

Z ^ az+b/cz+d, 0 (1 a bf, z) = az+b/cz+d 
led 
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Definition:2.2.4 

Let a group G act on a set M and suppose that AcM. 

GA={ga: geG and aeA}. The orbit of xeM is the set Gx. If Gx=x then x is a 

fixed point of G and if Gx=M for some x then G is said to be transitive on M. 

Example:2.2.10 

Consider 0 : GL(n,R) x R"^ R" by e(A,x)= Ax. The origin is a fixed 

point of GL(n,R) and GL(n,R) is transitive on R" {0} 

Example:2.2.11 

Let G=0(n)= The group of nxn orthogonal matrices & is a subgroup of 

GL(n,R), the orbits are concentric spheres with origin being a fixed point 

Definition:2.2.5 

Let G denote a Lie group & M a C " manifold, Let 9: GXM ->M be a C " 

action. We define a relation ~ on M by p ~ q if for some g e G, q =8g(p)=gp. 

This is an equivalence relation. The equivalence classes coincide with orbits 

and denote the set of all equivalence classes by M/G. 
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Definition:2.2.6 

An Equivalence relation R on a manifold M is called regular if the 

quotient space M/R carries a manifold structure such that the cannonical 

projection n:M->M/R is a submersion, If R is a regular equivalence relation, 

then M/R is called the Quotient manifold of M by R 

Example:2.2.12 

Let G be a Lie group and H a Lie subgroup of G Define a C " action 

0:HxG->G by e(h,x)= e(h)x. The set G/H of left cosets coincides with the 

orbits of this action and thus is a quotient monifold. 

Example:2.2.13 

Let G=0(n) and M=R", Then R"/0(n) «the ray 0<r<oo 

Example:2.2.14 

Let G= R* , and M= R' -{0}. Define 9 : R* X R̂  -{0}-> R̂  -{0}. by 

e (t,x)=b(. Then R̂  ~{0}/ R ^ P' (R). 
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Definitlon:2. 2.7 

Let G be a Lie group and let M be a monifold. The group G is called a 

Lie transformation group of M if there is a differentiable map (p:G XM ->M 

defined by (p(g,p)= gp (i) ep=p for the identity e of G and pe M (ii) (gh) p= 

g(hp) for g, heG and pe M are satisfied and cp is C " if a Lie transformation 

group G acts transitively on M then M is called a homogeneous space of G. 

If N is the set of all element's of G suchthat gp=p for all point's p of M then N 

is a Normal Sub group of G. 

If G is abelian then G is abelian Lie transformation Group. 

Definition:2.2.8 

If G=R in definition 2.2.7 then (p(t,p)= tp. Clearly (p (0,p)=0 and 

9 (t, {p(s, p))= {p(t+s,p) for teR, (pt: M-> M satisfies the following conditions. 

(1) (psO(pt=(ps+t (s.teR) 

(2) (t,p)-» cpt (p) gives a differentiable map from R x M ->M. Then the family 

{(pt: teR} (pt is called a one parameter group of tranformation's. 
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Definition: 2.2.9 

Let (p: R X M->M be a one parameter group of transformations and 

peM such that (pt(p) = Sp(t) then % is a curve in M passing through p. 

An integral curve of a vector field V is a smooth curve whose tangent 

vector at any point coincides with the value of V at the same point 

Definition:2.2.10 

if V is a Vector field, we denote the integral curve passing through x in 

M by (p (t,x) and call (p the flow genereted by V, Thus for each xeM and I is 

some interval containing 0 (zero) cp (t,x) will be a point on the integral curve 

passing through x in M. The flow of a vector field has the basic properties. 

9 (t, 9 (s,x))= (p (s+t,x) (1) for all t, s eR 

<P (0, X) = X (2) 

From (1) and (2) we see that the flow genereted by a vector field is same as 

a group action of the Lie group H on the manifold M and often called as one 

parameter group of transformations. 
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Remark: Every Lie group satisfies the conditions of one parameter group, 

hence every one parameter group is a Lie group. 

Thus one parameter group is related to Lie group, as seen above 

Example:2.2.15 

Let M= GL(2,R) and v|/: RXM^M defined by 

W (t,A)= 1 t / A where A=|Xi X2 
01) 1x3X4 

M/ (t,A)=(1t 
01 

Xi X2 

X3 X4 

is a flow field 

Xi+t X3 X2+t X4 

X3 X4 

For example: (a) Flow of water in a canal or River 

(b) Motion of Electron or flow of current in a circuit 

Example:2.2.16 

Let M=R^ v|;: R X R ' ^ R̂  

by M/(t,(xi,X2))=(xi,e^,X2e") 

Is an exponential function. This is a one parameter group & is flow in R̂  

For example: (a) Exhaust smoke from the Chimminey 

(b) Growth of population 
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Example:2.2.17 

Let M=R', v|/: R X R̂  -^ R̂  

W (t,(xi,X2))= (-Xi, Sint + XaCost), Xi Cost+ X2 Sint) 

is not a one parameter group and not a flow 

Example:2.2.18 

W (t,(xi,X2))= (Xi, Cost - X2 Sint, Xi Sint + X2 Cost) 

\\j (0,(xi ,X2))= (x i , X2) 

V|/ (t, V|/(S,(Xi,X2))= V|/(t+S( Xi,X2)) 

This is a Lie group of rotations in the plane we can quote the example of 

rotating of earth around the sun. 
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2.3:TOPOLOGICAL PROPERTIES OF LIE GROUPS 

Definition:2.3.1 

Let G be a Lie group, If G is connected as a topological space then we 

call G a connected Lie group 

Example:2.3.1 

R is a Lie group, (R-Real Line) R is also connected, hence R is a 

connected Lie Group. 

Definition:2.3.2 

Let G be a Hausdorff Lie group. 

(a) if G is locally compact as a topological space, then G is called a locally 

compact group. 

(b) If G is compact as a topological space then G is called a compact group 

510 

KUVEMPU UNIVrnr iTY LIRHAR^, 

Jnanu Suhy.Jr i . SwAi\KA[lAGhATTA 
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Example:2.3.2 

(i) R is locally compact 

(ii)Consider the Set S^={(x,y) eR /̂ x^+y^=1} is compact, If we Induce a 

topology Ŝ  becomes a manifold. Ŝ  is a compact group. 

Definition:2.3.3 

Connected Lie sub group H of G is a sub set H of G and iscailed a 

connected Lie sub group of G if H is a connected Sub manifold of G and a 

sub group of G. 

Example: 2.3.3 

GL(n,R) is a connected Lie Sub group of GL(n,C). 
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CHAPTER -3 

BASIC CONCEPTS OF LIE • ALGEBRAS 

3.0:lntroduction: In this chapter we study basic definition of 

Lie-algebra with some examples. Also examples of those relating to 

Lie-groups are explained. Left and right translations are defined and an 

inner automorphism is constructed as in group theory by using these 

translation. Further Lie-algebras of GL(n,R) and GL(n,C) are given . 

3.1:AN INTRODUCTION TO LIE-ALGEBRAS 

Definition: 3.1.1: 

Let X be a vector space over a filed F. If for any two elements a.beX 

there is an other element aob of X and if the conditions. 

a) >.(aob) = (^a)ob= ao (Xb) 

b) (a+b)oc= (aoc) + (boc) 

c) ao(b+c) = (aob)+ (aoc) 

{XeK, a.b.ceX) 
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are satisfied, then X is called an algebra Moreover if X satisfies. 

ao(boc)=(aob)oc 

then X is called an associative algebra 

Example:3.1.1 

Let C * (M) = Denote the set of all real valued functions of class C °° on 

the manifold. 

Define the sum and the product of these functions belonging to C * (M) 

then it is an associative algebra. 

Definition:3.1.2 

A Lie algebra is a vector space L on which an operation called a Lie 

bracket (denoted as [ , ]) is defined, which associates with a pair u, v of 

elements of L, the element [u,v] of L such that, for arbitary vectors u,v, w in L 

and arbitary scalars (i.e. real or complex numbers depending on whether L is 

a real or complex vector space) a, b, we have 

(a) [au+bv,w] = a[u,w]+b[v,w] 

(b) [u,v] = -[v,u] 

(c) [[u,v],w]+[[v,w],u]+[[w,u],v]=0 
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Example:3.1.2 

Let X be an associative algebra over K for a,b, eX set[a,b]=ab-ba 

then X becomes a Lie - algebra. 

Example:3.1.3 

The set K(M) of all C * vector fields on a manifold M is a Lie-algebra 

with repect to commutator product 

Example:3.1.4 

The set of all n x n real matrices constitutes a real Lie algebra of 

dimension n̂  with the Lie bracket given by 

[A,B]=AB-BA 

Definition:3.1.3 

Let (j be a Lie-algebra over a field F. A sub set k of a is called a 

Lie-sub algebra of q, if it has the following two properties. 

(a) The set h is a sub space of a 

i.e. ifX,Ye k, and ?.,neF, then?iX + ^lYe k 

(b) I fX.Ye t then [X,Y] e k. 
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Example:3.1.5 

The set of n x n real antisymmetric matrices constitute a Lie 

subalgebra [ of dimension n(n-1 )/2] of the real Lie algebra of Example 3.1.4 

above. 

3.2.: Lie -algebras over a Lie Groups : 

Let G be a Lie -group, define a mapping Lg: G -> G if Lg (x) =xg then it 

is left translation if Lg (x) = gx then it is right translation by x. 

Let Lg and Rg denote the left and right translations, respectively by an 

element g of Lie group G. 

Lg(x) = xg and Rg (x) = gx 

we have Lg.Lh = Lgh, Rg. Rn = Rhg 

Lg-1 = Lg , Rg.1 = Rg 

Lg.Rh = Rh-Lg 

ForgeG, set Ag = Lg.Rg.i 

96 
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the transformation Ag is a diffeomorphism of G and by difinition we have 

Ag(x) = gxg-' 

Hence for two element's x,y of G, we have Ag(xy) = Ag(x). Ag(y). we call Ag the 

inner automorphism of G by the element g of G. 

If a vector field X on a Lie group G satisfies (Lg)* X = X for all g G G, 

then X is called a left invariant field. If instead X satisfies (Rg)* X = X for all 

g e G, then X is called a right invariant vector field. 

Let g be the set of all left invarient vector field's on G. If X, Y e g 

and X, î € R then XX + laY, [X,Y] also belong to g 

(Lg)* {XX+ixY) = X (Lg)*X + n (Lg)*Y = XX + ^Y 

(Lg)* [X.Y] = [ (Lg)*X, (Lg)*Y] = [X.Y] 

a becomes a lie algebra of vector field's with respect to commutator product 

[X,Y] 

Definition. 3.2.1 : 

The Lie algebra a formed by the set of all left invariant vector field's on G is 
(/ 

called the Lie algebra of the Lie group G. 
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Theorem: 

If a Lie group G has dimension n, then the Lie algebra of G is also of 

dimension n 

Definition 3.2.2 : 

Let ai, 02 be Lie -algebra's over a field F, Define a linear map. x : ai ^ 02 by 

°c( [X, Y]) = [oc(X), oc (Y)] for arbitrary X,Y of ^, then oc is called a 

homomorphism from ai to 02. If oc (ai) = oj, then x is called a homomorphism 

from ai onto a2. If the homomorphism x is a one-one map, then x is called 

an isomorphism from ai into 0.2. If there is an isomorphism from ai onto 02 

then ai and 02 are said to be isomorphic and we write a 1 = 02. 

An isomorphism from a Lie algebra a onto itself is called an 

automorphism of a. 
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3.2.3: One parameter sub groups and the 

Exponentional map : 

Let G be a Lie group and a : t ^ a(t) a differentiable curve of G 

defined on (-oo,<»). If for any s,t E R, we have 

a(s) a (t) = a(s+t) (1) 

then {a(t)/t e R} is called a one - parameter sub group of G. By (1) we have 

a(0) a(t) = a(t) so that multiplying by the inverse element of a(t) on the right, 

we have 

a(0) = e 

also, since a{t) a(-t) = a(-t) a (t) = a (t-t) = a{0) = e, we have 

a(t)-^ = a{-t) 

further more, since a(s) a{t) = a(s+t) = a (t+s) = a(t)a(s) 

a(s) and a(t) commute hence a one parameter sub group of G is a 

commutative sub group of G :{La(t) : t e R}, { Ra(t) : t e R} are both one-

parameter groups of transformations of G, and the orbits of the identity 

element e by these transformation groups coincide with a(t). The following 

lemma holds. 
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Lemma 3.2.4: 

Let X be the infinitiesimal transformation of Ra(t) and let Y be the infinitesimal 

transformation of La(t)' then X is left invariant and Y is right invariant and 

Xe = Ye = a (̂0) holds. Here a (̂t) denotes the tangent vector to the 

curve a at a(t) 

Proof: 

If f is a c °° function on a neighborhood of a point h of G, then 

(LgX)Hf=X,.1h(fOLg) 

On the other hand by the definition of X and by the commutativity of Lg and 

Ra(t), we have 

Xg.1h(fOLg) = Lim 1/t [ (fOLg) (Ra t̂, g-1h) - (fOLg) (g.1h)] 

t->0 
= Lim 1/t [f(Ra(t)h)-f(h)] = Xhf 

t-^0 

Hence (LgX)h = Xh holds at each point h of G and X is left invariant, Similarly 

we can show that Y is right invariant, since Ra(t) (e) = a(t) we have that a(t) is 

an integral curve of X, and hence Xa© = a\t) holds in particular, we have 

Xe=a\0) similarly we have Ye = a^O). 

Lemma 3.2.5 : 

Let {0 t : t € R} be a one-parameter group of transformations of G, and 

set 0, (e) = a (t) if 0,. Lg = Lg 0, holds for all g s G and for all t e R, then a(t) 
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is a one parameter sub group of G, and 0t = Ra(t) holds for all t e R. If 0t Rg 

= Rg 0t holds for all g G G for all t e R, then a(t) is a one - parameter sub 

group of G, and 0t = La(t) holds for all t e R. 

Proof: 

The map t -> a(t) is differntiable and more over, a(s+t) = 0s+t (e) 

and (0s*, (e)) = 0, (0s (e))= 0. (La(s) (e)) = La(s) (0,(e))=a(s)a(t). 

Hence a(t) is a one-parameter sub group of G. On the other hand for 

any g e G we have 0t(g) = 0, (Lg(e)) =Lg(0,(e))=g. a(t)=Ra(,) (g). 

Hence 0, = Ra(,) 

We can argue similarly for the case 0, Rg=Rg 0t 

By lemma 3.2.2 and 3.2.3, we see that there is a one-one 

correspondence between the one-parameter sub groups of G and the left 

invariant vector fields on G as fallows. 

If a(t) is one- parameter sub group of G, then there is an X e G Such 

that a(t) = (Exptx) (e) conversly, for an arbitary X e G. (Exptx)(e) = a(t) a one 

- parameter sub group of G and Expt = Ra(t). 
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Definition 3.2.6: 

For X e a. set 

exptX = (ExptX) (e), the map X-> Exp X is a map from a to G, and is 

called the exponential map by definition. exptX is a one parameter sub group 

of G and we have 

exp(t+s) X = exp(tx), exp (sx) 

Rexptx = Exp tx 

Then for X,Y e a, we have 
' • "- y 

[ X , Y ] g = I i m 1 / t { Y g - ( ( R e x p t x ) Y ) g } ( 2 ) 

t^o 

Since for an arbitary element g of G, we have Ag = Rg.i Lg it fallows that for 

Y e g, we have 

Ag Y = Rg-i Y = Rg.i (U Y) = Rg.i Y G g. The map Y ^ Ag Y is a linear 

transformation of the vector space g and we denote this linear transformation 

byAd(g)-i.e., 

Ad(g)Y = Ag Y = Rg.iY (g e G, Y e g) 

Since Agh = Ag. Ah. we have 

Ad(gh) = Ad(g) Ad(h) 
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for any two elements g, h of G, in paraticular it is clear from the definition of 

Ad (e) is the indentify transformation 1 of the vector space a hence we have 

Ad(g)"\ Ad(g)=1. Hence we have Ad(g)'\ Ad(g)=1. Hance Ad(g) is a 

nonsingular linear transformation of g and 

Ad(g'') = Ad(g)"^ holds 

The map g ^ Ad(g) is called the adjoint representation of the Lie group G. 

Since Ag[X,Y] = [AgX, AgY], we have 

Ad(g) [X, Y] = [Ad(g) X, Ad(g) Y], (X, Y e g) 

i.e Ad(g) is an automorphism of the Lie - algebra g 

if we let Ax(t)=Ad (exptx) (Xe g). 

Then we have Ax (t+s) = Ax(t). Ax(s) that is Ax(t) is a one-parameter 

group of linear transformations of the vector space g. If we set 

Cx=[d/dtAx(t)] 

then we have Ax (t) = expt Cx 

in fact from Ax(ts) = Ax(t), Ax(s), we obtain 

d_Ax(t) = CxAx(t) 
dt 

Ax{0) = 1 

This shows that Ax(t) a solution to a system of differential equations 

and satisfies a given initial condition. How ever, clearly expt Cx satisfies the 
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same system of differential equations and the same initial condition hence by 

uniquenes of solutions we conclude that Ax (t) = expt CxOn the other hand 

from (2) we get [X,Y] = '*"" 1/t {Y- Ad (exp (-tx), Y} 
t-»o 

= - [ d/dt Ax (-t) ],=o, Y = Cx. Y 

Hence Cx is equal to the linear transformation ad(X) of g defined by 

Y-^[X,Y]i.e. ifweset 

ad(X),Y = [X,Y] (X,Y e ^) 

then Ax(t) = Expt ad (X). Hence 

Ad(Expt X) = Expt ad (X) holds (3) 

and the map X -> ad(X) is called the adjoint representation of the 

Lie algebra a. From the Jacobi identity for Lie algebras we have 

ad(X) [Y,Z] = [ ad(X) Y,Z] + [Y. ad (X) Z] 

is the derivation of the Lie algebra a. Then the equation (3) gives the relation 

between the automorphism Ad(Expt X) a the Lie algebra a, and the derivation 

ad(X)of^. 
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3.3.1: Lie algebras ofGL(n,R) and GL(n.C): 

Let A(t) be a one parameter sub group of GL(n,R) 

we can write A(t) = exptC. 

where C is determined uniquely by 

C= [ dA(t)/dt]t=0 

Conversly. If C is an arbitary nxn real matrix, then the exponential function 

exptC is a one - parameter sub group of GL(n,R) 

Now let a be the Lie-algebra of GL(n,R) for X e a, consider the 

one-parameter sub group exptX of GL(n,R), then there is an nxn matrix C(X) 

such that exptx = exptC(X) 

applying Xaf= lim 1/t [f Expt X (a)) -f (a)] 
t->0 

and using Exptx = Rêptx = Rexptcw, we get for 

the matrix (XaX'j) = Lim1/t [aexptc (X-a)] 
t->0 

= a.c (X) 

i.e. if we set 

C(x) = (dj (X)), a=(a'j) 
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then we have 

n 
XaX'=Za'kC'^ j (X) 

K=1 

Hence the vector field X is expressed as 

n n 
X = L(Z(x'KC'i(X)))d/dx'j (1) 

i,j=1 K=1 

with respect to the Co-ordinate system (X'j) again if we compute [X,Y] X'j, we 

see that it is equal to 

n n 
Z X'K {(S C't (X) C'j (Y) - C',(Y) C* (X)] 
k=1 t=1 

hence we have 

n n n 
[X,Y] = I d XV (Z C^ (X) C\ (Y) -C^ (Y) C'̂  (X) )) d/dx'j 

i,j=1 k=1 t=1 

and we obtain 

n 
C;([X,Y]) = Z(C\(X)C'(Y) - C't (Y) C' (X)) (2) 

i = 1 

Now we define the commutator product [A,B] in the associative algebra g all 

nxn real matrices to be 

[A,B] = AB-BA 
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then we obtain a Lie algebra, which will be denoted by gl(n,R), the formula 

(2) then becomes 

C([X,Y]) = [C(X), C(Y)] 

from (1) it is clear that the correspondence X-> c(X) is one-one and onto and 

that C{Xx) = >.C(X) for a G R, and C(X+Y) = C(X)+C(Y) hence the map X-^ 

C(X) is an isomorphism from the Lie algebra g of GL(n,R) onto the Lie 

algebra gl(n,R), we shall identify of and gl(n,R) by this isomorphism from 

now on then the Exponential map. 

Exp:gl(n,R)^GL(n,R) 

is nothing but the exponential function. Which assigns to each matrix X 

belonging to gl(n,R) the value expX, we have 

expt (Ad(a)X) = a {exp\x)a^ 

(X e gl(n,R), a e GL(n,R)) 

Differentiating both sides with respect to t and setting t=0, we obtain 

Ad(a)X = aXa'' (3) 

i.e if we consider gl(n,R) to be the Lie algebra of GL(n,R) then the adjoint 

representation of GL(n,R) given by (3) similarly the set gl(n,C) of all nxn 

complex matrices is a Lie algebra with respect to the commutator product 

[A,B]= AB-BA as in the case of GL(n, R) we can prove that gl(n,C) is 

isomorphic to the Lie -algebra of GL(n, C). 
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3.4: Some results concerning Lie groups and Lie 
algebras 

Definition:3.4.1 

If for any two elements X, Y in a Lie algebra a,[X,Y]=0 then a is called 

a commutative Lie algebra or an abelian Lie algebra. 

Theorem: 3.4.1 

If a Lie group G has dimension n, then the Lie algebra of G also has 

dimension n. 

Theorem:3.4.2 

Let G be a connected Lie group, and a its Lie algebra. Then G is 

commutative if an only if a is commutative. 

PROPOSmON 

A compact connected complex Lie gorup G is commutative. 
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Theorem:3.4.3 

Let G be a Lie group, and H a sub group of G if H and G/H are both 

connected, then G is connected. 

Theorem: 3.4.4 

If the Lie group G is a complex Lie group then the Lie algebra of a 

real Lie group G is a complex Lie algebra, then G has the structure of a 

complex Lie group. 

Theorem:3.4.5 

Let G be a Lie group, a the Lie-algebra of G . If H is a Lie sub group 

of G, then the Lie-algebra k of H can be regarded as a Lie sub algebra of a 

conversly if h is a Lie sub algebra of k, then there is a unique connected Lie 

sub group of G whose Lie algebra is /;. 

Theorem:3.4.6 

Let a be the Lie algebra of a complex Lie group G. If H is a Lie sub 

group of G, then H is a complex Lie sub group of G if and only if the Lie 

algebra of H is a complex Lie sub algebra of a. 
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Remark: 

If a subset H of G satisfies the two conditions 

(a) H is a closed sub set of G and 

(b) H is a sub group of G. then it will be shown that H is a closed Lie 

group of G. 

Theorem:3.4.7 

If H is a connected normal Lie sub group of a Lie group G, then the Lie 

algebra ^ of H is an ideal of the Lie algebra of G, conversly, If G is a 

connected Lie group with Lie algebra a, and if fi is an ideal o f ; . Then the 

connected Lie subgroup H of G correspoding to ^ is a normal 

sub group of G. 

Theorem :3.4.8 

Let G be a Lie group with Lie algebra a. If HcG is a Lie subgroup, its 

Lie algebra is a subalgebra of a. Conversely, if n is any s-dimensional 

subalgebra of g, there is a unique connected s-parameter Lie subgroup H of 

G with Lie algebra L 
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Theorem:3.4.9 

Let a be a finite-dimensional Lie algebra. Then a is isomorphic to a 

subalgebra of GL{n) for some n. 

Theorem: 3.4.10 

Let a be a finite-dimensional Lie algebra. Then there exists a inique 

connected, simply-connected Lie group G* having a as its Lie algebra. 

Moreover, if G is any other connected Lie group with Lie algebra a, 

thenn:G*->G is the simply-connected covering group of G. 

Theorem: 3.4.11 

Let H be a Lie subgroup of a Lie group G. If the topology of H is the 

induced topology then H is closed. 

Theorem:3.4.12 

The automorphism group of a finite-dimensional algebra a is a Lie 

group, and its Lie algebra is the Lie algebra formed by all the derivations of a 
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CHAPTER-4 

APPLICATIONS OF LIE-GROUPS 

4.0:lntroduction: In this chapter we give application of Lie-groups. 

It is explained how relativity group can be constructed by Galilean 

transformations. This group is nothing but Lie-group and hence it can be 

seen that how Lie-groups are used in relativity theory, similarly Lorentz 

group which is also a Lie-group is used in quantam theory. 

Reference frames and relativity groups: 

In physics we are interested in the description of dynamics of various 

systems. This involves change of various quantities with time. A proper 

mathematical definition of these quantities which could be translated into 

observations requires the introduction of a reference frame. All observations 

reduce in the ultimate analysis to measurements of positions of objects 

which can only be done relative to some reference objects and times of 

events (which, again, can only be relative to some reference event). By a 

reference frame, we mean a coordinate frame (generally chosen as fixed to 

some object: Earth, Sun, laboratory etc.) relative to which the position 
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coordinates may be assigned to point objects, and a clock to assign time 

coordinates to events. The position and time-coordinate assignments in two 

different reference frames must be related by an invertible transformation so 

that descriptions in various frames can be unambiguously translated into 

each other. We shall give examples of such transformations below. 

Every physical theory takes (explicitly or implicitly) some distinguished 

class of reference frames as mutually equivalent for the description of 

physical phenomena (covered by the theory): in mathematical terms, this 

means that basic equations of the theory take the same form in all reference 

frames of the distinguished class. This choice of distinguished frames is 

made by philosophical considerations and reflects the stand taken by the 

theory regarding the nature of space and time. It is easily seen that the 

transformations relating the position-and time-coordinate assignments in 

pairs of distinguished frames form a group. (If a transformation Ti takes the 

description of the frame S to Ŝ  and T2 from Ŝ  to S", then T2T1 takes S to 

S", Ti"̂  takes Ŝ  to S, the identity transformation connects S to S itself, etc.) 

This group is called the relativity group. 

In Newtonian mechanics, the distinguished frames are the so-called 

inertial frames (or Galilean frames) which, by definition, are those in which 

Newton's first law (the law of inertia) is valid. Recall that, according to 
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Ne\Arton's first law, a free particle (i.e. one not acted upon by anything 

external) either remains at rest or moves with a constant speed in a straight 

line. This law obviously cannot be valid in all reference frames (if it is valid in 

some frame S, then it cannot be valid in a frame Ŝ  moving relative to S with 

nonzero acceleration); it, therefore, implicitly serves to define the class of 

reference frames which are to be adopted for the standard formulation of 

Newtonian mechanics. 

Let S and Ŝ  be two inertial frames having their axes parallel, their 

origins coinciding at a time taken to be zero in both frames and Ŝ  moving 

relative to S in the positive x-direction with a speed V. Let the space-time 

coordinates in the two frames be (x,y,z,t) and (x\y\z\t^). [The meaning of 

these coordinates is this: if an event (something hapening at some point of 

space at some point of time- it is supposed to be taken as a frame-

independent entity)is assigned position coordinates (x,y,z) and time 

coordinate t in S, then its corresponding coordinates in Ŝ  are {x\y\z\\^).] 

They are related by special Galilean transformations. 

x'=x-vt, /=y, z'=z, t'=t (1) 

These transformations are easily seen to form a group which, calling 

the group element corresponding to the transformation (1) g (v), is given by 

g(v')g{v)=g(v+v^), g(v)-^=g(-v), g(0)=e (2) 
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If we allow for arbitrary relative orientation of axes, initial positions of 

origins and relative shift in the zero of time, the transformations (1) are 

generalized to the following transformation (employing matrix notation): 

x^=Ax+vt+a, t̂ =t+b (3) 

where A is a 3 x 3 real orthogonal matrix. We have changed v of Eq. 

(1) to - V to avoid an unpleasant minus sign. These transformations 

constitute a ten-parameter Lie group called the Galilean group. Denoting the 

group element corresponding to the transformation (3) by (A,v,a,b), we have 

(A\v\a\b') (A,v,a,b) = (A'A, A V + V \ A'a+bv'+a\ b+b') (4) 

e=(I,o,o,o), {A,v,a,b)-̂  = {A-\ -A'V, -A'^a+bA-V.-b). 

If both the frames are assumed to have, say, right-handed systems of axes, 

then we must have det A = 1. Such transformations constitute a subgroup of 

the Galilean group; it may be called the proper Galilean group. 

In practical applications, it is often convenient to restrict the choice of 

frames to those fixed relative to some object (say, the centre of mass of a 

system of particles) and the zero of time by the initial conditions of a 

problem (or some arbitrary convention). Tlhis restricts the group of equation 

(4) to elements of the form (A,o,a,o) which are easily seen to form a group 

isomorphic to the Euclidean group E3. 
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In special relativity, Newton's first law is taken to be valid and, 

therefore, the distinguished frames are again the inertial frames. However, 

now the absoluteness of time represented by Eq. (1) is given up and the 

transformations (1) are replaced by the special Lorentz transformations. 

x'=Y{x-vt), /=y, z^=z, t^=y(t-vx/c') (5) 

where y=(1 V/c^)'^'^ and c is the velocity of light in vacuum. 

These transformations form a one-parameter Lie group given by [compare 

Eq.(2)] 

v+v̂  
g(v^)g(v)=g(v^^), with v"= (6) 

c^ 
i _ . e=g(0). g(v)-'=g(-v) 

The transformations replacing the general Galilean transformations (4) 

in special relativity are the inhomogeneous Lorentz transformation written in 

the matrix notation is given by x^=Ax+A 

where A is a 4 x 4 real matrix belonging to the group o(3,1) [the (3+1)-

dimensional Lorentz group]: 
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, T A -A TiA=n, where TI= 1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0-1 

(7) 

The transformations (6) constitute a ten-parameter Lie group called the 

inhomogeneous Lorentz group (or the Poincare group) with composition rule 

etc., given by 

(A\a') (A,a) = (A'A,A^a+a') 

e=(I,o), (A.a).-̂  = (A-\-A-^a). 

•(8) 



58 

REFERENCES 

1. Abraham, R., Marsden, 

2. Bemard.F.Schutz 

3. Borret O' Neill, 

Manifolds,Tensor Analysis and 

J.E. and Tatiu, T., Application 

Springer-Verlag, New York. 

Geometrical methods of mathematical 

physics University Press, Cambridge. 

Elementary Differential Geometry, 

Academic Press, New York, (1966) 

4. Gullemin.V. and Pollack, A.,: Differential Topology, Prentice Hall, N.J. 

(1974). 

5. Helgason, S., Differential Geometry, Lie groups and 

Symmetric Spaces, Academic Press, 

New York, (1978) 

6. I.N.Herstein, Topics in Algebra, 2nd Edition, Wiley 

Eastern Limited, New Delhi. 

http://www.springer.com/in/book/9780387967905
http://www.worldcat.org/title/geometrical-methods-of-mathematical-physics/oclc/797121321
https://archive.org/details/ElementaryDifferentialGeometry
http://www.mat.unimi.it/users/dedo/top%20diff/Guillemin-Pollack_Differential%20topology.pdf
https://www.elsevier.com/books/differential-geometry-lie-groups-and-symmetric-spaces/helgason/978-0-12-338460-7
http://www.slideshare.net/septyhasyim/i-n-herstein-topics-in-algebra-2nd-edition-1975-wiley-international-editionsjohn-wiley-and-sons-wie-1975-52120653


59 

7. N.J. Hicks, Notes on Differential Geometry. Van 

Nostrand Priceton, New Jersey, (1965). 

8. Kobayashi, S. and Foundation of Differential Geometry, 

Vol -1 Nomizu, K., 1,2.. John Wiley and 

Sons, New York, (1969). 

9. Mathsushima, Y Differentiable manifolds, Marcel Dekker, 

Inc., New York, (1972). 

10. Munkers, J.R., Elementary Differential topology. 

Annals Study -54, Princeton University 

Press, Princeton, (1963) 

11. Nirmala Prakash, Differential Geometry, Tata Mcgraw Hill 

Publishing Company Ltd., New Delhi, 

(1981) 

12. Peter. J. Olver Application's of Lie groups to 

Differential Equations, second Edition, 

Springer - verlag 

http://www.worldcat.org/title/notes-on-differential-geometry/oclc/529462
http://www.ime.usp.br/~jcarlson/palestra/characteristic_classes/Kobayashi--Nomizu_I.pdf
http://www.ime.usp.br/~jcarlson/palestra/characteristic_classes/Kobayashi--Nomizu_II.pdf
http://www.springer.com/it/book/9780387950006


60 

13. K.N.Srinivasa Rao : Linear Algebra and Group theory for 

Physicists, New age International 

Publishers's. 

14. Tuisi Dass, S.K.Sharma 

15. V.S. Varadarajan 

Mathematical Method's in classical 

and Quantam Physics, Universities 

press (India) Limited 1998. 

Lie groups, Lie algebras . and their 

repre- sentations, Springer-verlag, 

New York, Berlin Heidelberg, Tokyo. 

16. William.M.Boothby An Introduction to Differentiable 

Manifolds and Riemannian Geometry, 

Academic Press. 

http://as.wiley.com/WileyCDA/WileyTitle/productCd-0470220619.html
http://www.springer.com/in/book/9780387909691
http://store.elsevier.com/An-Introduction-to-Differentiable-Manifolds-and-Riemannian-Geometry-Revised/William-Boothby/isbn-9780121160517/

	1. Abraham, R., Marsden,

